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SQUARE-TILED SURFACES IN H(2)

PASCAL HUBERT, SAMUEL LELIEVRE

ABSTRACT. This is a study of square-tiled translation surfaces in
the stratum H(2) and their SL(2,R)-orbits or Teichmiiller discs,
which are arithmetic. We prove that for prime n > 3 translation
surfaces tiled by n squares fall into two Teichmiiller discs, only one
of them with elliptic points, and that the genus of these discs has
a cubic growth rate in n.
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In his fundamental paper of 1989, Veech studied the finite-volume
Teichmiiller discs. Surfaces with such discs, called Veech surfaces, en-
joy very interesting dynamical properties: their directional flows are
either completely periodic or uniquely ergodic. An abundant literature

Date: 7 January 2004.



2 PASCAL HUBERT, SAMUEL LELIEVRE

exists on Veech surfaces: Veech [Ve89, Ve92], Gutkin-Judge [GuJu96,
GuJu00], Vorobets [Vo], Ward [Wal, Kenyon—Smillie [KeSm|, Hubert—
Schmidt [HuSc00, HuSc01], Gutkin—Hubert—Schmidt [GuHuSc], Calta
[Ca], McMullen [Mc] ...

The simplest examples of Veech surfaces are translation coverings of
the torus, called square-tiled surfaces. They are those translation sur-
faces whose stabilizer in SL(2,R) is arithmetic (commensurable with
SL(2,Z)), after a theorem by Gutkin and Judge. These surfaces (and
many more!) were introduced by Thurston [Th] and studied on the
dynamical aspect by Gutkin [Gu], Veech [Ve87] and Gutkin—Judge
[GuJu96, GuJu00]. Square-tiled surfaces have been used for explicit
computations of volumes of strata by Zorich [Zo] and Eskin—Okounkov
[EsOK]: square-tiled surfaces correspond to integer points of the mod-
uli space of holomorphic differential forms; the volume of a stratum is
computed from the asymptotic number of integer points in a large ball.

1.1. Main results. In this paper, we study square-tiled surfaces in
the stratum H(2). This stratum is the moduli space of forms with a
unique zero on a surface of genus 2. Our study restricts to the case of
a prime number of squares. We show:

Theorem 1.1. For any prime n > 5, the SL(2, R)-orbits of n-square-
tiled surfaces in H(2) form two Teichmiiller discs Da(n) and Dg(n).

Theorem 1.2. Dy(n) and Dg(n) can be seen as the unit tangent bun-
dles to orbifold surfaces with the following asymptotic behavior:

e genus ~ cn®, with ca = cg = (3/8)(1/12)

e area ~ cn®, with ca = cg = (3/8)(7/3)

o number of cusps ~ cn?, with ca = 1/24 and cg = 1/8

e number of elliptic points O(n), one of them having none

Proposition 1.3. All these discs arise from L-shaped billiards.

1.2. Side results. We find the following as side results of our study:
e One-cylinder directions

Proposition 1.4. All surfaces in H(2) tiled by a prime number of
squares have one-cylinder directions i.e. directions in which they de-
compose into one single cylinder.

e Discs without elliptic points

During some time, the quest for new Veech surfaces was focused
on examples arising from billiards in rational-angled polygons. Such
surfaces necessarily have elliptic elements in their Veech groups as soon
as all angles are not multiples of the right angle. Surfaces with all angles
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multiples of the right angle have however recently re-entered the scene,
especially L-shaped billiards (see [Mc]).

e Discs of (arbitrary high) positive genus

When a surface has a positive genus Teichmiiller disc, the subgroup
of its Veech group generated by parabolic elements has infinite index,
hence one could not conclude that the Veech group is a lattice only
by looking for parabolic elements. This makes Gutkin and Judge’s
theorem (see section 2.2 and appendix C) all the more powerful.

One could probably show that the Veech groups of the surfaces aris-
ing from billiards in regular polygons, studied by Veech in [Ve92] have
positive genus when the number of sides is large enough, however Veech
does not state this explicitly. Furthermore, our examples give families
of Teichmiiller discs of arbitrarily high genus while the translation sur-
faces in these discs stay in genus 2, whereas the genus of surfaces of
regular polygonal billiards tends to infinity.

e Veech groups that are non-congruence subgroups of SL(2,Z)

Since we deal with families of subgroups of SL(2,Z), it is natural
to check whether they belong to the well-known family of congruence
subgroups. Appendix A provides an example of Veech group that is a
non-congruence subgroup of SL(2,Z).

e Deviation from the mean order

Proposition 1.5. The number of n-square-tiled surfaces in H(2) for
prime n is asymptotically 1/((4) times the mean order of the number
of n-square-tiled surfaces in H(2).

1.3. Methods. We parameterize square tiled surfaces in H(2) by using
separatrix diagrams as in [KoZo], [Zo] and [EsMaSc|. These coordinates
bring the study of Teichmiiller discs of n-square-tiled surfaces down to
a combinatorial problem.

We want to describe the SL(2,Z) orbits of these surfaces. Using the
fact that H(2) is a hyperelliptic stratum, the combinatorial represen-
tation of Weierstrass points allows us to show there are at least two
orbits for odd n > 5. Showing there are only two is done for prime n
in a combinatorial way, by a careful study of the action of generators
of SL(2,Z) on square-tiled surfaces.

For the countings, we use generating functions.

1.4. Remarks. Our results on countings are very close to the formu-
lae that can be found in [EsMaSc|. Eskin-Masur—Schmoll calculate
Siegel-Veech constants for torus coverings in genus 2. In H(2), these
calculations are based on counting the square-tiled surfaces with a given
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number of squares. The originality of our work is to count square-tiled
surfaces disc by disc.

There are also analogies with Schmoll’s work [Schmo|. He computes
the explicit Veech groups of tori with two marked points and the qua-
dratic asymptotics for theses surfaces. Some of the methods he uses
are intimately linked to those used in our work. The Veech groups he
exhibits are all congruence subgroups.

It seems difficult to adapt our methods to obtain analogous results
for nonprime n or in other strata. In section 8 we give conjectures for
the nonprime n case, supported by strong numerical evidence.

A computer program allows to give all the geometric information
on Teichmiiller discs of square-tiled surfaces in H(2). We learned that
Schmithiisen [Schmi| has a program to compute the Veech group of
any given square-tiled surface. She also found positive genus discs as
well as non-congruence Veech groups. Moller [Md] is able to provide
algebraic equations of square-tiled surfaces.

1.5. Acknowledgements. We thank Anton Zorich for stating ques-
tions and some conjectures. We thank the Institut de Mathématiques
de Luminy and the Max-Planck-Institut fiir Mathematik for excellent
welcome and working conditions. We thank Joél Rivat, Martin Schmoll
and other participants of the conference ‘Dynamique dans I'espace de
Teichmiiller et applications aux billards rationnels” at CIRM in 2003.

2. BACKGROUND

2.1. Translation surfaces, Veech surfaces. A translation structure
on a genus g orientable compact surface S consists in a set of points
{P, ..., P,} and a maximal atlas on S" = S\{P,..., P,} with trans-
lation transition functions.

A holomorphic 1-form on S induces a translation structure by consid-
ering its natural parameters, and its zeros as points Py, ..., P,. A trans-
lation structure induced by a holomorphic 1-form is called admissible.
All translation structures in this paper are admissible. Slightly abus-
ing vocabulary and notation, we refer to a translation surface (.S, w),
or sometimes just S or w.

A translation structure defines: a complex structure, since transla-
tions are conformal; a flat metric with cone-type singularities of angle
2(k; + 1) at degree k; zeros of the 1-form; and directional flows Fy for
0 €|—m,nl.

Define the singularity type of a 1-form w to be the multiplicity vector
o= (ki,...,kn) (recall ky+...+k, =2g—2, all k; > 0). It is invariant
by orientation-preserving diffeomorphisms.
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The moduli space H, of holomorphic 1-forms on S is the quotient of
the set of translation structures by the group Diff™(S) of orientation-
preserving diffeomorphisms. H, is stratified by singularity types, the
strata are denoted by H(o).

SL(2,R) acts on holomorphic 1-forms: if w is a 1-form, {(U, f)}
the translation structure given by its natural parameters, and A €
SL(2,R), then A-w = {(U,Ao f)}. As is well known, this action (to
the left) commutes with that (to the right) of Diff*(S) and preserves
singularity types. Each stratum H(o) thus inherits an SL(2, R) action.
The dynamical properties of this action have been extensively studied
by Masur and Veech [Ma, Ve82, etc.].

From the behavior of the SL(2, R)-orbit of w in H (o) one can deduce
properties of directional flows Fy on the translation surface (S, w). The
Veech dichotomy expressed below is a remarkable illustration of this.

Call affine diffeomorphism of (S,w) an orientation-preserving home-
omorphism of S such that the following two conditions hold
e f is a diffeomorphism of S’ (and hence permutes points P, ..., P,);
e the derivative of f computed in the natural charts of w is constant.
The derivative can then be shown to be an element of SL(2,R).

Affine diffeomorphisms of (S, w) form its affine group Aff(S,w), their
derivatives form its Veech group V(S,w) < SL(2,R), a noncocompact
fuchsian group.

