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Abstract. The behaviour of dense assemblies of dry grains submitted to continuous shear deformation has
been the subject of many experiments and discrete particle simulations. This paper is a collective work car-
ried out among the French research group GDR Milieux Divisés. It proceeds from the collection of results
on steady uniform granular flows obtained by different groups in six different geometries both in experi-
ments and numerical works. The goal is to achieve a coherent presentation of the relevant quantities to be
measured i.e. flowing thresholds, kinematic profiles, effective friction, etc. First, a quantitative comparison
between data coming from different experiments in the same geometry enforces the robust features in each
case. Second, a transversal analysis of the data across the different configurations, allows us to identify the
relevant dimensionless parameters, the different flow regimes and to propose simple interpretations. The
present work, more than a simple juxtaposition of results, underlines the richness of granular flows and
enhances the open problem of defining a single rheology.

PACS. 45.70.-n Granular systems

1 Introduction

At the frontier between physics and mechanics, the flow of
granular materials has become a very active research do-
main [1–9]. The behaviour of assemblies of grains can be
very complex even in the simple case of dry cohesionless
particles. When the grains are large enough (d > 250µm)
and the surrounding fluid is not too viscous, the particle
interactions are dominated by contact interactions. Capil-
lary forces, van der Waals forces or viscous interactions
can be neglected and the mechanical properties of the
material are only controlled by the momentum transfer
during collision or frictional contacts between grains.

Still, the flows of these dry granular materials are not
easy to describe. They are usually divided in three classes
depending on the flow velocity. First a quasi-static regime
where grain inertia is negligible. The material is often de-
scribed using soil plasticity models [10,11]. Secondly, a
”gaseous” regime exists when the medium is strongly ag-
itated and the grains far apart one from another. In this
regime particles interact through binary collisions and a
kinetic theory has been developed by analogy with the ki-
netic theory of gases [12,13]. In between these two regimes
there exists a dense flow regime where grain inertia be-
comes important but where a contact network still exists
that percolates through particles [14]. Up to now no con-
stitutive equations are available in this ”liquid” regime
and no unified framework allows to describe the whole
dynamics from quasi-static to gaseous regime.

The lack of information about the liquid regime and
about the transition between the different regimes has re-

cently motivated many experimental, numerical and the-
oretical works. Different flow configurations have been in-
vestigated from confined flows in channels to free surface
flows on piles, both experimentally and numerically. How-
ever, although important and precise information is now
available about the flow characteristics, it is often difficult
to extract common features and general trends for gran-
ular flows. Configurations are not the same, experimental
or numerical conditions varies from one study to another.
In this paper we take advantage of a French research net-
work supported by the CNRS, the GDR Milieux Divisés,
to collect the data from different groups.

First, we plan to compare the data obtained under
different experimental or numerical conditions, in order
to extract the most robust features. What are the rele-
vant flow characteristics, i.e. thresholds, kinematic pro-
files, effective friction, etc, in the different flow configura-
tions? How do these quantities depend on the details of
the experimental set up or numerical procedures? Second,
we would like to sort the different flow configurations ac-
cording to the common features and differences that arise
among them. What are the relevant time and length scales
in the different configurations? Are there underlying com-
mon physical phenomena controlling flow properties in the
different geometries? As a result, we expect to identify
simple and basic features that could help in developing
future model for dense granular flows.

Let us emphasise that this collective work does not
pretend to be exhaustive. First, the paper focus only on
steady uniform flows of slightly polydispersed grains, leav-
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ing aside very important questions such as avalanche trig-
gering, intermittent flows or segregation. Second, since the
data presented here come from the research group GDR
Midi and collaborators, many important contributions are
not included. We refer to them in the citations. However,
the huge activity in the domain makes the exercise diffi-
cult. We take refuge behind this excuse for all the contri-
butions that have been omitted.

2 Six different configurations

Dense granular flows are mainly studied in six different
configurations (Fig. 1), where a simple shear is achieved
and rheological properties can be measured. These geome-
tries are divided in two families: confined and free surface
flows.

