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A detailed description of the numerical procedure is presented for the evaluation

of the one-loop self-energy correction to the g-factor of an electron in the 1s and 2s

states in H-like ions to all orders in Zα.
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I. INTRODUCTION

Recently, several high-precision experiments have been performed on the bound-electron

g-factor in H-like carbon and oxygen by the Mainz-GSI collaboration [1, 2]. The value

actually measured in the experiment is (g m/M), where m is the electron mass, M is the ion

mass, and g is the g-factor of the electron. The relative accuracy of the best experimental

determination of this value [1] is 5×10−10, which is 4 times better than that of the accepted

value for the electron mass [3]. Further progress is anticipated from the experimental side,

as well as extension of measurements to the higher-Z region [4].

The spectacular experimental results have triggered great interest to the theoretical de-

scription of the g-factor of a bound electron [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,

18, 19, 20, 21]. Combining experimental values with accurate theoretical predictions for

the bound-electron g-factor resulted in an independent determination of the electron mass
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[14, 17]. The current accuracy of this determination [17] is 4 times better than that of the

accepted value for the electron mass [3]. For the latest compilation of various contributions

to the bound-electron g-factor we refer the reader to [20] for H-like ions and to [18, 21] for

Li-like ions.

In the present work we give a detailed description of our calculation of the self-energy

correction to the bound-electron g-factor for 1s and 2s states of a H-like ion. The first results

of this calculation for the 1s state were previously published in [17], where they were used

for the determination of the electron mass. In this paper, we extend our consideration to a

higher-Z region and perform calculations also for the 2s state, having in mind the planned

extension of the experiments to Li-like systems.

Our calculation is carried out in the Feynman gauge. The relativistic units (h̄ = c = 1)

and the Heaviside charge units (α = e2/4π, e < 0) are used throughout the paper. We also

use the notations p/ = pµγ
µ and p̂ = p/|p|.

II. BASIC FORMULAS

In this paper we will consider a bound electron in an s state of a H-like ions with a

spinless nucleus interacting with a static homogeneous magnetic field. The bound-electron

g-factor is defined by

g = −
〈jama|µz|jama〉

µ0ma

, (1)

where µ is the operator of the magnetic moment of the electron, µ0 = |e|/(2m) is the Bohr

magneton, ja is the total angular momentum of the electron, and ma is its projection. The

lowest-order value for the g factor can be found by a simple relativistic calculation based on

the Dirac equation [22]. For an s state and the point nucleus, it yields

gD =
2

3

(
1 +

2 εa

m

)
, (2)

where εa is the energy of the electron state.

Various contributions to the g-factor are related to the corresponding corrections to the

energy shift, as given by

∆E = ∆g µ0Bma , (3)

where the magnetic field B is assumed to be directed along the z axis. In the present in-

vestigation we are interested in the self-energy correction to the bound-electron g-factor. It
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is diagrammatically depicted in Fig. 1. Formal expressions for the corresponding contribu-

tions can easily be derived, e.g., by the two-time Green function method [23]. They can be

also obtained by considering the first-order perturbation of the self-energy correction by a

perturbing magnetic potential δV (x) [24, 25].

The contribution of the diagram (b) is referred to as the vertex (”ver”) term and is given

by

∆Ever =
i

2π

∫ ∞

−∞

dω

×
∑

n1n2

〈n1|δV |n2〉〈an2|I(ω)|n1a〉

(εa − ω − u εn1
)(εa − ω − u εn2

)
, (4)

where δV (x) = −eα ·A(x), A is the vector potential A(x) = (1/2)[B×x], u = 1− i0 where

the small imaginary addition preserves the correct circumvention of poles of the electron

propagators, I(ω) is the operator of the electron-electron interaction,

I(ω) = e2αµανDµν(ω) , (5)

αµ = (1,α) are the Dirac matrices, and Dµν is the photon propagator. The contribution

of the diagrams (a) and (c) is conveniently divided into 2 parts that are referred to as

the irreducible and the reducible one. The reducible (”red”) contribution is defined as a

part in which the intermediate states in the spectral decomposition of the middle electron

propagator (between the self-energy loop and the magnetic interaction) coincide with the

initial valence state. The irreducible (”ir”) part is given by the remainder. It can be written

in terms of non-diagonal matrix elements of the self-energy function as

∆Eir = 〈δa|γ0Σ̃(εa)|a〉 + 〈a|γ0Σ̃(εa)|δa〉 , (6)

where the perturbed wave function is given by

|δa〉 =

εn 6=εa∑

n

|n〉〈n|δV |a〉

εa − εn
, (7)

Σ̃(ε) = Σ(ε) − δm, Σ(ε) is the self-energy function defined as

Σ(ε,x1,x2) = 2iαγ0

∫ ∞

−∞

dω αµ

×G(ε− ω,x1,x2)ανD
µν(ω, x12) , (8)
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δm is the mass counterterm, and G is the Dirac-Coulomb Green function, G(ε) = (ε−H)−1,

where H is the Dirac-Coulomb Hamiltonian. The expression for the reducible part reads

∆Ered = 〈a|δV |a〉〈a|γ0 ∂

∂ε
Σ(ε)

∣∣∣∣
ε=εa

|a〉 . (9)

III. DETAILED ANALYSIS

The irreducible contribution (6) is written in terms of non-diagonal matrix elements of

the self-energy function. Its renormalization is well known and we do not discuss it here.

For the point nuclear model, the perturbed wave function |δa〉 can be evaluated analytically

in a closed form by using the method of generalized virial relations for the Dirac equation

[26]. The explicit expression for the |δa〉 function can be found in [11].

Both the vertex and reducible contributions are ultraviolet (UV) divergent. In order

to covariantly renormalize them, we expand the bound-electron propagators in Eqs. (4)

and (9) in terms of the interaction with the binding field. According to the number of

interactions (with the nuclear Coulomb field), the corresponding contributions are referred

to as the zero-potential, one-potential, and many-potential terms. For the vertex diagram,

this decomposition is schematically presented in Fig. 2. We thus represent the vertex and

reducible parts as

∆Ever = ∆E(0)
ver + ∆E(1)

ver + ∆E(2+)
ver , (10)

∆Ered = ∆E
(0)
red + ∆E

(1)
red + ∆E

(2+)
red , (11)

where the superscript corresponds to the number of interactions with the binding field. It

is often convenient to consider the vertex and the reducible terms together. In this case, we

will use the following notation

∆E(i)
vr = ∆E(i)

ver + ∆E
(i)
red , (12)

where i = {0, 1, 2+}.

By elementary power-counting arguments one can show that all terms containing one

or more interactions with the binding field are UV finite. Despite the fact that the one-

potential term is finite, we prefer to consider it separately, as was first proposed in [6]. The

reason for such treatment is that, when evaluated in coordinate space, the one-potential term

yields a slowly-converging partial-wave expansion, which represents the main computational
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difficulty in the low-Z region. The numerical scheme developed for the computation of this

term in [6, 7] allowed to extend the summation well beyond 100 partial waves, which explains

much better accuracy obtained in that work as compared to the first evaluation [5]. In our

approach, we evaluate the one-potential term directly in momentum space without utilizing

the partial-wave expansion. In this way we eliminate the uncertainty due to the estimation

of the uncalculated tail of the series.