Theorem (Veech dichotomy). If V(S,w) is a lattice in SL(2,R)
(i.e. vol (V(S,w)\SL(2,R)) < o0) then for each direction 0, either
the flow Fy is uniquely ergodic, or all orbits of Fy are compact and S
decomposes into a finite number of cylinders of commensurable moduls.

Cylinder decompositions are further discussed in section 2.3. Trans-
lation surfaces with lattice Veech group are called a Veech surfaces.

2.2. Square-tiled surfaces, lattice of periods. A translation cov-

ering is a map f : (S1,w;) — (S2,ws) such that

e f is topologically a ramified covering;

e f maps zeros of wy to zeros of wy;

e f is locally a translation in the natural parameters of w; and ws.
The simplest examples of Veech surfaces are coverings of the standard

torus ramified above the origin. These surfaces are tiled by squares and

hence called square-tiled. The Gutkin—Judge theorem states:

Theorem (Gutkin-Judge). A translation surface (S,w) is square-tiled
if and only if V(S,w) is arithmetic (i.e. 3H < SL(2,7Z), H < V(S,w)
such that [SL(2,Z) : H] < 0o and [V (S,w) : H] < o).
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For this reason, translation surfaces with this property have also been
called arithmetic surfaces. Another name for such surfaces is origami.

We give a proof of this theorem in appendix C, very different from
the original proof.

Denote by A(w) the subgroup of R? generated by connection vectors.

A(w) is the lattice of relative periods of w.

Lemma 2.1. A translation surface (S,w) is square-tiled if and only if
A(w) is a rank 2 sublattice of Z?.

Proof. If (S,w) is square-tiled, connection vectors are obviously integer
vectors, so they span a sublattice of Z2. Conversely, let

f:(Sw) — RZ/A(W), where 2 is a given point of (S, w).
z — f;o w mod A(w),

The integral being well-defined modulo the lattice of absolute peri-
ods, f is a fortiori well-defined. f is a covering since it is holomorphic
and onto. Since relative periods are integer-valued, it is clear that zeros
of w project to the origin. So, given a point P # 0 on the torus, preim-
ages of P are all regular points, so P is not a branch point. Hence the
covering is ramified only above the origin. Composing f with the cov-
ering g : R?/A(w) — R?/Z2, we get that (S, w) is square-tiled. [

A square-tiled surface (S,w) is called primitive if A(w) = Z2.

Lemma 2.2. Let (S,w) be an n-square-tiled surface of genus g > 1. If
n is prime then A(w) = Z2.

Proof. Lemma 2.1 shows that (S,w) is a ramified cover of R*/A(w).
Let d be the degree of the covering. Then n = d - [Z? : A(w)]. So
obviously if n is prime then A(w) = Z2. O

Note that A(w) is not always Z2,
as shown by the examples in the
figure (a torus and a genus 2 cover
of this torus, both with A(w) =
27 X 7).

The following lemma was explained to us first by Martin Schmoll
then by Anton Zorich.

Lemma 2.3. Let (S,w) be a square-tiled surface, then V(S,w) is a
subgroup in V(R2/A(w) ,dz). In particular, if (S,w) is primitive, then
V(S,w) < SL(2,7Z).

Proof. Let ¢ : V(S,w) — V(R?/A(w) ,dz),
A—df, f € Afi(S,0) — A.
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The only difficulty is to show that ¢ is well-defined i.e. that any
element A in V(S,w) preserves A(w). Since any element of the affine
group maps a connection to a connection, hence A maps a connection
vector to a connection vector (i.e. an element in A(w)). O

2.3. Cylinders of square-tiled surfaces. A square-tiled surface de-
composes into maximal horizontal cylinders; each cylinder is bounded
above and below by unions of saddles and saddle connections. Each
saddle connection appears once on the top of a cylinder and once on
the bottom of a cylinder, determining the way the cylinders are glued
together to make up the surface.

w A cylinder on a translation surface is isometric
- to R/wZ % [0, h], for some h and w.
— Convention. We will refer to these dimen-

hI g sions as height and width respectively, whether

the ‘horizontal direction of the cylinder’ coincides
with the horizontal direction of the surface or not.

t An additional twist parameter ¢ is needed, mea-
L suring the distance along the ‘horizontal direction
h1 E of the cylinder’ between some (arbitrary) refer-
— ence points on the bottom and top of the cylinder,

w

for instance some ends of saddle connections.
2.4. Action of SL(2,Z) on square-tiled surfaces.

Lemma 2.4. Let (S,w) be a primitive n-square-tiled surface, then its
SL(2,Z)-orbit is made of those surfaces in its SL(2,R)-orbit that are
also n-square-tiled.

Proof. SL(2,7Z) preserves Z? so it preserves A(w) (= Z?), which implies
that the SL(2,Z)-orbit of (S,w) is made of square-tiled surfaces.
Conversely, let (X, a) = A(S,w) with A € SL(2,R) be a square-tiled
surface. The connection vectors of (X, «) are the Av where v are the
connection vectors of (S,w). So A preserves Z?, so A € SL(2,Z). O

Remark. The number of squares, n, is preserved by SL(2, R) because
it is the area of the surface. Consequently SL(2,Z) - (S,w) is finite.

Notation. We denote by U and R the following matrices: U = (§ 1)
and R = (97') (U and R generate SL(2,Z)). We denote by U the
subgroup U = (U) = {(§ 1), n € Z} of SL(2,Z) generated by U.

Here is the action of U and R on squares.

U R
— —
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The action on square-tiled surfaces is obtained by applying the same
to all square tiles. The new horizontal cylinder decomposition is then
recovered by cutting and gluing (see example in section 3.4).

2.5. Hyperelliptic surfaces, Weierstrass points. Recall that a Rie-
mann surface ¥ of genus ¢ is hyperelliptic if there exists a degree 2
meromorphic function on ¥. Such a function induces a holomorphic
involution on . This involution has 2g + 2 fixed points called Weier-
strass points. The set of these points is invariant by all automorphisms
of the complex structure. A translation surface is called hyperelliptic
if the underlying Riemann surface is hyperelliptic.

Hyperelliptic translation surfaces have been studied by Veech [Ve95].
He shows that a hyperelliptic surface in genus ¢ is obtained from a
centrosymmetric polygon with 4¢ or 4g+2 sides by pairwise identifying
opposite sides (these sides are parallel and have same lengths).

The hyperelliptic involution is in these coordinates the reflection in
the center of the polygon; the Weierstrass points are the center of the
polygon, the midpoints of its sizes, and the vertices (identified into one
point in the 4g case, two points in the 4¢g + 2 case).

2.6. Cusps. Let I' be a fuchsian group. A parabolic element of T’
is a matrix of trace 2 (or —2). A point of the boundary at infinity is
parabolic if it is fixed by a parabolic element of I'. A cusp is a conjugacy
class under I' of primitive parabolic elements (primitive meaning not
powers of other parabolic elements of T').

Recall that a lattice admits only a finite number of cusps.

Geometrically the neighborhood of a cusp in F\H2 is isometric to
the quotient of the strip {0 < | Rez| < A, Im 2z > M} by the translation
z +— z + A for some positive A and M.

On a Veech surface (S,w), any ‘periodic’ direction is fixed by a par-
abolic element of the Veech group (we call such directions parabolic
directions). Conversely the eigendirection of a parabolic in the Veech
group is a ‘periodic’ direction. Thus parabolic limit points of V' (.S, w)
are cotangents of periodic directions.

When (S, w) is a square-tiled surface, the set of parabolic limit points
is Q. Cusps are therefore equivalence classes of rationals under the
homographic action of V' (S, w). The following lemma gives a combina-
torial description of cusps for a square-tiled surface.

Lemma 2.5 (Zorich). Let (S,w) be a primitive n-square-tiled surface
and E = SL(2,Z) - (S,w) the set of n-square-tiled surfaces in its orbit.
The cusps of (S,w) are in bijection with the U-orbits of E.
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Proof. Let ¢ : SL(2,7Z) ER Q 5 C, where
A — A7'oo — A7lcomod V(S,w).
C is the set of cusps of (S,w). Note that oo corresponds to the hor-
izontal direction in (S,w) because the projective action is the action
on co-slopes and not on slopes. A~'oo corresponds to the direction on
(S,w) that is mapped by A to the horizontal direction of A - (S, w).
¢ pulls down as ¥ : E — C,
A-(S,w) — A 'oomod V(S,w).

¢ is well-defined: if A - (S,w) = B - (S,w), then 3P € V(S),
B = AP, so setting A7'oo = a, B~ 'oo = 3, we have 8 = B~ loo =
(B7'A)A7'oo = P~'a, so a and 3 correspond to the same cusp. Fur-
ther, v is surjective because f is. Indeed, Yoo = p/q, A € SL(2,Z) s.t.
A~'oo = a. (The orbit of oo under SL(2,Z) is Q.)

Recall that the stabilizer of oo for the homographic action of SL(2, Z)
isU. If(Sy,wr) = 1(Ss,wq), where (S1,wr) = A-(S,w) and (Ss,wy) =
B - (S,w), then ¢(A) = ¢(B).