The confined flows are the plane shear geometry (Fig. 1a)
where a shear is applied due to the motion of one wall,
the annular shear (Fig. 1b) where the material confined
in between two cylinders is sheared by the rotation of the
inner cylinder and the vertical chute flow configuration
(Fig. 1c) where material flows due to the gravity in be-
tween two vertical rough walls. Free surface flows are flow
of granular material on a rough inclined plane (Fig. 1d),
flow at the surface of a pile (Fig. 1e) and flow in a rotat-
ing drum (Fig. 1f). The driving force is in these last three
cases the gravity. In the following we consider successively

Fig. 1. The six configurations of granular flows: (a) plane
shear, (b) annular shear, (c) vertical chute flows, (d) Inclined
plane, (e) heap flow, (f) rotating drum.

the six configurations. The data comes from different ex-
periments and numerical simulations briefly described in a
table at the beginning of each section. We report for each
of them the flowing threshold, the kinematic properties

(velocity V (y), volume fraction Φ(y) and velocity fluctu-
ations δV 2(y) profiles) and the rheological behaviour, be-
fore discussing the influence of the various experimental or
numerical parameters. Both the notations and the dimen-
sionless quantities naturally used to present the results are
given in appendix A.

3 Plane shear flow

3.1 Set-up

In the aim of studying flow rheology, the plane shear (Fig. 2a)
is conceptually the simplest geometry one naturally thinks
of. The flow is obtained between two parallel rough walls, a
distance L apart and moving at the relative velocity Vw. In
the following we note γ̇w = Vw/L the mean shear rate. In
this configuration, the stress distribution is uniform inside
the sheared layer. However, because of gravity, this homo-
geneous state is not achieved in existing experiments [15,
16] but is obtained in discrete particles simulations. Most
of the results found in the literature are obtained imposing
the wall velocity and measuring the shear stress [17–21].
Some are carried out controlling the shear force applied to
the moving wall in order to study the flow thresholds [22].

In the following, we present results of two dimensional
discrete particles simulations where Vw is imposed and
the number of grains (size d and mass m) within the cell
is fixed (periodic boundary conditions are used along the
shear direction). The data are summarised in table 1. In
one case the volume - the cell width L – and thereby the
density ρ – or the volume fraction Φ – are controlled and
the pressure P is measured, while in the other case the
pressure is controlled and the density is measured. Once
the inter-particle contact laws are fixed, the simulations
depend on two parameters : the wall velocity Vw and the
normal stress P or the density ρ. This define a single di-
mensionless numbers describing the relative importance of
inertia and confining stresses,

I =
γ̇wd

√

P/ρ
. (1)

Both simulations are performed in the limit of rigid grains,
so that the macroscopic time scale L/Vw is much larger
than the microscopic timescales i.e. the elastic and the
dissipative ones. The inter-particle friction coefficient µp

is null when not specified. The roughness of the walls is
made of glued grains similar to the flowing grains.

3.2 Kinematic properties

3.2.1 Velocity profiles

Fig. 2b displays the velocity profiles obtained in different
flow regimes. As long as I remains small (smaller than
say 0.1), the velocity profile v(y) is linear. Accordingly
the shear rate is uniform and imposed by the geometry:

γ̇ = γ̇w =
Vw

L
(2)
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Fig. 2. Plane shear. (a) Setup. (b) Velocity profiles rescaled by the wall velocity from simulations PS1: I between 0.2 and
0.5 (e = 0.8) (black symbols) and PS2: I = 0.23 (e = 0.1, µp = 0.4) (◦). (c) Volume fraction profiles as a function of I from
simulations PS1: I between 0.2 and 0.5 (e = 0.8) (black symbols) and PS2: I = 0.23 (e = 0.1, µp = 0.4) (◦). (d) Velocity
fluctuations profile normalised by its mean value across the cell as a function of I from simulations PS1: I between 0.06 and 0.5
(e between 0.6 and 0.98) (black symbols), and PS2: I = 23 (e = 0.1, µp = 0.4) (◦). (e) Effective friction µeff as a function of I
measured at the wall in simulation PS1: e = 0.1 (•) and e = 0.9 (�) and inside the flow in simulation PS2: e = 0.1 (◦), e = 0.9
(�), both for µp = 0. (△) correspond to simulations PS2 with 0.1 < µp < 0.8. Inset: same curves in linear-linear representation.
(f) Mean volume fraction < φ > as a function of I from simulations PS1: e = 0.1 (•) and 0.8 (�) and PS2: e = 0.1 (◦) and
0.9 (�). Inset: same curves in linear-linear representation. (g) Relative velocity fluctuations as a function of I from simulations
PS2: e = 0.1 and 0.9, µp = 0, 0.4 and 0.8.
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# Exp/Num 2D/3D Material Boundary Conditions Ref
PS1 Num (MD) 2D polydisperse spheres (±10%) µp = 0 fixed volume (L = 15) [23,24]
PS2 Num (MD) 2D polydisperse disks (±20%) fixed pressure (L = 20 → 100) [24–26]

Table 1. Data sources for plane shear flows. MD is for molecular dynamics.