A. Zero-potential contribution

The expression for the zero-potential vertex term can be obtained from Eq. (4) by replac-

ing all bound-electron propagators by the free propagators. Writing it in momentum space,

we have

∆E(0)
ver = −e

∫
dp dp′

(2π)6
ψa(p)ΓR(p, p′) · A(p− p′)ψa(p

′) , (13)

where ψ = ψ†γ0, p and p′ are 4-vectors with a fixed time component, p = (εa,p), p′ = (εa,p
′),

A(p− p′) is the vector potential A(x) in momentum space,

A(p− p′) = −
i

2
(2π)3

[
B × ∇p′δ3(p− p′)

]
, (14)

and Γµ
R(p, p′) is the UV-finite part of the free vertex function introduced in Appendix A.

We note that right from the beginning we are working with the renormalized expressions;

the cancellation of UV-divergent terms in the sum of the zero-potential vertex and reducible

terms can be checked explicitly.

Substituting Eq. (14) into Eq. (13) and separating the contribution to the g-factor, we

obtain

∆g(0)
ver = −2im

∫
dp dp′

(2π)3
ψa(p)

×
[
∇p′δ3(p− p′) × ΓR(p, p′)

]
z
ψa(p

′) , (15)

where the gradient ∇p′ acts on the δ function only and the angular-momentum projection

of the initial state is assumed to be ma = 1/2. The expression above is transformed by inte-

grating by parts and performing the integration that involves the δ function. The integration

by parts divides the whole contribution into two pieces

∆g(0)
ver = ∆g

(0)
ver,1 + ∆g

(0)
ver,2 (16)
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that correspond to the gradient acting on the vertex and the wave function, respectively,

∆g
(0)
ver,1 = 2im

∫
dp

(2π)3
ψa(p) Ξ(p)ψa(p) , (17)

∆g
(0)
ver,2 = −2im

∫
dp

(2π)3
ψa(p) [ΓR(p, p) × ∇p]z ψa(p) , (18)

where

Ξ(p) = [∇p′ × Γ(p, p′)]z
∣∣
p′=p

. (19)

We start with the first contribution. The function Ξ can be expressed as

Ξ(p) = 4πiα

∫
d4k

(2π)4

1

k2
γσ

p/− k/+m

(p− k)2 −m2

×[γ × ∇p]z
p/− k/+m

(p− k)2 −m2
γσ . (20)

Transformation of the numerator yields

Ξ(p) =
α

4π

∫
d4k

iπ2

1

k2[(p− k)2 −m2]2

{
γσ(p/− k/+m)

×[γ × γ]zγ
σ + 2γσ[γ × (p− k)]zγ

σ
}
. (21)

Basic integrals over the loop momentum k can be easily evaluated to yield

∫
d4k

iπ2

{1, kµ}

k2[(p− k)2 −m2]2
= −

1

m2

∫ 1

0

dx
{1, x pµ}

(1 − ρ)x+ ρ
,

(22)

where ρ = (m2 − p2)/m2. Substituting these integrals into Eq. (21) and taking into account

that [γ × γ] = 2iγ0γ5γ and {γ5, γµ} = 0, we obtain

Ξ(p) =
α

πm2
A(ρ)

(
iγ5γzγ0 p/− [γ × p]z

)
, (23)

where

A(ρ) =
1

1 − ρ

(
1 +

1

1 − ρ
ln ρ

)
. (24)

For s states, the angular integration in Eq. (17) is carried out by employing the following

results for basic angular integrals (µ = 1/2)

∫
dp̂χ†

κµ(p̂) σzχκµ(p̂) =





1 , for κ = −1 ,

−1/3 , for κ = 1 ,
(25)
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∫
dp̂χ†

κµ(p̂) [σ × p̂]zχ−κµ(p̂) =





−2/3 i , for κ = −1 ,

2/3 i , for κ = 1 ,
(26)

where χκµ(p̂) is the spin-angular spinor [27] and σ denotes a vector consisting of the Pauli

matrices. Finally, the result for the first vertex contribution reads (a is assumed to be an s

state)

∆g
(0)
ver,1 =

α

4π4m

∫ ∞

0

dpr p
2
rA(ρ)

×

{
ga(εaga + prfa) −

1

3
fa(εafa + prga)

}
, (27)

where pr = |p|, and ga = ga(pr) and fa = fa(pr) are the upper and the lower components of

the wave function, respectively.

Now we turn to the second vertex contribution given by Eq. (18). The vertex function

with two equal arguments ΓR(p, p) can be obtained by the Ward identity,

Γ(p, p) = −∇pΣ(0)(p) , (28)

where Σ(0)(p) is the free self-energy function introduced in Appendix A. Simple differentia-

tion yields

ΓR(p, p) =
α

4π

[
b1(ρ) γ + b2(ρ) p/p + b3(ρ)p

]
, (29)

b1(ρ) =
2 − ρ

1 − ρ

(
1 +

ρ

1 − ρ
ln ρ

)
, (30)

b2(ρ) = −
2

m2

1

(1 − ρ)2

(
3 − ρ+

2

1 − ρ
ln ρ

)
, (31)

b3(ρ) =
8

m(1 − ρ)

(
1 +

1

1 − ρ
ln ρ

)
. (32)

In order to perform the integration over the angular variables in Eq. (18), we use the

representation for the gradient in the spherical coordinates [28]

∇p = p̂
∂

∂pr
+

1

pr
∇Ω . (33)

Now the angular integration can be carried out by using the following results for basic

angular integrals (µ = 1/2)

∫
dp̂χ†

κµ(p̂) [p̂× ∇Ω]zχκµ(p̂) =





0 , for κ = −1 ,

2/3 i , for κ = 1 ,
(34)



8

∫
dp̂χ†

κµ(p̂) [σ × ∇Ω]zχ−κµ(p̂) =




−4/3 i, forκ = −1 ,

0 , forκ = 1 .
(35)

The final result for the second vertex contribution reads (a is an s state)

∆g
(0)
ver,2 = −

αm

24π4

∫ ∞

0

dpr p
2
r

×

[
b1(ρ)

(
2

pr

gafa + ga
dfa

dpr
− fa

dga

dpr

)

−b2(ρ)(εafa + prga)fa + b3(ρ)fafa

]
. (36)

This concludes our consideration of the zero-potential vertex contribution.

The described approach to the evaluation of the zero-potential vertex term was first

employed in [5]. We mention also a different treatment of this term suggested by the Swedish

group [6, 7]. In that work, the δ function in Eq. (14) was approximated by a continuous

Gaussian function with a small cutoff parameter. An advantage of the presented approach is

that we end up with a single integration that remains to be performed numerically, while the

consideration of [6, 7] leaves a 4-dimensional integration in final formulas. This complication

is not crucial for the zero-potential term since it is relatively simple. For the one-potential

term, however, the consideration is more difficult, and the approach based on the integration

by parts turns out to be extremely helpful.