Let a« = f(A) = A7'oo and 8 = f(B) = B 'oo. Since a and 3
correspond to the same cusp, 3P € V(S5) s.t. = Pa. So oo = Aa =
AP~ = AP7'B~'oo which implies AP™'B~! € U i.e. U € U s t.
AP7! = U*B ie. AP (S;w) = A (S,w) = UFB - (S,w), so that
(S1,w1) and (S3,ws) are in the same U-orbit.

Conversely: if (S, wq) = U¥(Sy,w;) with U* € U, and (Sy,ws) = B -
(S,w) and (S1,w1) = A-(S,w), then 1(Ss, wy) = B~loo = AU Fo0 =
A_loo = ’l/)(Sl,wl). ]

2.7. Elliptic points. Recall that in a fuchsian group I', any elliptic
element has finite order and is conjugate to a rational rotation.

A fixed point in H? of an elliptic element of I'
is called elliptic. Its projection to the quotient
I\H? is a cone point, with a curvature default.
For instance the modular surface SL(Q,Z)\H2
has two cone points, of angles 7 and 27 /3.

Suppose that " is the Veech group of a transla-
tion surface and has an elliptic point. By applying a convenient element
of SL(2,R), we can suppose that this point is i. The corresponding
elliptic element is a rational rotation. The translation surfaces which
project to ¢ have this rotation in their Veech group. This roughly means
that they have an apparent symmetry. At the Riemann surface level,
the rotation is an automorphism of the complex structure (it modifies
the vertical direction but not the metric). For genus 1, the cone point
i (resp. €™/3) of the modular surface corresponds to the square (resp.
hexagonal) torus, which has a symmetry of projective order 2 (resp. 3).
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One should note that the translation surfaces obtained from rational
polygonal billiards always have elliptic elements in their Veech group.

If one writes the angles of a simple polygon as (kym/r, ..., k,7/r),
with £y A ... A kg A7 =1, the covering translation surface is obtained
by gluing 2r copies by symmetry. The rotation of angle 27 /r is in
the Veech group (this rotation is minus the identity if r = 2). Many
explicit calculations of lattice Veech groups make use of this remark
(see [Ve89], [Vo|, [Wal]). Our method is completely different.

2.8. The Gauss—Bonnet Formula. Let I' be a finite index subgroup
of SL(2, Z) containing —Id. The quotient of '\SL(2, R) is the unit tan-
gent bundle to an orbifold surface with cusps Sr. Algebraic information
on the group is related to the geometry of the surface.

Let d be the index [SL(2,Z) : T'] of T in SL(2,Z), ey (resp. e3) the
number of conjugacy classes of elliptic elements of order 2 (resp. 3) of
I', eoo the number of conjugacy classes of cusps of I'.

Then the surface Sr has hyperbolic area d%, es cone points of angle
7, e3 cone points of angle %’T, €00 Cusps, and its genus g is given by:

The Gauss—Bonnet Formula. g =1+ d/12 — ey/4 — e3/3 — e /2.

3. SPECIFIC ToOOLS

In this section we give specific properties of the stratum H(2), and
a combinatorial coordinate system for square-tiled surfaces in H(2).

3.1. Hyperellipticity. First recall that any genus 2 Riemann surface
is hyperelliptic. Given a genus 2 Riemann surface X and its hyperel-
liptic involution 7, any 1-form w on X satisfies 7°w = —w.

In the moduli space of holomorphic 1-forms of genus 2, H(2) is the
stratum of 1-forms with a degree 2 zero (a cone point of angle 67).

As said in section 2.5, any translation surface in H(2) can be rep-
resented as a centro-symmetric octagon. The six Weierstrass points
are the center of the polygon, the middles of the sides and the cone-
type singularity. The position of the Weierstrass points in a surface
decomposed into horizontal cylinders is described in section 5.1.

3.2. Separatrix diagrams. In the stratum H(2), there is a single zero
of degree 2, which is geometrically a cone point of angle 6. There are
hence three outgoing separatrices and three incoming ones at this point
in any direction.

Recall that the horizontal direction of a square-tiled surface is com-
pletely periodic; the horizontal separatrices are saddle connections.
The combinatorics of these connections is called a separatrix diagram in
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[KoZo]. The surface is obtained from this diagram by gluing cylinders
along the saddle connections.

Each outgoing horizontal separatrices returns to the saddle making
an angle 7, 37 or 5w with itself. Four separatrix diagrams are combi-
natorially possible (up to rotation by 27 around the cone point), corre-
sponding to return angles (7, 7, 7), (7, 3w, b7), (3w, 3w, 3x), (5, 5w, br):

8 GO %

The first and last diagrams cannot be realized since there is no con-
sistent way of gluing cylinders along their saddle connections to obtain
a translation surface. The second diagram is possible with the con-
dition that the saddle connections that return with angles 7 and 57
have the same length; this diagram corresponds to surfaces with two
cylinders. The third diagram corresponds to surfaces with one cylinder,
with no restriction on the lengths of the saddle connections.

3.3. Parameters for square-tiled surfaces in H(2). Here we give
complete combinatorial coordinates for square-tiled surfaces in H(2).

3.3.1. 1-cylinder surfaces. A one-cylinder surface is parameterized by
the height of the cylinder, the lengths of the three horizontal saddle con-
nections (a triple of integers up to cyclic order), and the twist param-
eter. If all three horizontal saddle connections have the same length,
the twist parameter is taken to be less than that length; otherwise, less
than the sum of the three lengths.

If we restrict our attention to primitive square-tiled surfaces, a 1-
cylinder surface must have height 1. It is therefore determined by 4
integers (the lengths of the 3 saddle connections, whose sum is the area
n of the surface, and the twist).

The horizontal saddle connections appear in some (cyclic) order on
the bottom of the cylinder, and in reverse order on the top.

3.3.2. 2-cylinder surfaces. On a two-cylinder surface, the horizontal
saddle connections have return angle 7w, 37, 5m. Call /5 the length of
the one that returns with 37, and ¢; the common length of the other
two. One of the cylinders is bounded below by the 7 saddle connection
and above by the 57 one. The other cylinder is bounded below by the
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57 and the 37 saddle connections, and above by the m and 37 saddle
connections.

A two-cylinder surface is determined by the heights h, hs and widths
wy = l1, we = €1 + €y > w; of the cylinders as well as two twist
parameters ty, ty satisfying 0 < t; < wy, 0 <ty < wy. The area of the
surface is hywy + howy = n. When n is prime, this implies hy A hy = 1.

Notation. We use the notation a A'b for ged(a,b).

3.4. Action of SL(2,Z). The action of R (rotation by 7/2) does not
preserve separatrix diagrams in general. The horizontal cylinder de-
composition of R - S is the vertical cylinder decomposition of S.

In this paragraph we focus on the action of U/ on primitive square-
tiled surfaces. U is the primitive parabolic element in SL(2,Z) that
preserves the horizontal direction. We will call U the ‘horizontal para-
bolic’. Acting on surfaces, it preserves separatrix diagrams, as well as
heights h; and widths w; of horizontal cylinders Cj, and only changes
twist parameters t; to (¢; + h;) mod w;.

Here is an example of how U acts on a surface.

U
— =

For prime n, given integers a, b, ¢ with a+b+c = n, all surfaces made
of one horizontal cylinder bounded on the bottom by saddle connections
of lengths (a,b,¢) (up to cyclic permutation) are in the same U-orbit,
and so by Lemma 2.5 in the same cusp.

Two 2-cylinder surfaces are in the same cusp if and only if they have
same heights and widths, and their twists ¢; are equal modulo w; A h;.

In the case when n is prime, the heights and widths of two-cylinder
surfaces are such that wy A h; and wy A hy are relatively prime, so
each cusp has a (unique) representative with twists satisfying 0 < t; <
wl/\hl and0<t2 <w2/\h2.

4. RESULTS

This section expands the results summarized in the introduction, de-
tailed proofs are postponed to the next sections. Additional conjectures
appear in section 8.

4.1. Two orbits. Theorem 1.1 can be reformulated as follows:

Proposition 4.1. Given a prime number n > 5, the square-tiled sur-
faces in H(2) tiled by exactly n squares decompose into two orbits under
the action of SL(2,Z).
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The idea for proving this is first to give an invariant that can take
two different values and thus prove that there are at least two orbits
(see section 4.2 below, and 5.1), then proceed to prove that there are
exactly two orbits by showing that each orbit contains a one-cylinder
surface (see section 5.2), and that all one-cylinder surfaces with the
same invariant are indeed in the same orbit (section 5.3).

We will call these orbits A and B.

Remark. An extension of this result in some components of higher-
dimensional strata is presented in appendix B.

4.2. Invariant. We present a geometric invariant that can easily be
computed for any square-tiled surface in H(2) (for instance presented
in its decomposition into cylinders in the horizontal direction of the
tiling.)
Let (S,w) be an surface in H(2). Its Weierstrass points are
e the saddle (6m-angle cone point),
e and five regular points.

Lemma 4.2. The number of integer Weierstrass points of a square-
tiled surface is invariant under the action of SL(2,7Z).

By integer point we mean a vertex of the square tiling. The proof of
the lemma is obvious, since SL(2, Z) preserves Z?.

Our invariant can be shown to take the following values for primitive
square-tiled surfaces.