For larger I, a slip velocity appears at the boundaries and
the profile becomes slightly S-shaped.

3.2.2 Volume fraction profile

The above two regimes correspond to a dense flow regime
at small I and a collisional dilute regime at larger I as
shown in figure 2c. The volume fraction profiles Φ(y) are
plotted for different I. For small I, Φ is uniform across the
shear cell – apart from oscillations due to ordering close
to the wall. By contrast, for larger I, a significant decrease
of Φ is observed close to the walls so that it is no longer
uniform.

The transition is evidenced on figure 2f, where the av-
erage volume fraction is plotted as a function of I. < Φ >
reaches its maximum, 0.85, in the quasi-static limit I ≃ 0,
decreases gently linearly with I down to 0.80 for I ≃ 0.1
and decreases more rapidly for larger I. Small I corre-
sponds to the dense flow regime, associated to a network of
enduring contacts [27], and large I corresponds to the dy-
namic inertial regime, associated to binary collisions [23].

3.2.3 Velocity fluctuations profile

The velocity fluctuations profiles are shown in figure 2d,
where δV 2 is normalised by its mean value across the
shear cell. Here again the profiles are uniform for small
I, whereas a significant increase of the fluctuations is ob-
served close to the walls for larger I.

Figure 2g shows that the root mean square (rms) ve-
locity exhibits an interesting scaling with both shear rate
and pressure. The following scaling law is observed:

< δV 2 >∝ dγ̇w

√

P

ρ
. (3)

The velocity fluctuations depend on both the shear rate
and the confining pressure. This means that the relative
velocity fluctuations depends on the sole dimensionless
number I: √

< δV 2 >

γ̇wd
∝ I−1/2 (4)

Let us underline that the above scaling for the mean value
of the velocity fluctuations is valid up to the largest value
of I, although in this regime the velocity profiles are not
uniform across the channel.

3.3 Effective friction

The effective friction coefficient µeff is defined either as
the ratio of shear to normal force at the wall, or as the
ratio of the shear stress to the pressure inside the mate-
rial. Both definitions give approximately the same results.
Figure 2e displays the effective friction for two different
simulations and different values of the restitution coeffi-
cient e and interparticle friction µp. It shows that µeff

starts from a finite value µS , corresponding to the internal
Mohr-Coulomb friction [10], remains approximately shear
rate independent in the quasi-static regime (I < 10−3),
and increases for larger values of I [17,18,28,21] up to
some threshold where the flow leaves the dense regime.
Above this threshold µeff saturates or even slightly de-
creases. This threshold value depends on the restitution
coefficient e as observed in inset of figure 2e. Whereas for
e = 0.9 the transition occurs for I ≃ 0.1, for e = 0.1 the
dense flow regime extends up to the maximum value of I
explored in the simulation.

3.4 Parametric study

We now discuss the influence of the microscopic coeffi-
cients, namely the restitution coefficient e and the inter-
particle friction µp. The major result is that in the dense
flow regime, the volume fraction, the velocity profiles and
the effective friction neither depend on e nor µp as long as
µp is of order 1 (say larger than 0.1). If µp = 0 one sim-
ply observes (see Fig. 2e) a shift of the effective friction
towards lower values [25,26]. However, as already men-
tioned, the transition from the dense flow regime to the
dilute collisional one depends on the restitution coefficient
e [23]. This is clearly observed on the effective friction de-
pendence on I (inset of Fig. 2e) as well as on the volume
fraction dependence on I (inset of Fig. 2f).

As a conclusion, for usual granular materials (e not too
close to 1 and µp not to small), the flow properties (ve-
locity, dilatancy and effective friction) in the dense regime
are controlled by the dimensionless number I only.

4 Annular shear flow

4.1 Set-up

The annular shear cell is the classical geometry used for
studying rheological properties of complex fluids. In the
case of granular materials, it has been extensively stud-
ied both experimentally [28–33] and in discrete particle
simulations [34,35].
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Fig. 3. Annular shear. (a) Set up. (b) Effective friction as a function of the shear rate from experiment AS1. Up stress
ramp (•) and down stress ramp (◦). Linear and Logarithmic scale (inset). (c) Velocity profiles, for various shear rate from
experiments AS2: 8 → 63s−1 (�), AS3: 25 → 50s−1 (△ for poppy seeds and N for mustard seeds), AS4: 1, 7 → 171s−1 (◦);
inset: velocity profiles from experiment AS5 for increasing displacement of the inner wall: 12 − 29 mm , 29 − 46 mm, 46 − 62
mm , 62 − 79 mm. (d) Same profiles and same symbols: Log(V/Vw) as a function of y/d. (e) Same profiles: Log(V/Vw) as a
function of (y/d)2. (f) Volume fraction profiles from experiment AS3: mustard (◦) and poppy (•). (g) Velocity fluctuations
profiles from experiment AS4 for γ̇ = 1.7 (• and N), 42 (�), 171 s−1 (△). (h) Same data : fluctuation rate versus dimensionless
shear rate. Inset: Profiles of the rescaled fluctuations.
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# Exp/Num 2D/3D Bulk particles Ri/d L/d W/d Ref
AS1 Exp 3D polystyrene beads 50 22 180 [36,26]