The zero-potential reducible term is given by

∆g
(0)
red = gD〈a|γ

0 ∂

∂ε
Σ

(0)
R (ε)

∣∣∣∣
ε=εa

|a〉 , (37)

where gD is the lowest-order value of the g-factor given by Eq. (2). The derivative of the

free self-energy function with respect to the energy argument reads

∂

∂ε
Σ

(0)
R (p)

∣∣∣∣
ε=εa

= −
α

4π

[
a1(ρ) p/+ a2(ρ) γ0 + a3(ρ)

]
,

(38)

where

a1(ρ) = −
2εa

m2(1 − ρ)2

(
3 − ρ+

2

1 − ρ
ln ρ

)
, (39)

a2(ρ) = 2 +
ρ

1 − ρ

(
1 +

2 − ρ

1 − ρ
ln ρ

)
, (40)

a3(ρ) =
8εa

m(1 − ρ)

(
1 +

1

1 − ρ
ln ρ

)
. (41)
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Integration over the angular variables yields

∆g
(0)
red = gD

(
−

α

32π4

)∫ ∞

0

dpr p
2
r

×

{
a1(ρ)

[
εa(g

2
a + f 2

a ) + 2prgafa

]

+a2(ρ)
(
g2

a + f 2
a

)
+ a3(ρ)

(
g2

a − f 2
a

)
}
. (42)

Finally, the total zero-potential term ∆g
(0)
vr is given by the sum of Eqs. (27), (36), and (42).

B. One-potential term

The one-potential vertex contribution to the g-factor can be written as

∆g(1)
ver = 4im

∫
dp dr dp′

(2π)6
ψa(p)VC(r)

×
[
Λ(p, r, p′) × ∇rδ

3(p− p′ − r)
]
z
ψa(p

′) , (43)

where the angular-momentum projection of the valence state is assumed to be ma = 1/2,

p = (εa,p), r = (εa, r), p
′ = (εa,p

′), the function Λ is defined by

Λ(p, r, p′) = −4πiα

∫
d4k

(2π)4
γσ

p/− k/+m

(p− k)2 −m2
γ0

×
p/− k/− r/+m

(p− k − r)2 −m2
γ

p/′ − k/+m

(p′ − k)2 −m2
γσ ,

(44)

and VC(r) = −4παZ/r2 is the Coulomb potential in momentum space. Obtaining Eq. (43),

we have employed the vector potential in a form equivalent to Eq. (14)

A(p− p′ − r) = −
i

2
(2π)3

[
B × ∇rδ

3(p− p′ − r)
]
. (45)

We mention also a factor of 2 included into Eq. (43) accounting for two equivalent diagrams.

Integrating by parts, we divide the expression into two parts,

∆g(1)
ver = ∆g

(1)
ver,1 + ∆g

(1)
ver,2 , (46)

where

∆g
(1)
ver,1 = 4im

∫
dp dp′

(2π)6
VC(q)ψa(p)Θz(p, p

′)ψa(p
′) , (47)
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∆g
(1)
ver,2 = −4im

∫
dp dp′

(2π)6
ψa(p)

× [Λ(p, q, p′) × S(q)]z ψa(p
′) , (48)

where q = p− p′ = (0,p− p′), S(q) = ∇qVC(q), and

Θ(p, p′) = [∇r × Λ(p, r, p′)]
r=q

. (49)

1. ∆g
(1)
ver,1 contribution

We start our consideration of the ∆g
(1)
ver,1 term with the function Θ,

Θ(p, p′) = 4πiα

∫
d4k

(2π)4
γσ

p/− k/+m

(p− k)2 −m2
γ0

×

[
∇p′

p/′ − k/+m

(p′ − k)2 −m2
× γ

]
p/′ − k/+m

(p′ − k)2 −m2
γσ ,

(50)

where the gradient acts on the expression in the square brackets only. By using the following

identity

∇p′
p/′ − k/+m

(p′ − k)2 −m2
=

p/′ − k/+m

(p′ − k)2 −m2
γ

p/′ − k/+m

(p′ − k)2 −m2
, (51)

and commutation relations for the γ matrices, we obtain

Θ(p, p′) = −2πiα

∫
d4k

(2π)4

×
̺

k2
[
(p− k)2 −m2

][
(p′ − k)2 −m2

]2 , (52)

where the numerator ̺ is

̺ = γσ(p/− k/+m)γ0

{
(p/′ − k/+m) [γ × γ]

+ [γ × γ] (p/′ − k/+m)
}
γσ . (53)

Now we employ the identity [γ × γ] = 2iγ0γ5γ and use the commutation relations in

order to bring the matrices γ0, γ5, γ to the right. This yields

̺ = 4iγσ(p/− k/+m)

×
[
mγ + (p′0 − k0)γ0γ − (p′ − k)

]
γσγ5 . (54)
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Carrying out the summation over the repeating indices in the numerator, we obtain

̺ = 8iγ5

[
m2γ + 2mq − (p′ − k)(p/− k/)

+(p′0 − k0)γγ0(p/− k/)
]
. (55)

The integration over the loop momentum k is carried out by using the following results

for basic integrals

∫
d4k

iπ2

{1, kµ, kµkν}

k2
[
(p− k)2 −m2

][
(p′ − k)2 −m2

]2 =

∫ 1

0

dx dy
1 − y

N2

{
1, xbµ, x

2bµbν −
xN

2
gµν

}
, (56)

where b = yp+ (1 − y)p′, N = xb2 + ym2ρ+ (1 − y)m2ρ′, ρ′ = (m2 − p′2)/m2.

By an explicit calculation one can show that the part of the basic integrals proportional

to gµν yields a vanishing contribution. We therefore have

Θ(p, p′) =
iα

π

∫ 1

0

dx dy
1 − y

N2
γ5

×
[
m2γ + 2mq − Q′Q/ +Q′

0γγ0Q/
]
, (57)

where Q = p− xb = (1− xy)p− x(1 − y)p′, Q′ = p′ − xb = −xyp+ (1− x+ xy)p′. We now

use the commutation relations in order to bring p/ to the left of γ and p/′ to the right of γ.

This yields

Θ(p, p′) =
iα

π

∫ 1

0

dx dy
1 − y

N2
γ5

{
A0γ + (C1p/+ C2p/

′)p

+(D1p/+D2p/
′)p′ + F1 p/γ0γ + F2 γγ0p/

′

+G1p +G2p
′ +H1pγ0

}
, (58)
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where the coefficient functions are given by

A0 = m2 + 2ε2
a(1 − x)(1 − xy) ,

C1 = xy(1 − xy) ,

C2 = −x2y(1 − y) ,

D1 = −(1 − x+ xy)(1 − xy) ,

D2 = (1 − x+ xy)x(1 − y) , (59)

F1 = −εa(1 − x)(1 − xy) ,

F2 = −εa(1 − x)x(1 − y) ,

G1 = 2m,

G2 = −2m,

H1 = −2εa(1 − x)(1 − xy) .

In order to perform the angular integration in Eq. (47), we define the set of scalar functions

Pi (i = 1 . . . 6):

ψa(p)Θ(p, p′)ψa(p
′) = −

iα

π

∫ 1

0

dx dy

{
P1 χ

†
+(p̂)σχ+(p̂′) + P2 χ

†
−(p̂)σχ−(p̂′)

+pP3 χ
†
+(p̂)χ−(p̂′) + pP4 χ

†
−(p̂)χ+(p̂′)

+p′ P5 χ
†
+(p̂)χ−(p̂′) + p′ P6 χ

†
−(p̂)χ+(p̂′)

}
, (60)

where χ±(p̂) = χ±κa,ma
(p̂). The functions Pi depend on pr = |p|, p′r = |p′|, and ξ = p̂ · p̂′

only. They are given by

P1 =
1 − y

N2

[
A0gag

′
a + F1(εaga + prfa)g

′
a + F2ga(εag

′
a + p′rf

′
a)

]
,

P2 =
1 − y

N2

[
A0faf

′
a + F1(εafa + prga)f

′
a + F2fa(εaf

′
a + p′rg

′
a)

]
,

P3 =
1 − y

N2

[
C1(εaga + prfa)f

′
a + C2ga(εaf

′
a + p′rg

′
a) + (H1 −G1)gaf

′
a

]
,

P4 =
1 − y

N2

[
C1(εafa + prga)g

′
a + C2fa(εag

′
a + p′rf

′
a) + (H1 +G1)fag

′
a

]
, (61)

P5 =
1 − y

N2

[
D1(εaga + prfa)f

′
a +D2ga(εaf

′
a + p′rg

′
a) −G2gaf

′
a

]
,

P6 =
1 − y

N2

[
D1(εafa + prga)g

′
a +D2fa(εag

′
a + p′rf

′
a) +G2fag

′
a

]
,
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where ga = ga(pr), fa = fa(pr), g
′
a = ga(p

′
r), f

′
a = fa(p

′
r) are the radial components of the

valence wave function.