Proposition 4.3. The number of integer Weierstrass points of primi-
tive n-square-tiled surfaces in H(2) is
e for even n, exactly 2,
e for odd n, either 1 or 3. When n = 3 it is always 1, and for
greater odd n both values occur.

4.3. Elliptic affine diffeomorphisms.

Proposition 4.4. A translation surface in H(2) has no nontrivial
translation in its affine group. Hence the derivation from its affine
group to its Veech group is an isomorphism.

Proposition 4.5. A translation surface in H(2) can have no elliptic
element of order 3 in its Veech group.

Lemma 4.6. Any R-invariant Veech surface in H(2) can be repre-
sented as a R-invariant octagon.

Proposition 4.7. For any given prime n, there exist R-invariant n-
square-tiled H(2) surfaces. All of them have the same invariant, namely,
Aifn=—-1 mod4 and B ifn=1 mod 4.
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Remark. This proposition contains the following interesting fact: there
are finite-covolume Teichmiiller discs with no elliptic points. This dif-
fers from the billiard case which has been the main source of explicit
examples of lattice Veech groups.

4.4. Countings. The number of square-tiled surfaces of area bounded
by N in H(2) is given in [Zo| (see also [EsOk] and [EsMaSc]) to be
asymptotically ¢ (4)];7—: for surfaces with 1 cylinder, 2 (4)];7—;l for surfaces
with 2 cylinders, and thus ¢ (4)];7—: for all surfaces.

The number of square-tiled surfaces of area exactly n in H(2) there-
fore has mean order ¢ (4)%3 for surfaces with 1 cylinder, 2 (4)%3 for
surfaces with 2 cylinders, 2¢ (4)%3 for all surfaces.

The following proposition, from which Theorem 1.2 follows, states
that for prime n, there are in fact asymptotics for these numbers, which
are ((4) times smaller than the mean order.

Proposition 4.8. For prime n, the following countings and asymp-
totics hold for surfaces, cusps and elliptic points, according to the num-
ber of cylinders and to the orbit.

surfaces: cusps:
1-cyl 2-cyl all 1-cyl 2-cyl all
n(n=1)(n+1) 7n3 9 n? (n—1)(n+1) 3/2 n2
A s s A e e
B | Mn=bD®=3) |  3n’ |  9n° B | lr=n=5) | rn3/24e) | A 22
l n(n_18)(n_2) §n63 Sn63 1l (n—1)8(n—2) ( 3/2+€) 52
a 6 il Badarall B B B el R G0l B’

elliptic points: O(n)

This proposition gives more detail than Theorem 1.2 by distinguish-
ing one-cylinder and two-cylinder cusps and surfaces. Proposition 1.4
and Proposition 1.5 are corollaries of this proposition.

Remarks. Orbits A and B have asymptotically the same size (same
number of square-tiled surfaces). However orbit B has asymptotically
3 times as many one-cylinder surfaces as orbit A.

In each orbit the number of two-cylinder cusps is asymptotically
negligible before the number of one-cylinder cusps; however it is not
the case for two-cylinder surfaces. This shows that the average width
of the two-cylinder cusps grows faster than n, the width of one-cylinder
Cusps.

4.5. Non-congruence subgroups of SL(2,7Z). Some of the stabiliz-
ers that appear are non-congruence subgroups of SL(2, Z). See the case
of n =5 in appendix A.
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5. PROOF OF MAIN THEOREM (TWO ORBITS)

In this section we first prove Proposition 4.3, then Proposition 4.1.

Convention for figures. In all figures, a square-tiled surface in
H(2) is represented as an octagon, identification of parallel sides of
same length being understood. A black dot represents the saddle, cir-
cles are sometimes used to indicate the Weierstrass points.

Throughout this section, these surfaces are decomposed into hori-
zontal cylinders; these cylinders are represented as horizontal parallel-
ograms, identification of their nonhorizontal sides being understood;
their horizontal sides are made of horizontal saddle connections, for
which the identification pattern is as follows: for one-cylinder surfaces,
the saddle connections on the top and on the bottom of the cylinder
are identified in opposite cyclic order; for two-cylinder surfaces, with
the bottom cylinder wider than the top cylinder, the top and bottom
sides of the top cylinder are identified with the left parts of the bottom
and top sides of the bottom cylinder, and the right parts of the top and
bottom sides of the bottom cylinder are identified with each other.

5.1. Two values of the invariant. Here we prove Proposition 4.3,
about the possible values of the number of integer Weierstrass points
of an primitive square-tiled surface in H(2).
The saddle is always an integer Weier-
/T/[ J % { W strass point. The position of the re-
maining five points depends on the dif-
/ ferent possible parities of the parame-
ters.
/ Recall that the hyperelliptic involu-
/ / tion turns the cylinders upside-down.
/ We deduce the position of Weierstrass
points in the cylinders (see figure).
e Saddle connections that bound the cylinder both on its top and on
its bottom are mapped to themselves with reversed orientation, so that
their middle point is fixed. Such Weierstrass points are integer when
the length of the saddle connection is even.
e The core circle of a cylinder is also mapped to itself with orientation
reversed, so it has two antipodal fixed points. When the height of the
cylinder is odd, none of them is integer. When the height is even and
the width odd, one of them is integer. When the height and width are
even, either both or none is integer, depending on the parity of the
twist parameter.
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5.1.1. One-cylinder case. The core line of the cylinder is at height 1/2,
which gives us two non-integer Weierstrass points. The remaining three
Weierstrass points are the middles of the horizontal saddle connections
(whose lengths add up to n).

If n is odd, we can have either 3 odd lengths, meaning 3 non-integer
Weierstrass points, or 1 odd and 2 even lengths, meaning 2 integer
Weierstrass points. Note that for n = 3 there is only one possibility
(all lengths are 1), while for any greater odd n both values do occur.

If n is even, the three lengths have to be 1 even and 2 odd (if all
were even, the surface could not be primitive).

This completes the one-cylinder case.

5.1.2. Two-cylinder case, odd n. We use parameters hy, hs, wy, we, t1,
to introduced above. We also use £; and /5 the lengths of the horizontal
saddle connections. We then have:

U = wy, U + Uy = wy, n = wihy + wohe = hyly + ho(€ + C2) ().

If /5 is even, then the corresponding saddle connection contains one
integer Weierstrass point. Because n is odd, the equation (x) implies
that ¢, is odd, thus both cylinders have odd widths, and still by (%)
one of the heights must be even. The corresponding cylinder has one
integer Weierstrass point on its core line. The total number of integer
Weierstrass points is then 3.

If /5 is odd, the Weierstrass point on the corresponding saddle con-
nection is non-integer; if ¢; is odd (resp. even), then ws is even (resp.
odd), thus by (*) h; has to be odd (resp. hs has to be odd), meaning
the top (resp. bottom) cylinder contains two non-integer Weierstrass
points. The two Weierstrass points in the bottom (resp. top) cylinder
are integer if hy is even and ¢y is odd (resp. if hy and t; are even),
non-integer otherwise (see figure above). The value of the invariant is
accordingly 3 or 1.

Again, for n = 3 there is only one possibility (all saddle connection
lengths are 1), while for any greater odd n both values do occur.

5.1.3. Two-cylinder case, even n. It remains true for even n that h;
and ho have to be relatively prime for the surface to be primitive. In
particular one of them at least is odd.

If both heights are odd (which implies the Weierstrass points inside
the cylinders are non-integer), then because n = (hy + ho)ly + hols is
even, ¢ has to be even, so the Weierstrass point lying on a horizontal
saddle connection is integer, and the invariant is 2.

If hy is odd and hy even, then by (%) ¢; has to be even. Then if /5
is odd, the Weierstrass point on the saddle connection is non-integer,
one of the Weierstrass points in the bottom cylinder is integer, and the
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invariant is 2. If /5 is even, then ¢5 has to be odd for the surface to
be primitive, hence the Weierstrass point on the saddle connection is
integer, the ones inside the cylinders are not, and the invariant is 2.

The last case to consider is when h; is even and hy odd. If ¢ is
odd, then so is ¢5 (by (%)), so one Weierstrass point in the top cylinder
is integer, and the invariant is 2. If ¢; is even, then /5 is also even
by (%) and ¢; is odd for primitiveness. Thus all Weierstrass points
inside cylinders are non-integer, and the one on the saddle connection
is integer: the invariant is 2.

This completes the two-cylinder case, and Proposition 4.3 is proved.
We sum up the case study

hi hy 1 ly invariant . > cas
1 1 1 1 T for 2-cylinder primitive sur-
1 1 0 1 1 faces tiled by an odd number
0 1 0 1 # odd: 1: ¢ even: 3 ™ ofsquaresina table giving
0 1 1 0 ! . ’3 ' ' the value of the invariant ac-
1 0 0 1 tyodd: 3:tyeven: 1 cording to the parity of hy,
1 0 1 0 ’3 ha, 1, l3 (recall that wy = ¢,

and Wo = 61 -+ 62)

The other combinations of parities of the parameters cannot happen
for odd n and primitive surfaces.

Note that for even n we concluded that all primitive surfaces have
the same invariant: 2.

5.2. Reduction to one cylinder.

Proposition 5.1. Fach orbit contains a one-cylinder surface.
Equivalently, each surface has a direction in which it decomposes in
one single cylinder.

A baby version of this proposition is the following lemma.