Now the angular integration in Eq. (47) can be performed, taking into account the fol-

lowing results for basic angular integrals (µ = 1/2)

∫
dp̂ dp̂′ F χ†

κµ(p̂) σz χκµ(p̂′) =






2π

∫ 1

−1

dξ F , for κ = −1

−2π/3

∫ 1

−1

dξ ξF , for κ = 1

(62)

∫
dp̂ dp̂′ F χ†

κµ(p̂) p̂z χ−κµ(p̂
′) =






−2π/3

∫ 1

−1

dξ ξF , for κ = −1 ,

−2π/3

∫ 1

−1

dξ F , for κ = 1 ,

(63)

∫
dp̂ dp̂′ F χ†

κµ(p̂) p̂′
z χ−κµ(p̂

′) =





−2π/3

∫ 1

−1

dξ F , for κ = −1 ,

−2π/3

∫ 1

−1

dξ ξF , for κ = 1 ,

(64)

where F is a function that depends on pr, p
′
r, and ξ only. Finally, we obtain the expression

for the first vertex contribution,

∆g
(1)
ver,1 = m

α2Z

6π5

∫ ∞

0

dpr dp
′
r

∫ 1

−1

dξ

∫ 1

0

dx dy
p2

r p
′
r
2

q2
r

×
[
−3P1 + ξP2 + pr(ξP3 + P4) + p′r(P5 + ξP6)

]
. (65)

2. ∆g
(1)
ver,2 contribution

First, we evaluate the function Λ in Eq. (48). Its expression can be obtained from the

vertex function by the following identity

Λ(p, q, p′) = ∇p′Γ0(p, p′) , (66)

where Γµ(p, p′) is defined Appendix A. Using Eqs. (A8)-(A11) and taking into account that

∇p′N = 2(1 − y)[−xy p + (1 − x+ xy)p′] , (67)

∇p′a = −x∇p′N + 2(1 − x)p , (68)
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we obtain

Λ(p, q, p′) = −
α

2π

∫ 1

0

dx dy

{
2(1 − y)

N2

(
−xy p + (1 − x+ xy)p′

)

×

[
(a+m2 + 2xN)γ0 + εaBp/ + εaCp/

′ +Dp/γ0p/
′ + εaH

]

+
1

N

(
−2(1 − x)pγ0 + εaCγ +Dp/γ0γ

)}
, (69)

with the coefficient functions a and B–D given by Eqs. (A9)-(A10). Note that the expression

in the square brackets is similar to the corresponding term in Eq. (A8). We can therefore

write

ψa(p)

[
(a +m2 + 2xN)γ0 + εaBp/+ εaCp/

′ +Dp/γ0p/
′ + εaH

]
ψa(p

′) =

F̂1 χ
†
+(p̂)χ+(p̂′) + F̂2 χ

†
−(p̂)χ−(p̂′) , (70)

where the expressions for F̂1,2 can be obtained from (A13), (A14) by a straightforward

substitution. Finally, we obtain

ψa(p)Λ(p, q, p′)ψa(p
′) = −

α

2π

∫ 1

0

dx dy

{
R1 χ

†
+(p̂) σ χ−(p̂′) + R2 χ

†
−(p̂) σ χ+(p̂′)

+
(
pR3 + p′R4

)
χ†

+(p̂)χ+(p̂′) +
(
pR5 + p′R6

)
χ†
−(p̂)χ−(p̂′)

}
,

(71)

where

R1 =
1

N

[
εaCgaf

′
a +D(εaga + prfa)f

′
a

]
,

R2 =
1

N

[
εaCfag

′
a +D(εafa + prga)g

′
a

]
,

R3 =
2(1 − y)

N2
(−xy)F̂1 −

2(1 − x)

N
gag

′
a ,

R4 =
2(1 − y)

N2
(1 − x+ xy)F̂1 , (72)

R5 =
2(1 − y)

N2
(−xy)F̂2 −

2(1 − x)

N
faf

′
a ,

R6 =
2(1 − y)

N2
(1 − x+ xy)F̂2 ,



15

and

F̂1 = (a+m2 + 2xN + εaH)gag
′
a

+εaB(εaga + prfa)g
′
a + εaCga(εag

′
a + p′rf

′
a)

+D(εaga + prfa)(εag
′
a + p′rf

′
a) , (73)

F̂2 = (a+m2 + 2xN − εaH)faf
′
a

+εaB(εafa + prga)f
′
a + εaCfa(εaf

′
a + p′rg

′
a)

+D(εafa + prga)(εaf
′
a + p′rg

′
a) . (74)

We perform the angular integration in Eq. (48) taking into account the identity

∇qVC(q) = 8παZ
q̂

q3
r

, (75)

and the following basic angular integrals (µ = 1/2)

∫
dp̂ dp̂′ F χ†

κµ(p̂) [q̂ × σ]z χ−κµ(p̂
′) =





−4πi/3

∫ 1

−1

dξ
(p′r − ξpr)

qr
F , for κ = −1 ,

−4πi/3

∫ 1

−1

dξ
(pr − ξp′r)

qr
F , for κ = 1 ,

(76)

∫
dp̂ dp̂′ F χ†

κµ(p̂) [p̂× p̂′]z χκµ(p̂
′) =






0 , for κ = −1 ,

2πi/3

∫ 1

−1

dξ (1 − ξ2)F , for κ = 1 ,
(77)

where F is a function that depends on pr, p
′
r, and ξ only. The final result for the second

vertex contribution reads

∆g
(1)
ver,2 = −m

α2Z

3π5

∫ ∞

0

dpr dp
′
r

∫ 1

−1

dξ

∫ 1

0

dx dy

×
p2

r p
′
r
2

q3
r

[
p′r − ξpr

qr
R1 +

pr − ξp′r
qr

R2 −
(1 − ξ2)prp

′
r

2qr

(
R5 + R6

)
]
. (78)

3. Reducible part

The one-potential reducible contribution is given by

∆g
(1)
red = gD

∫
dp dp′

(2π)6
VC(q)

×ψa(p)
∂

∂εa
Γ0(p, p′)ψa(p

′) , (79)

where Γµ(p, p′) is the vertex function, p = (εa,p), p′ = (εa,p
′), and gD is the Dirac value of

the g-factor. An expression for this contribution can be obtained by a simple differentiation

of formulas for Γµ(p, p′) given in Appendix A.
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C. Many-potential term

Expressions for the many-potential term can be obtained by the point-by-point subtrac-

tion of the corresponding zero- and one-potential contributions from the unrenormalized

expressions (4) and (9). In order to transform them to the form suitable for a numerical

evaluation, we have to perform the summation over the magnetic substates and the integra-

tion over the angular variables. This can be carried out by using standard techniques (see,

e.g., [29]). We present here only the results for the unrenormalized contributions. The final

expressions can be obtained from them by the corresponding point-by-point subtractions.