Lemma 5.2. A 2-cylinder surface of height 2 has a one-cylinder di-
rection.

Proof of the lemma. Our surface is made of two cylinders, both of height
1. Since n is prime, the lengths of the two cylinders are relatively prime.
By acting by U, we can set the twists to whatever values we wish. Set
the top twist to 0 and the bottom twist to 1. Then by considering the
vertical flow, we get a one-cylinder surface. O

We prove the proposition by induction on the height of the surface:
given a two-cylinder surface, we show that its orbit contains a surface
of strictly lesser height.
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Consider a two-cylinder square-tiled surface S in H(2), with a prime
number of square tiles. By acting by U we can move to the representa-
tive of the same cusp that has the least nonnegative twist parameters,
so we will assume these to be less than the heights of the cylinders.

We split our study into four cases according to which twists are zero.

Case 1. Both twists are zero.

G 7 F

H i) D
\

Wit Bl c/

Call hy, hs the heights and ¢, t5 the twists of the horizontal cylinders
of S. Consider the rotated surface RS. Its horizontal cylinders are the
vertical cylinders of S. The vertical cylinder to the right of A has
height at most t,, that to the right of B also, and that to the right of
H at most ¢;. So if RS has two cylinders, the sum of their heights is
at most t; + 9, so it is less than hy + hs.

Case 2. The bottom twist is nonzero but the top twist is zero.

G F
H E D
i

|
/

A B

A C

In this case the same vertical cylinder is to the right of A and H. If
the vertical separatrix going down from H ends in B, there is only one
vertical cylinder (one horizontal cylinder for the rotated surface RS); if
not, it necessarily crosses the shaded region to the right of B, so there
are two vertical cylinders, and the sum of their heights is at most ¢,
(the twist of the bottom cylinder of S), hence less than the height of
the bottom cylinder of S.

Case 3. The bottom twist is zero but the top twist is nonzero.

Act by R. The side part of S (shaded on the figure) becomes the
top cylinder of the rotated surface RS, with zero twist, while the new
bottom cylinder has nonzero twist and a bottom cylinder of height at
most ¢1, which is less than h;. The surface in the same cusp with least



SQUARE-TILED SURFACES IN H(2) 19

nonnegative twists also has zero top twist, so if it has zero bottom
twist, conclude by case 4, otherwise apply case 2 to obtain a surface of
height less than hj;.

Case 4. The twist parameters are both zero. In this case we end the
induction by jumping to a one-cylinder surface directly:

Lemma 5.3. The diagonal direction for the “base rectangle” of an L
surface is a one-cylinder direction.

G __F G 6L F

Ho B p oy 6 p
A2 ATe v &\\\\\\§§\\‘\§@ ho

A = /B - C A @&\&&%&%

Proof. The ascending diagonal [AE] of the base rectangle of our L
surface cuts it into two zones. Note that [AE] has no other integer
point than A and E because the total number of tiles is prime.

The other two saddle connections parallel to [AE] start from B and
H and end in F' and D. We want to prove that the one starting from H
ends in F' and the one issued from B ends in D, meaning each saddle
connection returns with angle 3.

Set the origin in A or E and consider coordinates modulo ¢1Z X hoZ.

Follow a saddle connection parallel to [AE] from integer point to
integer point. While it winds in a same zone, the coordinates of the
integer points it reaches remain constant modulo ¢,Z x hyZ. Changing
zone has the following effects for the coordinates of the next integer
point:

e from the upper zone to the lower zone: decrease y by h; modulo hs;
e from the lower zone to the upper zone: decrease x by f5 modulo ¢;.

Zone changes have to be alternated. Once inside a zone with the
right coordinates modulo ¢1Z x hoZ, a separatrix reaches the top right
corner of the zone with no more zone change.

So we want to prove that starting from B, in the lower zone with
coordinates (0, 0), and adding in turn (—¢5,0) and (0, —h4), coordinates
(¢3,0) (point D) will be reached before (0, hy) (point H).

After k changes from lower to upper zone and k changes from upper
to lower zone, the coordinates are final if £k = —1 mod ¢; and £k = 0
mod hy; that is, if k is ho(fy — 1). After k + 1 changes from lower to
upper zone and k changes from upper to lower zone, the coordinates
are final if £ =0 mod ¢; and £k = 0 mod hy, which means k is hy - £1.
So the separatrix parallel to [AE] starting from B reaches D. 0
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5.3. Linking one-cylinder surfaces of each type. We call a surface
type A (resp. B) if it has 1 (resp. 3) integer Weierstrass points.

Recall that a one-cylinder surface in H(2) tiled by a prime number
n of squares has height one, hence it is determined by the cyclically
ordered lengths of the three saddle connections on the bottom of this
cylinder (which add up to n), and by a twist parameter.

The repeated action of U can set the twist parameter to any of its n
possible values, so for the purpose of linking surfaces of the same type
by SL(2,Z) action, we may already consider surfaces with the same
cyclically ordered partition (a, b, ¢) as equivalent (allowing implicit U-
action). We will call them (a, b, ¢) surfaces.

Partitions into three odd numbers correspond to type A; partitions
into two even numbers and one odd number correspond to type B.

We will first show that any one-cylinder surface has a (1, *, *) surface
in its orbit; then we will show that (1, b, ¢) surfaces with b and ¢ odd are
in the same orbit as a (1,1,n — 2) surface, proving all type A surfaces
to be in one same orbit; then that (1,2a, 2b) surfaces are in the same
orbit as a (1,2,n — 3) surface, proving all type B surfaces to be in one
same orbit.

Consider a rational-slope direction on a square-tiled surface S; this
direction is completely periodic. Say it is given by a vector (p, q) € Z2,
with p A ¢ = 1. For any (u,v) € Z?* such that det({l’ %) = 1 our surface
can be seen as tiled by parallelograms of sides (p,q), (u,v), whose
vertices are the vertices of the square tiling.

These parallelograms are taken to unit squares by M = (} Z)fl (a
matrix in SL(2,Z)). We call M - S “the surface seen in direction (p, ¢)”
on S.

Consider a saddle connection o on S in direction (p,q); the corre-
sponding saddle connection on M-S is horizontal with an integer length
equal to the number of integer points (vertices of the square tiling) o
reaches on S. Abusing vocabulary we also call this the length of o.

A saddle connection returns at an angle of 37 if and only if it has
a Weierstrass point in its middle. If two saddle connections in a given
direction return with angle 37 then so does the third, and that direction
is one-cylinder; thus two saddle connection lengths give the third.

5.3.1. First step:any one-cylinder surface has a (1,%,%) surface in its
orbit. To show this, we prove that an (a,b,c) surface has a (4, kd, )
surface in its orbit, where § |a A b. Then because n is prime we have
v A =1, hence applying the argument a second time with v and § in
place of a and b shows that there is a (1, %, *) one-cylinder surface in
the orbit of the surface we started with.
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The proof is as follows. Consider the (a, b, ¢) surface S having saddle
connections of lengths a, b, ¢ on the bottom, b, a, ¢ on the top.

RS has two cylinders, the top one b a c
of height ¢ and width 1, and the 1 ‘ J ‘ ‘ ‘ [ ‘ I ‘ ‘ 1
bottom one of height d = a A b and b c
width “TH’, and some twist t.

Now the direction (1+t,d) is a (d, kd, ) one- —
cylinder direction with § = (1 +¢) A d. Note |
thatk:“Ter—l,andthatv/\cS:L —

So by applying this procedure twice we see
that any surface has a (1, , %) one-cylinder sur- /
face in its orbit.

5.3.2. End of proof for type A surfaces. There only remains to link any
(1,b, ¢) surface, where b and ¢ are odd, to a (1,1,n — 2) surface.
Consider the L surface with arms of —
width 1 and lengths b and c. ]
Apply U? to set the bottom twist to 2. bl ]
Then rotate by applying R, and obtain
a surface with two cylinders of height 1. 1 ‘ ‘ ‘ ‘ ‘ ‘ I
By applying a convenient power of U the 1 N
twists can be made both 0.

In the diagonal direction of the base rectan-
gle of this new L surface, we see a (1,1,n — 2) b
surface. ‘ ‘ 1

5.3.3. End of proof for type B surfaces. Here we take the one-cylinder
surface with the partition (1,2,n — 3) as the reference surface, and
prove by steps that any type B surface has it in its orbit.

To do this, we first show that any one-cylinder surface has a one-
cylinder surface with a (1, 2a, 2b) partition in its orbit. This is done by
the first step explained above.

Then we link
o(1,2a,2b) where a # b with (d, 2d, *), then with (1,2,n — 3);
o(1,2a,2b) where a = b with (2,2,n — 4), then with (1,2,n — 3).

e Linking (1, 2a,2b) with (1,2, %) when a # b.

Without loss of generality, suppose a < b. Consider the one-cylinder
surface with saddle connections of lengths 2a, 2b, 1 on the bottom and
2b, 2a, 1 on the top.
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In the direction (b — a,1) there is a connection between two integer
Weierstrass points, so in this direction we see a two-cylinder surface.
Its top cylinder has height 2a and width 2 and its bottom cylinder has
height 1 and with 2 + ¢ for some /.