The vertex correction to the g-factor is given by (a is an s state)

∆gver =
iα

2π

∫ ∞

−∞

dω
∑

n1n2J





1/2 1/2 1

j2 j1 J





×
P (n1, n2)RJ(ω, an2n1a)

(εa − ω − uεn1
)(εa − ω − uεn2

)
, (80)

where u = 1 − i0, RJ is the generalized Slater integral [30] (the corresponding expressions

can be found in [29]),

P (n1, n2) = Π(l1l20)(−1)l1

√
(2j1 + 1)(2j2 + 1)

3

×


 j2 j1 1

1/2 1/2 −1


Rn1n2

, (81)

Π(l1l2l3) = [1 + (−1)l1+l2+l3 ]/2, (· · · ) and {· · · } denote 3j and 6j symbols, respectively, and

Rn1n2
=

∫ ∞

0

dr r3
[
gn1

(r)fn2
(r) + fn1

(r)gn2
(r)

]
. (82)

The reducible contribution reads (a is an s state)

∆gred = −
iα

4π

∫ ∞

−∞

dω

×
∑

nJ

(−1)ja−jn+JP (a, a)RJ(ω, anna)

(εa − ω − uεn)2
. (83)

We mention that both the vertex and the reducible contribution are infrared (IR) diver-

gent. The divergence occurs when εn1
= εn2

= εa in the vertex term and εn = εa in the

reducible term. However, the sum of these terms can be shown to be convergent. In prac-

tical calculations, we perform the ω integration for the sum of the vertex and the reducible
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contributions. In that case, the integrand is a regular function for small values of ω and can

be numerically integrated up to the desirable accuracy.

IV. HIGH-PRECISION EVALUATION OF THE IRREDUCIBLE

CONTRIBUTION

In this section we describe adaptations of the approach developed in [32, 33, 34]. In this

method, the renormalization scheme is completely performed in coordinate space, which

provide a great simplification in the numerical evaluation. In that method the integration

over the photon energy z is done last. The complex plane integration contour is divided in

two parts [35]. The contour around the bound state poles of the electron propagator gives

the low-energy part, which reads, in Feynman gauge:

∆Eir,L =
−2α

π
P

∫ εa

0

dz

∫
dx2

∫
dx1 ψ

†
a(x2)α

µG(x2,x1, z)αµδa(x1)
sin[(εa − z)x21]

x21
, (84)

where δa is the first order wave function correction (7), εa is the energy and ψa the wave-

function of the bound state under consideration and P denotes a principal value integral.

Here we use the Feynman gauge for the low-energy part instead of the Coulomb gauge in

Ref. [34] to be compatible with the gauge used in the vertex and reducible part calculations.

Here the integrand is well enough behaved that the transformation of the low-energy part

in Coulomb gauge done in [35] to improve numerical accuracy is no longer required. The

high energy parts is written as

∆Eir,H =
−α

πi

∫

CH

dz

∫
dx2

∫
dx1 ψ

†
a(x2)αµG(x2,x1, z)α

µδa(x1)
e−bx21

x21

−2δm

∫
dx ψ†

a(x)βδa(x) , (85)

where b = −i [(εa − z)2 + iδ]
1/2
,Re(b) > 0, and x21 = x2 − x1. The index µ is summed

from 0 to 3. The contour CH extends from −i∞ to 0 − iǫ and from 0 + iǫ to +i∞, with

the appropriate branch of b chosen in each case. Note that the sign change in (84) and (85)

compared to Refs. [34, 35] comes from the opposite convention G(ε) = (H − ε)−1 used in

those works.

In this part we use the Pauli-Villars regularization and

δm(Λ) =
α

π

[
3

4
ln(Λ2) +

3

8

]
. (86)
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Because we do not do a transformation to Coulomb gauge in (84) angular integration is now

identical to the one done for the high-energy part (85) as described in [35], and lead to the

same angular coefficients.

The high-energy part is split into two pieces ∆Eir,HA and ∆Eir,HB. In ∆Eir,HA the Coulomb

Green’s function is expanded around the free one up to the one potential term, the wave-

function is expanded around x1 ≈ x2, which is the place from which singularities that lead

to ultraviolet divergence arise. This part must thus contains the regularization term. The

regularized integral is evaluated analytically. The high-energy remainder ∆Eir,HB, which is

finite is evaluated numerically. The details of the method are described in Refs. [32, 33, 34].

Because the cancellations that occurs in the normal self-energy (the contribution is formally

of order αm, while the final result is of order αm(Zα)4, leading to the loss of 9 significant

figures at Z = 1), are not present here, very high accuracy can be reached even at low-Z.

At Z = 1 one looses only 3.5 significant figures for 1s state and 4 for 2s states. Convergence

of the numerical evaluation of the integrals is checked by doing a sequence of numerical

calculations with increasing number of integration points in all three integrations. In the

case of Z = 1, we have observed that the value obtained with this method, provides a final

answer in slight disagreement with the results from the Zα expansion, even though the con-

vergence of the numerical integration would lead to think that accuracy is larger than the

observed difference. This loss of accuracy is probably due to the code used for the numerical

evaluation of the Green function in the high-energy part ∆Eir,HB. Due to that fact, we do

not use the method described for this section for Z = 1, and for Z = 2, we used the half-sum

of the value obtained with the method of this section and from the one described in Sec. III.

The different contributions to the irreducible part, evaluated by the method described in

this section are presented in tables I and II for 1s and 2s respectively.

V. NUMERICAL EVALUATION AND RESULTS

We start with reporting some details about our numerical evaluation. The calculation

for 1s and 2s states was performed for the point nucleus. In addition, for the ground state,

we repeated our evaluation for the hollow-shell model of the nuclear-charge distribution and

tabulated the difference as the nuclear-size effect ∆gNS.

The calculation of the irreducible part is quite straightforward. For the point nucleus, the
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TABLE I: Contributions to the 1s irreducible correction in unit of 10−6 (ppm). Note the cancel-

lation between the low energy part and the piece of the high-energy part containing the renormal-

ization terms. Numbers in parenthesis represent error in the last digit (when not given, accuracy

is better than 1 on the last digit)

Z ∆gir,L ∆gir,HA ∆gir,L + ∆gir,HA ∆gir,HB ∆gir

2 −5414.138671(1) 5419.00973735696 4.871066 0.3353273(5) 5.206394(1)

3 −5408.112191(1) 5417.88129395137 9.769103 0.7540304(8) 10.523133(2)

4 −5400.4246855(6) 5416.30141200512 15.8767265 1.3394077(10) 17.216134(1)

5 −5391.25332317(6) 5414.27003034210 23.01670717 2.090731(1) 25.107438(1)

6 −5380.72953754(3) 5411.78707032559 31.05753279 3.007139(1) 34.064671(1)

8 −5356.015609415(3) 5405.46601341913 49.450404004 5.331304(2) 54.781708(2)