G F
2a
H E D
1] :

A B [ C
WAL

In appropriate directions, the separatrix issued from H winds around
the horizontal cylinder H EGF. In particular, in any direction (k,a),
k € N, it will run into a Weierstrass point (and into a saddle after
twice the distance).

Likewise, in appropriate directions, the separatrix issued from B
winds around the vertical cylinder BC'DFE. In particular, in any direc-
tion (¢/2,k/2) (equivalently ¢, k), k € N, it will run into a Weierstrass
point (and into a saddle after twice the distance).

Consider therefore the direction (¢,a). In this direction we get a
(d,2d, %) one-cylinder surface, where d = a A {.

Now there only remains to link (d, 2d, ) with (1, 2, %), which is easily
done: consider the one-cylinder surface with saddle connections d, 2d,
c on the bottom and 2d, d, ¢ on the top;

2d d c

HEEEEEEEEEE

d 2d c
in the (d, 1) direction we get a (1,2, *) one-cylinder surface.
e Linking (1,2a,2b) with (1,2, %) when a = b.
Consider the one-cylinder surface with saddle connections of length
2a, 2b, ¢ on the bottom and 2b, 2a, ¢ on the top.
2b 2a c

LI TP T PP

2a 2b c

In the direction (a, 1) we see a (2,2, %) one-cylinder surface.
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HEEREEEEENE

On this surface, in the direction (2, 1), we have a two-cylinder surface
with its top cylinder of height 2 and width 1, and its bottom cylinder
of height 1. Acting by U we can set the twist parameters to 0.

——

NN

Then in the direction (1, 1) we see a (1,2, n—3) one-cylinder surface.

5.4. L-shaped billiards. L-shaped billiards give rise to L-shaped trans-
lation surfaces by an unfolding process; any L-shaped translation (with
zero twists) surface is the covering translation surface of an L-shaped
billiard.
Fix some prime n > 3, and consider the
T 1T T T 111 two-cylinder surfaces S; and S5, both hav-
. ing ho =1, w; =1and t; =t; =0, and 5
— having h; = 1, ws = n — 1 and S having
[ TTTTTTTT]  he =2, wy =n—2. The picture on the
side represents S; and Sy for n = 13.

For each n, S7 and S, belong to orbit A and B respectively, and arise

from L-shaped billiards. This proves Proposition 1.3.

6. PROOF OF RESULTS ABOUT ELLIPTIC POINTS

Some constructions in this section are inspired by [Ve95].

6.1. Translations. Here we prove Proposition 4.4.

Suppose a surface S € H(2) has a nontrivial translation f in its
affine group. f fixes the saddle and induces a permutation on outgoing
horizontal separatrices. Let € be smaller than the length of the shortest
saddle connection of S, and consider the three points at distance ¢ from
the saddle on the three separatrices in a given direction. f cannot fix
any of these points, otherwise it would be the identity of .S, but it fixes
the set of these points, hence it induces a cyclic permutation on them.
This implies that except for the saddle, which is fixed, all f-orbits
have size 3. However the set of regular Weierstrass points is also fixed
(since the translation f is an automorphism of the underlying Riemann
surface), and has size 5. This is a contradiction.
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6.2. Elliptic points of order 3. Proof of Proposition 4.5.

Suppose a surface S in H(2) has an elliptic element of projective
order three in its Veech group. Since the hyperelliptic involution has
order 2, S has in fact an elliptic element of order 6 in its Veech group.
Conjugate by SL(2, R) to a surface that has the rotation by 7/3 (here-
after denoted by r) in its Veech group.

The set of Weierstrass points is preserved by r. We use the same
notation for an affine diffeomorphism as for its derivative. This is no
problem in H(2) since the derivative is a one-to-one map from the affine
group to the Veech group, by Proposition 4.4.

The saddle is fixed; there are five other Weierstrass points, and they
are setwise fixed, so at least two of them are also fixed. Consider one
Weierstrass point that is fixed, call it W. Consider the shortest saddle
connections through W. They come by triples making angles 7/3.

Take one such triple, consider the corresponding regular hexagon
(which has these saddle connections as its diagonals).

Claim: No two points of this hexagon are the same except the six
corners (the saddle).

Proof of this fact: suppose the contrary. If two points are identified
on opposite sides then this means the whole sides are identified but
then the rotational symmetry would imply other identifications and
mean we have a torus. If some other two points are the same then this
would contradict the minimality of length of our saddle connections.

No Weierstrass points other than W lie inside or on this hexagon.
(Otherwise there would be three Weierstrass points aligned, which can-
not happen: the hyperelliptic involution is a rotation by 7 around any
regular Weierstrass point, so when two of them are linked by a connec-
tion, they are linked by another connection on the other side, and they
are in fact antipodal points on a closed geodesic.)

We see three saddle connections in one same direction by considering
two sides and one diagonal of our hexagon. So this is a completely peri-
odic direction, and we want to see two cylinders in this direction. This
implies that two opposite sides are identified, but then the rotational
symmetry would imply other identifications and mean we have a torus.

6.3. Elliptic elements of order 2.

6.3.1. A convenient representation of R-invariant Veech surfaces in
H(2): proof of Lemma 4.6. Consider a H(2) Veech surface that has
R in its Veech group. We denote also by R the corresponding affine
automorphism.
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The set of Weierstrass points is fixed by R (as by any affine diffeo-
morphism). The saddle being fixed, at least one of the remaining 5
points must be fixed.

Consider such a point and the shortest saddle connections through
this point. They come by orthogonal pairs. Take one such pair. Con-
sider the square having this pair of saddle connections as diagonals.

No two points in or on this square are the same except for the four
corners (the saddle). Also no Weierstrass point in or on the square
except for the corners and the center.

Consider the direction of two (parallel) opposite sides of our square.
These sides are saddle connections so this direction is periodic.

These sides are not identified, otherwise by R-symmetry the other
two would also be and we would have a torus. So this is a two-cylinder
direction and our two saddle connections bound the short cylinder in
this direction. This short cylinder lies outside the square and can be
represented as a parallelogram with its “top-left” corner in the contin-
uation of the square (i.e. with a “reasonable” twist).

By R-symmetry there also is such a parallelogram in the other direc-
tion. To make the picture more symmetric each parallelogram can be
cut into two triangles, glued to opposite sides of the square. Thus we
get a representation of the surface as an octagon with (parallel) oppo-
site sides identified. Note that the four remaining Weierstrass points
are the middle of the sides of this octagon.

6.3.2. Proof of Proposition 4.7. Represent the surface as above: an
octagon made of a square and four triangles glued to its sides. All
vertices lie on integer points.

B x Let ABC' be one of the triangles, labeled
clockwise starting from a corner of the square
W= ¢ (so AC is a side of the square).
— —
\ Let (p,q) be the coordinates of AC and
o g
= \\ HP (r,s) those of AB.
1 The area of the surface is then p? 4+ ¢% +
2(ps —qr).
K If n is prime then p and ¢ have to be rel-

atively prime, and of different parity. Then
p?>+¢*> =1 mod 4. The center of the square
lies at the center of a square of the tiling. The condition for two Weier-
strass points to lie on integer points is for (ps — rq) to be even.
We conclude by observing that n is 1 (resp. 3) modulo 4 when (ps —
rq) is even (resp. odd).
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7. PROOF OF COUNTINGS
We want to establish the countings and estimates of Proposition 4.8.

7.1. One-cylinder cusps and surfaces. For prime n > 3, one-cylinder
n-square-tiled cusps in H(2) are in 1-1 correspondence with cyclically
ordered 3-partitions of n.

Ordered 3-partitions (a,b,c) of n are in 1-1 correspondence with
pairs of integers {«, 5} in {1,...,n — 1}: assuming o < (3, the cor-
respondence is given by a = a, a +b = 3, a+ b+ ¢ = n. So there
are C?_, ordered 3-partitions of n. Ordered 3-partitions of n being
in 3-1 correspondence with cyclically ordered 3-partitions, there are
%C’z_l = % cyclically ordered 3-partitions of n.

Thus there are "=2=2
lation surfaces in H(2).

Those in orbit A are those with 3 odd parts 2a — 1, 2b — 1, 2¢ — 1;
these are in 1-1 correspondence with cyclically ordered partitions a, b,
¢, of 223, Their number is hence (22 —1)(2£2 —2) = %.

The remaining ones are in orbit B, their count is hence the difference,
(n—1)(n—3)

one-cylinder cusps of n-square-tiled trans-

8
All one-cylinder cusps discussed here have width n (n possible values
of the twist parameter), so the counts of one-cylinder surfaces are n
times the corresponding cusp counts.

7.2. Two-cylinder surfaces. The total number of 2-cylinder n-square-
tiled surfaces (n prime) is

S(n) = Z ke,

ab,k,l

where the sum is over a, b, k,/ € N* such that k£ < ¢ and ak 4+ bl = n.

This follows from the parametrization in section 3.3.2; the letters a,
b, k, £ used here correspond to the parameters hy, hsy, wq, wy there, and
the summand is the number of possible values of the twist parameters,
given the heights and widths of the two cylinders.

We want the asymptotic for this quantity as n tends to infinity, n
prime. In order to find this, we consider the sum as a double sum: the
sum over a and b of the sum over k£ and /.

Write S(n) = >_,, S(n,a,b), where S(n,a,b) =3, kL.