10 −5326.8970673996(3) 5397.33726330666 70.4401959071 8.303600(2) 78.743796(2)

12 −5293.8034464388(6) 5387.39956343566 93.5961169969 11.915577(2) 105.511694(2)

13 −5275.86794401(1) 5381.75188865495 105.88394464 13.958983(3) 119.842927(3)

14 −5257.05051270478(1) 5375.65137934454 118.60086663976 16.159514(3) 134.760380(3)

15 −5237.37900574235(5) 5369.09780041185 131.71879466950 18.516447(3) 150.235242(3)

16 −5216.87799726641(5) 5362.09089951271 145.21290224630 21.029202(3) 166.242105(3)

18 −5173.4722361824(4) 5346.71603642683 173.2438002444 26.520679(3) 199.764480(3)

20 −5126.98086779847(5) 5329.52442786062 202.54356006215 32.632888(4) 235.176448(4)

24 −5025.19605057045(1) 5289.68016155027 264.48411097982 46.733467(4) 311.217578(4)

30 −4851.76112169811 5216.21351982533 364.45239812722 72.745514(5) 437.197912(5)

32 −4788.66975035492 5188.05668759197 399.38693723705 82.795193(5) 482.182130(5)

40 −4511.24490648394(1) 5056.97546181288 545.73055532894 130.860760(6) 676.591315(6)

50 −4111.58003121901(6) 4851.22331387135 739.64328265234 213.227113(7) 952.870396(7)

54 −3936.57321146902 4755.74050579472 819.16729432570 255.361384(8) 1074.528678(8)

60 −3659.38321787930(6) 4598.23534473287 938.85212685357 331.513253(8) 1270.365380(8)

70 −3163.4138601297(1) 4297.20241652793 1133.7885563982 504.469815(9) 1638.258372(9)

80 −2635.3139826863(2) 3947.32337723397 1312.0093945477 760.56376(1) 2072.57316(1)

82 −2527.08776432844 3871.42617585973 1344.33841153129 825.21671(1) 2169.55512(1)

83 −2472.7536638438(2) 3832.73421755273 1359.9805537089 859.54725(1) 2219.52780(1)

90 −2089.95631351091(3) 3547.99624047955 1458.03992696864 1143.17384(1) 2601.21377(1)

92 −1980.36334087885(9) 3462.17838439369 1481.81504351484 1240.35520(1) 2722.17025(1)
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TABLE II: Contributions to the 2s irreducible correction in unit of 10−6 (ppm). Note the cancel-

lation between the low energy part and the piece of the high-energy part containing the renormal-

ization terms. Numbers in parenthesis represent error in the last digit (when not given, accuracy

is better than 1 on the last digit)

Z ∆gir,L ∆gir,HA ∆gir,L + ∆gir,HA ∆gir,HB ∆gir

2 −5418.28010(7) 5419.68677266709 1.40667 0.0838500(3) 1.49053(7)

3 −5416.53887(4) 5419.40461685172 2.86575 0.1886438(4) 3.05439(4)

4 −5414.29096(2) 5419.00952526959 4.71857 0.3352848(6) 5.05385(2)

5 −5411.582306(5) 5418.50142439885 6.919118 0.5237213(7) 7.442839(5)

6 −5408.447839(5) 5417.88021960316 9.432381 0.7538938(8) 10.186274(5)

8 −5401.0080206(7) 5416.29801360386 15.2899930 1.339196(1) 16.629189(1)

10 −5392.143636(1) 5414.26172425270 22.118088 2.090740(1) 24.208828(2)

12 −5381.981776(2) 5411.76982341076 29.788047 3.008216(1) 32.796263(2)

13 −5376.446112(1) 5410.35244545649 33.906333 3.529151(2) 37.435484(2)

14 −5370.6216706(6) 5408.82043238619 38.1987618 4.091577(2) 42.290338(2)

15 −5364.5179797(4) 5407.17349348969 42.6555138 4.695544(2) 47.351057(2)

16 −5358.143743(2) 5405.41131523977 47.267572 5.341130(2) 52.608702(2)

18 −5344.614996(3) 5401.53987070156 56.924875 6.757632(2) 63.682507(4)

20 −5330.092484(3) 5397.20312270768 67.110639 8.342381(2) 75.453020(4)

24 −5298.258097(1) 5387.11987055704 88.861774 12.024994(3) 100.886767(3)

30 −5244.1212783 5368.40791014636 124.2866318 18.883088(3) 143.169720(3)

32 −5224.5050123 5361.19426002437 136.6892477 21.544762(3) 158.234010(3)

40 −5138.91407892(6) 5327.29401168822 188.37993277 34.271932(4) 222.651865(4)

50 −5017.61128816(1) 5272.96663863740 255.35535048 55.742549(5) 311.097900(5)

54 −4965.162351525 5247.25973707291 282.097385548 66.481454(5) 348.578840(5)

60 −4882.7432641428(7) 5204.11518737168 321.3719232289 85.466426(5) 406.838349(5)

70 −4736.49467585151 5118.83522473171 382.34054888020 126.900793(6) 509.241342(6)

80 −4580.59370963553(1) 5014.30902799881 433.71531836328 185.322546(7) 619.037864(7)

82 −4548.34480741164 4990.74964795914 442.40484054750 199.688616(7) 642.093456(7)

83 −4532.08744880436(1) 4978.60543848221 446.51798967785 207.267271(7) 653.785261(7)

90 −4415.68500839307(1) 4886.18969971863 470.50469132556 268.797768(8) 739.302459(8)

92 −4381.51458962614(4) 4857.17690140483 475.66231177869 289.515129(8) 765.177441(8)
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perturbed wave function |δa〉 can be found analytically in a closed form [11]. In calculations

involving an extended nucleus, the perturbed wave function was evaluated numerically,

stored on a grid and then obtained in an arbitrary point by interpolation. The calculation of

a non-diagonal matrix element of the self-energy function was carried out by two independent

numerical methods. The first one is based on an expansion of the bound-electron propagator

in terms of interactions with the binding field [31] (for details of the numerical procedure see

[29]), whereas the second one is described in Sec. IV. Numerical results obtained by both

methods are in good agreement with each other. Point-nucleus results for the irreducible

part are listed in Tables III and IV. Presented values are obtained the by the second method

in all cases, except Z = 1 and 2 for the 1s state. For Z = 1, we used the result obtained

by the first method; for Z = 2, a half-sum of the values obtained by the two methods was

employed.

The evaluation of the zero-potential and one-potential contributions ∆g
(0)
vr and ∆g

(1)
vr is

relatively simple. The zero-potential contribution [given by Eqs. (27), (36), and (42)] con-

tains a single numerical integration that can easily be carried out to arbitrary precision. The

one-potential contribution [Eqs. (65), (78), and (79)] contains a 5-dimensional integration.

The integration over one of the Feynman parameters can be carried out analytically, which

speeds up the calculation significantly. The evaluation of this contribution is rather similar

to that of the one-potential term to the first-order self-energy correction [29]. Point-nucleus

results for the zero-potential and the one-potential contribution are listed correspondingly

in the third and the forth column of Tables III and IV.

The evaluation of the many-potential contribution is the most difficult numerical part

of the present investigation and mainly defines the total uncertainty of the results. Since

the actual calculation of the many-potential term is carried out by taking the point-by-

point difference of the unrenormalized, the free, and the one-potential contributions, one

should be aware about large numerical cancellations that occur in this difference. Additional

cancellations appear when the vertex term is added to the reducible contribution. The

final formulas for the many-potential term contain an infinite summation over the angular-

momentum parameter. (This expansion is often referred to as the partial-wave expansion.)

In our approach, we chose the absolute value of the relativistic angular parameter κ of

intermediate electron states, |κ| = j + 1/2, to be the expansion parameter. The summation

was evaluated up to |κmax| = 25 − 35, and the tail of the expansion was estimated by a
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least-squares inverse-polynomial fitting.

The general scheme of the evaluation of the many-potential contribution is similar to that

of our previous investigation [36]. A new feature introduced in this work in the case of the

2s state is that we do not introduce subtractions anymore that remove infrared divergences

separately in the vertex and the reducible term. Instead, we evaluate the integration over

ω for the sum of Eqs. (80) and (83). In this case, infrared singularities that are present

in two parts of the integrand cancel each other and the total integrand is a smooth regular

function. This modification of the numerical procedure allows us to avoid an additional loss

of accuracy due to numerical cancellations.

The following contour was used for the ω integration in the present work: (ε0 − i∞, ε0 −

i0] + [ε0 − i0,−i0] + [i0, ε0 + i0] + [ε0 + i0, ε0 + i∞). This contour is advantageous for the

evaluation of self-energy corrections in the low-Z region since it avoids the appearance of pole

terms that lead to additional numerical cancellations. The parameter ε0 in the definition of

the contour can be varied. In actual calculations its value was taken to be about Zα εa for

low Z.

The results of our numerical evaluation for the 1s and 2s states are presented in Tables III

and IV, respectively. For the ground state, we list both the point-nucleus and the extended-

nucleus result. It should be noted that the uncertainty specified for the latter result refers to

the estimated numerical error only and does not include the nuclear-model dependence. We

estimate the model dependence of the nuclear-size effect ∆gNS to be about 1%. Numerical

values of the root-mean-square radii used in our evaluation coincide with those of [7]. For

the ground state, we compare our values with the results of the previous evaluations [5, 7].

The results of [5] were obtained for the point nucleus, while the evaluation [7] was carried out

employing the homogeneously-charged spherical model for the nuclear-charge distribution.

Finally, we compare our numerical values with the analytical results based on the Zα

expansion and isolate the higher-order contribution Fh.o.(Zα) that incorporates terms of

order (Zα)4 and higher,

∆gSE =
α

π

[
1 + (Zα)2 a20 + (Zα)4Fh.o.(Zα)

]
, (87)

where the first term in the brackets is the known Schwinger correction, the second term

a20 was derived first by Grotch [37] for the 1s state and later generalized to ns states by
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Shabaev et al. [18],

a20 =
1

6n2
. (88)

The higher-order function Fh.o.(Zα) for 1s and 2s states is plotted in Fig. 3.

VI. CONCLUSION

In this paper we have presented our evaluation of the one-loop self-energy correction to the

electron g-factor of 1s and 2s states in H-like ions. As compared to the previous calculations

of this correction for the 1s state, an improvement of accuracy of about an order of magnitude

has been achieved in the low-Z region. For the most interesting experimental cases, H-like

carbon and oxygen, our calculation improved the accuracy of the theoretical prediction for

the g-factor by a factor of 3 for carbon and by a factor of 2 for oxygen [17], which reduced

the uncertainty of the electron-mass determination based on these values. The new value

for the electron mass is [1, 17]

me = 0.000 548 579 909 29 (29)(8) , (89)

where the first uncertainty originates from the experimental value for the ratio of the elec-

tronic Larmor precession frequency and the cyclotron frequency of the ion in the trap, and

the second error comes from the theoretical value for the bound-electron g-factor.
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APPENDIX A: FREE ONE-LOOP FUNCTIONS

The free self-energy function in the Feynman gauge and in D dimensions is given by

Σ(0)(p) = −4πiαµ2ǫ

∫
dDk

(2π)D

1

k2
γσ

p/− k/+m

(p− k)2 −m2
γσ . (A1)

UV divergences in the above expression are regularized by working in D = 4−2ǫ dimensions.

The mass parameter µ is introduced in order to keep the proper dimension of the interaction

term in the Lagrangian. We separate the UV-finite part of the self-energy function Σ
(0)
R as

follows

Σ(0)(p) = δm−
αCǫ

4πǫ
(p/−m) + Σ

(0)
R (p) , (A2)

where the mass counterterm is given by

δm =
αCǫ

4πǫ

3 − 2ǫ

1 − 2ǫ
m , (A3)

and

Cǫ = Γ(1 + ǫ)(4π)ǫ

(
µ2

m2

)ǫ

. (A4)

In the limit ǫ→ 0, the renormalized part of the self-energy function is given by

Σ
(0)
R (p) =

α

4π

[
2m

(
1 +

2ρ

1 − ρ
ln ρ

)

−p/
2 − ρ

1 − ρ

(
1 +

ρ

1 − ρ
ln ρ

)]
, (A5)

where ρ = (m2 − p2)/m2.

The free vertex function in the Feynman gauge and in D dimensions is written as

Γµ(p, p′) = −4πiα µ2ǫ

∫
dDk

(2π)D

1

k2
γσ

×
p/− k/+m

(p− k)2 −m2
γµ p/

′

− k/+m

(p′ − k)2 −m2
γσ . (A6)

The divergent part of the vertex function can be separated in the form

Γµ(p, p′) =
αCǫ

4πǫ
γµ + Γµ

R(p, p′) . (A7)

Here we present an explicit expression only for the time component of the renormalized

vertex function Γµ
R omitting terms of order ǫ and higher and assuming that p0 = p′0 = εa,

Γ0
R(p, p′) =

α

2π

∫ 1

0

dx dy
1

N

[
Aγ0

+εaBp/+ εaCp/
′ +Dp/γ0p/

′ + εaH
]
, (A8)
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where

A = a+m2 −N

(
3

4
+ x lnN

)
,

B = 2(1 − xy)(1 − x) ,

C = 2(1 − x+ xy)(1 − x) , (A9)

D = −(1 − x) ,

H = −4m(1 − x) ,

and

a = xy(1 − xy)p2 + x(1 − y)(1 − x+ xy)p′
2

−2(1 − xy)(1 − x+ xy)(p · p′) , (A10)

N = x [yp+ (1 − y)p′]
2
+ ym2ρ+ (1 − y)m2ρ′ . (A11)

The integration over one of the Feynman parameters in Eq. (A8) can easily be carried out

leading to an expression, equivalent to that in [29]. However, we prefer to keep the vertex

function in a more compact form (A8) here.