We study the inner sum by analogy with a payment problem: how
many ways are there to pay n units with coins worth a and b units?

This problem is classically solved by the use of generating series:
denote the number of ways to pay by s(n,a,b); then
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s(n,a,b) = Card{(k,£) € N*: ak +bl =n} = 3", 1cNahiprmn L
Now notice that > 2 2% Y"7° 2% = > s(n,a,b)z", and deduce

that the number looked for is the n-th coefficient of the power series

. . 1 1
expansion of the function == 1.

We turn back to our real problem, S(n, a,b) = 3} jcnean i prn pe K-

We want to show that S(n) ~ cn? for prime n. For this we will use
the dominated convergence theorem: we show that S(n,a,b)/n® has
a limit ¢(a,b) when n tends to infinity with a and b fixed, and that
S(n,a,b)/n* is bounded by some g(a,b) such that =, , g(a,b) < oo, to
conclude that S(n)/n® = 3, S(n,a,b)/n® tends to ¢ = 3, c(a,b),
which means S(n) ~ cn?.

The dominated convergence is proved as follows.

Write S(1,0,b) = Yy pexeasppstnn KUk + 1) by introducing h =
¢ — k. Then split the sum into >_ k? and > kh. Write

Si(n,a,b) = Z k?/n? < Z k*/n?

k,heN*, (a+b)k+bh=n kEN*, heQ, (a+b)k+bh=n
Sa(n,a,b) = E kh/n® < g kh/n?
k,heN*, (a+b)k-+bh=n kEN*, heQ, (a+b)k+bh=n

(In the sums on the right-hand side, h has been allowed to be a
rational instead of an integer.) Hence

[/(a+b)]
1 a+b a+b .o
Sl(n7a’7b) < (a+b)3[ n ; ( n k) i|
n/(a+b)
1 a—+b a-+b a-+b
S2(n, a,0) < (a+b)2b[ n Z (Tk)(l_ n k:)}

The expressions in brackets, Riemann sum approximations to the
integrals fol 22dx and fol z(1 — x) d x, are uniformly bounded by 1.

Now notice that » (a+#b)3 and ), m are convergent. This
ends the dominated convergence argument.

We can now investigate the limit. For ease of calculation, we drop the
condition k < £. We take care of it by writing >, , =27, ,+> ;.
For prime n, k = ¢ implies that they are both equal to 1. The sum
for k = ¢ is hence equal to n — 1, and we will not need to take it into
account since the whole sum will grow as n®.

Denote by S(n,a,b) the sum over all k and /.
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Notice that 5% k2% 3702 02 = 3°°° ' S(n, a,b)2"

S (n,a,b) is therefore the n-th coefficient of the power series expan-
sion of the function f,; = ( 2 2

1—Za‘ 2 1_Zb 2

In order to know this coefﬁcie)nt(, We) decompose f,; into partial frac-
tions. This function has poles at a-th and b-th roots of 1. Since n is
prime, we are only interested in relatively prime a and b, for which the
only common root of 1 is 1 itself, which is hence a 4-th order pole of
fa.p, while other poles have order 2.

The n-th coefficient of the power series expansion of f,; is a poly-
nomial of degree 3 in n, whose leading term is ca,b%g, where ¢, is the

coefficient of ﬁ in the decomposition of f,; into partial fractions.

This coefficient is computed to be ag—lbg
We want the sum over relatively prime a and b. We relate it to the
sum over all @ and b by sorting the latter according to d = a A b.

I Dl SR zd4 P

a,b d a,b, aNb= d a,b, anb=1

By observing that v mp = am)? = (2 ) = 3—2 and that
Saar=C4) = % we get that the sum Y, s —w is equal to 5/2.

Divide by 2 to get back to k < ¢, and find that S(n) ~ Z%'

7.3. Two-cylinder surfaces by orbit. We will now compute the
number of 2-cylinder surfaces in orbit A.

2-cylinder surfaces in orbit A are those for which both heights are
odd, and one half of those for which both widths are odd (see the table
in section 5.1); the factor one half comes from the conditions on the
twists when both widths are odd.

First compute

>kt

a,b,k.l
ak+bl=n
a,b odd
aNb=1
k<t

Foranb=1,
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DD I D2

a,b odd d odd a,b odd
a/\b:l
Now
1 1\2 9 7t
> o= (X 5) = -2 = 5
a,b odd a odd
and
1 1574
— =(1-1/24) = ——
SO

1
Z 2h? =3/2.

a,b odd
anb=1

We deduce that S’(n) ~ (3/4)(n®/6) (the condition k < / is respon-
sible for a factor 1/2).
Similarly if

S'(n)= > Kt

a,b,k,l
ak+bl=n
k£ odd
anb=1
k<t

put

>kt

k,¢ odd
ak+bl=n

Notice that >, 44 kz“k > eaad 2 =0 5’” p(n)2".

Because > kz2F = T S 2k = (12;2)2, and the difference is
S(2k + 1)+ = ;p_gg)g.

G . (n) is now the n-th coefficient of the power series expansion of

a,b

Z(al(_t;'f)? z(bl(_ljfbjl;) When a A b = 1, this rational function has two order

4 poles at 1 and —1 and its other poles have order 2; the coefficients of

(ljz)4 and T L T in its decomposition into partial fractions are respec-
. _1\a+b
tively 4aéb2 and * 4a1%b2 .

Because n is odd, and k and ¢ are odd, a and b have to have different

. : 1 (G G0 V|
parities, so a + b is odd. S0 j=m + -y = 5
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Now
1 1 1
2 @R X @@ X ap—o2-32=1
aNb=1 aNb=1 aNb=1
a#b mod 2 a,b odd

The condition k < ¢ brings a factor 1/2, and we said that only
half of the surfaces with £ and ¢ odd were in orbit A, thus we get
S"(n) ~ (1/8)(n*/6).

Putting pieces together, we get that the number of n-square-tiled 2-
cylinder surfaces of type A, n prime, is equivalent to (3/4+1/8)(n3/6) =

(7/8)(n?/6).

7.4. Two-cylinder cusps. For n prime, the number of 2-cylinder
cusps (in both orbits) is given by

Sn)= > (ank)(bAL).
a,b,k,leN*
ak+bl=n
k<t
(See counting of two-cylinder surfaces in section 7.2 and discussion
of cusps in section 3.4.)

S(n) is less than

Stn)=">_ (ank)(bAL).
a,b,k e N*
ak+bl=n

where the condition k < ¢ is dropped.

We will show that for any ¢ > 0, S(n) < n*?* when n tends to
infinity.

This will imply that the number of two-cylinder cusps of n-square-
tiled surfaces is sub-quadratic, thus negligible before the (quadratic)
number of one-cylinder cusps in each orbit.

S(n) = Z wf(A)f(B), where f(m)= Z L.
A,Bu,veN* rs=a
Au?4Bv?=n rAs=1

Note that f(m) < d(m) < m®, where d(m) is the number of divisors
of m. The factors f(A)f(B) therefore contribute less than an nc.

S ow=YuX (X o)

A,Bu,veN* u A<n/u? v2|n—Au?
Au+Bv?=n

The sum in parentheses has less than d(n — Au?) summands, each
of which is bounded by vn — Au?, so
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Sv(n) < n1/2+2€ Zn/u < n3/2+35.

This proves the estimate.
We thank Joél Rivat for contributing this estimate.

7.5. Elliptic points. The discussion in section 6.3.2 implies that their
number is less than the number of integer-coordinate vectors in a quar-
ter of a circle of radius y/n, so it is O(n).

8. STRONG NUMERICAL EVIDENCE

There is strong numerical evidence that the theorems stated in sec-
tions 1 and 4 extend as follow for prime and nonprime n:

Conjecture 8.1. For odd n > 5, there are exactly two Teichmiiller
discs of primitive n-square-tiled surfaces in H(2), one of them with
elliptic points and the other without.

For even n > 4, there is exactly one Teichmiller disc of primitive
n-square-tiled surfaces in H(2); this disc contains elliptic points if and
only if n 1s a multiple of 4.

Conjecture 8.2. Countings are given by the following functions:
Odd n: orbit A: 35(n — 1)n* [, (1 — -5)

P
og’bz't B: &(n - 3)n? H1p‘n<1 — I%)
Evenn: $(n—2)n? [L.(1 =)

The formulae in Conjecture 8.2 were suggested by M. Schmoll, who
has similar formulae in counting problems for marked tori and torus
coverings. These formulae give degree 3 polynomials when restricted
to prime n, for which Theorem 1.2 gives the leading term. These
polynomials are expressed in the table below.

one cylinder 2 cylinders all
A 5 (n3 —n) 53 =9 —Tn+9) | (0’ —n—n+1)
B [ (¥ —4n®+3n)| :(n®—n?—9n+9) %(n3—3n2—n+3)

all | £(n3 4 3n® +2n) | 3;(6n% —6n> —1Tn+18) | 3(n® —2n® —n +2)

On the other hand, the counting functions for 2-cylinder cusps are
not polynomials.

Conjecture 8.3. For prime n, the number of elliptic points is k where
n=4k + 1.



32 PASCAL HUBERT, SAMUEL LELIEVRE

9. APPENDIX A: n=3 ANDn =25

n = 3. For n = 3, we have the following three surfaces.

If we call S; the one-cylinder surface, and S, and S5 the two-cylinder
surfaces, the generators of SL(2, Z) act as follow: US; = Sy, US; = 53,
US3; =5, RS1 = 53, RSy = S5, RS3 = S7. So there is only one orbit,
containing d = 3 surfaces, the number of cusps is ¢ = 2, the number of
elliptic points (R-invariant surfaces) is e = 1, so the genus is ¢ = 0 by
the Gauss-Bonnet formula.

n = 5. Forn =5, we have 27 surfaces forming 8 cusps, a representative
of which appears on the following picture.

Computing the SL(2,Z) action shows that they fall into two orbits,
orbit A being made of the surfaces on the left and orbit B of those on
the right.

The data for orbit A is d = 18 surfaces, ¢ = 5 cusps, e = 0 elliptic
point, so the genus is ¢ = 0 by the Gauss-Bonnet formula.

The data for orbit B is d = 9 surfaces, ¢ = 3 cusps, e = 1 elliptic
point, so the genus is ¢ = 0 by the Gauss-Bonnet formula.

By inspection of the congruence subgroups of genus 0 of SL(2,Z)
(see for example [CuPal), the stabilizers of orbits A and B are noncon-
gruence subgroups of SL(2,Z).

10. APPENDIX B: OTHER HYPERELLIPTIC COMPONENTS OF STRATA
OF ABELIAN DIFFERENTIALS

For all hyperelliptic square-tiled surfaces, one can count the number
of Weierstrass points with integer coordinates. This provides an invari-
ant for the action of SL(2, Z) on square-tiled surfaces in all hyperelliptic
components of strata of moduli spaces of abelian differentials.

The strata with hyperelliptic components are H(2g — 2) and H(g —
1,9 —1), for g > 1.

Proposition 10.1. In H(2g — 2)"™? and H(g — 1,9 — 1)™P, for large
enough odd n there are at least g orbits containing one-cylinder sur-
faces.

This is proved by the following reasoning.
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Completely periodic surfaces in H(2g — 2) or H(g — 1,9 — 1), for
g > 1, have respectively 2g — 1 and 2¢g saddle connections.

For one-cylinder primitive surfaces (necessarily of height 1), the
lengths of the saddle connections add up to n, and the Weierstrass
points are two points on the circle at half-height of this cylinder (these
do not have integer coordinates), the saddle in the H(2g — 2)%P case,
and the midpoints of the saddle connections that bound the cylinder
(these have integer coordinates for exactly those saddle connections of
even length).

If n is odd, the sum of the lengths is odd. So the number of odd-
length saddle connections has to be odd, and is between 1 and 2¢g — 1.
There are g possibilities for that. Since the value of the invariant is
the number of even-length saddle connections, it can take ¢ different
values.

11. APPENDIX C: THE THEOREM OF GUTKIN AND JUDGE

Theorem (Gutkin—Judge). (S,w) has an arithmetic Veech group if
and only if (S,w) is parallelogram-tiled.

Up to conjugating by an element of SL(2, R), it suffices to show:

Theorem. (S,w) is a square-tiled surface if and only if V(S,w) is
commensurable to SL(2,7Z).

(i.e. these two groups share a common subgroup of finite index in each.)

Remark. In this theorem, the size of the square tiles is not assumed to
be 1. One can always act by a homothety to make this true, and we
will suppose that in the proof of the direct way of this theorem.

11.1. A square-tiled surface has an arithmetic Veech group.
Fix a square-tiled surface (S, w). We saw in Lemma 2.3 that V(S,w) <
V(R?*/A(w) , d2).

Case 1. Let us first assume that A(w) = Z?, i.e. (S,w) is a primitive
square-tiled surface.

Lemma 2.4 implies that SL(2,Z) acts on the set E of square-tiled
surfaces contained in its SL(2,R)-orbit. The set E is finite and the
stabilizer of this action is V(S,w). The class formula then implies that
V(S,w) has finite index in SL(2,Z).

Case 2. Suppose that A(w) is a strict sublattice of Z?. Consider
Py, ..., Py the preimages of the origin on S. Denote by Aff(Py, ..., Py)
the stabilizer of the set of these points in the affine group of (5, w),
and V(Py,..., P;) the associated Veech group. The translation sur-
face (S,w,{Py,..., Px}) where {P,..., P} are artificially marked is a
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primitive square-tiled surface. From Case 1 above, its Veech group
V(P,...,P) is therefore a lattice contained in the discrete group
V(S,w), hence of finite index in this group.

Thus V(Py,..., P) is a finite index subgroup in both V(S,w) and
SL(2,Z).

11.2. A surface with an arithmetic Veech group is square-tiled.
This part is inspired by ideas of Thurston [Th] and Veech [Ve89, §9],
and appeared in [Hu, appendix B].

Let S be a translation surface with an arithmetic Veech group I'.

If T is commensurable to SL(2, Z) only in the wide sense, we move to
the case of strict commensurability. This conjugacy on Veech groups
is obtained by SL(2, R) action on surfaces.

We prove the following propositions.

Proposition 11.1. A group I' commensurable with SL(2,Z) contains
two elements of the form (§'7) and (1 9) for some m,n € N*.

Proposition 11.2. If the Veech group T" of a translation surface S
contains two elements of the form (§7) and (1 9) for somem,n € N*,
then S s square-tiled.

Proposition 11.1 follows from the following lemma.

Lemma 11.3. If H < G is a finite index subgroup then every g € G
of infinite order has a power in H.

Proof of the lemma. If H has finite index there is a partition of G into
a finite number of classes modulo H. The powers of g, in countable
number, are distributed in these classes, so there exist distinct integers
i and j such that ¢' and ¢/ are in the same class, and then ¢ ~* € H. [

Apply this lemma to G = SL(2,Z) and H the common subgroup to
G and I, of finite index in both G and T', and g = (1) or g = (19).

We now prove Proposition 11.2.

Since ((1) ”f) € I', the horizontal direction is parabolic, so S decom-
poses into horizontal cylinders C}' of rational moduli. Replacing (§7)
with one of its powers if necessary, suppose it fixes the boundaries of
these cylinders. This means their moduli are multiples of 1/m. Call-
ing w?, h? the widths and heights of these cylinders, we have relations
hl Jwh = k; /m for some integers k;.

By a similar argument, since (}9) € T, the vertical direction is

also parabolic, and S decomposes into vertical cylinders C} of rational
moduli hY /wy = k}/n for some integers k.
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Combining these two decompositions yields a decomposition of S
into rectangles of dimensions hj X hl' (these rectangles are the con-
nected components of the intersections of the horizontal and vertical
cylinders). Here we keep on with the convention of section 2.3 about
heights and widths of cylinders.

What we want to show is that these rectangles have rational dimen-
sions (up to a common real scaling factor), in order to prove that S is a
covering of a square torus; indeed, if the rectangles are such, then they
can be divided into equal squares, so we obtain a covering of a square
torus. Since singular points of S lie on the edges both of horizontal
and of vertical cylinders, they are at corners of rectangles and hence
of squares of the tiling, so that the covering is ramified over only one
point.

Because the cylinders in the decompositions above are made up of
these rectangles, we have w} = > m;;h} and w) = > n;hy', where
myz, Mg € N.

Combining equations, mh)’ = 3~ k;mg;hy and nhy = 37 kinj;h.

Then, setting Xh = (h?), XV = (h,}f), M = (kl-mij)l-j, N = (k;nﬂ)ﬂ,
we have mX" = M XY and nXV = NX", so that M NX" = mnX™ and
NMXY =nmXV".

M, N and their products are matrices with nonnegative integer co-
efficients.

In view of applying the Perron—Frobenius theorem, we show that
MN and NM have powers with all coefficients positive.

o This results from the connectedness of S

. and the following observation: M;; # 0 if

| L& and only if Cf and CY intersect; (MN);; #

0 if and only if there exists a cylinder C}

which intersects both C}' and C'; more gen-

i erally the element i,j of a product of al-

ternately M and N matrices is nonzero if

and only if there exists a corresponding se-

| | quence of alternately horizontal and verti-

cal cylinders such that two successive cylin-

ders intersect. So MN and NM do have
Ch powers with all coefficients positive.

] X! (resp. XV) is an eigenvector for the

Ccy L Cv  eigenvalue nm of the square matrix MN

(resp. NM). By the Perron—Frobenius the-

orem, there exists a unique eigenvector as-

sociated with the real positive eigenvalue nm for the matrix N M (resp.
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MN). Since both matrices have rational coefficients and the eigenvalue
is rational, there exist eigenvectors with rational coefficients. Up to
scaling, they are unique by the Perron—Frobenius theorem. This allows
to conclude that X" is a multiple of a vector with rational coordinates.
From the equation nXV = NX" we then conclude that the rectangles
have rational moduli and can be tiled by identical squares.

This completes the proof of the theorem.

11.3. A corollary. The following result of [GuHuSc| arises as a corol-
lary of section 11.1 and Proposition 11.2.

Corollary 11.4. If a subgroup I' < SL(2,Z) contains two elements
(§7) and (19) and has infinite index in SL(2,Z), then T' cannot be
realized as the Veech group of a translation surface.
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