For carrying out angular integrations, we introduce the scalar functions F1,2 that depend

on pr = |p|, p′r = |p′|, and ξ = p̂ · p̂′ only,

ψa (p)Γ0
R(p, p′)ψa(p

′) =
α

2π

∫ 1

0

dx dy
1

N

×

[
F1 χ

†
+(p̂)χ+(p̂′) + F2 χ

†
−(p̂)χ−(p̂′)

]
, (A12)

F1 = (A+ εaH)gag
′
a + εaB(εaga + prfa)g

′
a

+εaCga(εag
′
a + p′rf

′
a)

+D(εaga + prfa)(εag
′
a + p′rf

′
a) , (A13)

F2 = (A− εaH)faf
′
a + εaB(εafa + prga)f

′
a

+εaCfa(εaf
′
a + p′rg

′
a)

+D(εafa + prga)(εaf
′
a + p′rg

′
a) , (A14)
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where χ±(p̂) = χ±κa,ma
(p̂), and ga = ga(p), fa = fa(p), g

′
a = ga(p

′), and f ′
a = fa(p

′) are the

radial components of the valence wave function.
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TABLE III: The one-loop self-energy correction to the 1s-electron g-factor for H-like ions. All

values are absolute contributions to the g-factor (1/α = 137.035 989 5) and presented in units of

10−6 (ppm). Individual contributions are listed for the point nuclear model. ∆gNS denotes the

nuclear-size correction calculated for the shell model of the nuclear-charge distribution. The labels

”pnt.” and ”ext.” refer to the point-nucleus and the extended-nucleus result, respectively.

Z ∆gir ∆g
(0)
vr ∆g

(1)
vr ∆g

(2+)
vr ∆gSE (pnt.) ∆gNS ∆gSE (ext.)

1 1.52928 2320.77563 0.50250 0.03305 2322.84046(10) 0.00000 2322.84046(10)

2322.8404(9)a

2 5.20640 2316.00970 1.55757 0.13053 2322.90420(9) 0.00000 2322.90420(9)

2322.9040(9)a

3 10.52313 2309.28506 2.91759 0.28869 2323.01447(9) 0.00000 2323.01447(9)

2323.0140(9)a

4 17.21613 2300.99753 4.45945 0.50260 2323.17571(9) 0.00000 2323.17571(9)

2323.1751(9)a

5 25.10744 2291.41521 6.10392 0.76661 2323.39318(9) 0.00000 2323.39318(9)

2323.42(5)b 2323.3928(9)a

6 34.06467 2280.73799 7.79535 1.07460 2323.67261(9) 0.00000 2323.67261(9)

2323.6724(9)a

8 54.78171 2256.69788 11.16571 1.79701 2324.44230(9) -0.00001 2324.44229(9)

2324.4421(10)a

10 78.74380 2229.82629 14.34905 2.61754 2325.53668(10) -0.00002 2325.53666(10)

2325.28b 2325.5355(10)a

12 105.51169 2200.79830 17.21623 3.48376 2327.00998(12) -0.00005 2327.00993(12)

2327.0103(12)a

15 150.23524 2154.28732 20.77184 4.75746 2330.05186(16) -0.00011 2330.05175(16)

2329.79b 2330.051(1)a

18 199.76448 2105.29703 23.34254 5.85654 2334.26059(20) -0.00029 2334.26030(20)

2334.262(2)a

20 235.17645 2071.71455 24.49971 6.41815 2337.80885(24) -0.00052 2337.80833(24)
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TABLE III: 1s g-factor. (continued)

Z ∆gir ∆g
(0)
vr ∆g

(1)
vr ∆g

(2+)
vr ∆gSE (pnt.) ∆gNS ∆gSE (ext.)

2337.50b 2337.86(1)a

24 311.21758 2003.24295 25.53187 6.95150 2346.9439(3) -0.0015 2346.9424(3)

2346.92(1)a

30 437.19791 1899.42146 24.22809 5.76765 2366.6151(3) -0.0057 2366.6094(3)

2366.77b 2366.59(1)a

32 482.18213 1864.94188 23.14976 4.73024 2375.0040(4) -0.0088 2374.9952(4)

2374.97(1)a

40 676.59132 1729.56158 16.47453 −3.19027 2419.4372(5) -0.0349 2419.4023(5)

2419.45b 2419.39(1)a

50 952.87040 1569.36938 5.18971 −22.43986 2504.9896(7) -0.1615 2504.8281(7)

2504.09b 2504.827(8)a

54 1074.52868 1508.85111 0.51786 −33.12979 2550.768(2) -0.282 2550.486(2)

2550.487(8)a

60 1270.36538 1422.34049 −6.00306 −52.2051 2634.498(3) -0.610 2633.888(3)

2634.54b 2633.895(9)a

70 1638.25837 1290.32234 −14.07335 −90.9411 2823.566(5) -2.193 2821.373(5)

2823.39b 2821.39(1)a

80 2072.57316 1174.47096 −16.61904 −135.1054 3095.320(10) -6.913 3088.407(10)

3095.34b 3088.46(2)a

82 2169.55512 1153.32686 −16.29951 −144.1073 3162.475(12) -8.687 3153.788(12)

3153.85(2)a

90 2601.21377 1075.78727 −11.90297 −178.5734 3486.525(20) -22.32 3464.205(20)

3486.56(3)a 3464.35(2)a

3487.30b

92 2722.17025 1058.21204 −9.99010 −186.3945 3583.998(20) -28.12 3555.878(20)

3556.05(2)a

a Ref. [7], b Ref. [5].
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TABLE IV: Various contributions to the one-loop self-energy correction to the 2s-electron g-factor

for H-like ions for the point nuclear model. All values are absolute contributions to the g-factor

(1/α = 137.035 989 5) and presented in units of 10−6 (ppm).

Z ∆gir ∆g
(0)
vr ∆g

(1)
vr ∆g

(2+)
vr ∆gSE (pnt.)

2 1.4905 2320.7711 0.4471 0.1317 2322.8404(3)

4 5.0539 2315.9889 1.3379 0.5245 2322.9051(4)

6 10.1863 2309.2305 2.4286 1.1729 2323.0183(6)

8 16.629 2300.886 3.600 2.070 2323.185(1)

10 24.209 2291.216 4.778 3.210 2323.413(2)

12 32.796 2280.417 5.909 4.585 2323.707(2)

14 42.290 2268.639 6.956 6.188 2324.074(3)

16 52.609 2256.005 7.892 8.014 2324.520(3)

18 63.683 2242.618 8.696 10.056 2325.052(5)

20 75.453 2228.563 9.351 12.307 2325.674(5)

24 100.887 2198.735 10.177 17.427 2327.225(5)

30 143.170 2150.542 10.109 26.584 2330.405(5)

32 158.234 2133.739 9.728 30.024 2331.726(6)

40 222.652 2063.747 6.429 45.708 2338.536(8)

50 311.098 1971.870 −1.448 69.823 2351.343(9)

54 348.579 1934.243 −5.641 81.003 2358.184(9)

60 406.838 1877.219 −12.891 99.640 2370.807(9)

70 509.241 1781.353 −27.042 136.596 2400.149(9)

80 619.038 1685.423 −42.849 183.153 2444.765(9)

82 642.093 1666.316 −46.101 193.936 2456.245(9)

83 653.785 1656.779 −47.729 199.543 2462.378(9)

90 739.302 1590.411 −59.021 243.372 2514.064(9)

92 765.177 1571.607 −62.163 257.585 2532.207(9)
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FIG. 1: Feynman diagrams representing the self-energy correction to the bound-electron g-factor.

The double line indicates the bound electron propagator and the wave line that ends with a cross

denotes the interaction with the external magnetic field.

� =� + 2� + Remainder
FIG. 2: The potential expansion of the vertex diagram. The single line indicates the free-electron

propagator and the dashed line denotes the interaction with the Coulomb field of the nucleus. The

terms of the potential expansion are referred to as the zero-potential, one-potential, and many-

potential contributions.
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FIG. 3: The higher-order self-energy contribution Fh.o.(Zα) for the 1s and 2s electron g-factors

in H-like ions.