(Rheometry) (d=0.25 mm)
AS2 Exp 3D mustard seeds 15 17,5 80 [26]

(MRI - hh) (d=2 mm)
AS3 Exp 3D mustard - poppy seeds 14 - 32 9 - 19 33 - 75 [32]

(MRI, XT - hh) (d=1.8 mm - 0.8 mm)
AS4 Exp 3D glass beads 68 16 NA [33]

(HSI - fs) (d=0.75 mm)
AS5 Exp 3D sand 100 100 100 [37]

(I - bs) (d=1 mm)

Table 2. Data sources for annular shear flows. (MRI) is for Magnetic Resonance Imaging, (XT) for X-ray tomography, (HSI)
for high speed imaging, (I) for imaging. In experiment AS4, the granular material is sometimes fluidised.

In this geometry (Fig. 3a), a layer of height W of gran-
ular material is sheared between two coaxial rough cylin-
ders, with a distance L (Taylor-Couette cell). The rough-
ness of the walls is made of glued grains, similar to the
flowing grains. The outer cylinder (radius Ro) is fixed. The
inner cylinder (radius Ri) is moving at a rotation rate Ω
so that the velocity at the inner wall is Vw = ΩRi. As we
will see below, in this geometry the shear is localised on
a few particle layers close to the inner wall. Accordingly,
we choose γ̇w = Vw/d as the characteristic shear rate.

The gravity acts in the transverse direction z. There is
usually a free surface, but the material may also be con-
fined vertically, so that it becomes possible to control the
pressure [37]. The stress distribution is characterised by
an hydrostatic pressure gradient along the z direction: due
to the shear, the wall friction is mobilised perpendicularly
to the gravity so that the Janssen effect is inactive [28,
26]. In the xy plane, the normal stress P is uniform given
that centrifugal effects are negligible. The shear stress τ
decreases as 1/(y + Ri)

2.
In this section, we present results from five experi-

ments, whose characteristics are summarised in Tab. 2.
Two kinds of experiments are performed depending whether
the motion of the inner cylinder is controlled by imposing
the torque Γ or the rotation rate Ω.

4.2 Flow thresholds

The flow thresholds are measured by first increasing, then
reducing the torque applied to the inner cylinder. Fig-
ure 3b displays the effective friction µeff versus the di-
mensionless characteristic shear rate γ̇w

√

d/g. The effec-
tive friction is obtained from the torque measurements
assuming an hydrostatic pressure distribution :

µeff =
τw

Pw

with τw =
Γ

2πR2
i W

and Pw =
1

2
ρgW

(5)
After a strong pre-shear, a stress ramp is applied starting
from a solid state. Small stick-slip motions are observed
before the flow starts at a critical torque, with a sudden
jump of the rotation velocity. Above this critical torque,

continuous steady flows are observed [18,38] and γ̇w in-
creases with τw. When slowly decreasing the torque, the
stress-strain relation is first reversible. Further decreasing
the torque, the flow is sustained down to a lower criti-
cal stress where the flow abruptly stops. As a result, the
flowing transition is strongly hysteretic [36,26].

4.3 Kinematic properties

In the experiments reported here, the flow structure has
been investigated. The different profiles have been mea-
sured either at the free surface (”fs”) or at the bottom
surface (”bs”) through a glass window, or well inside the
material, at half height (”hh”), using sophisticated tech-
niques (magnetic resonance imaging or X ray tomography)
(see table 2).

4.3.1 Velocity profiles

Figure 3c gathers measurements of velocity profiles in three
experiments with different gaps L/d and different shear
rates. The profiles are qualitatively similar in all experi-
ments. The shear is localised near the moving wall, and
the width of the shear layer is of the order of five grains.
Layering in the first layers is apparent for round grains.
In each experiment, the shape of the velocity profile does
not depend on the shear rate γ̇w.

Both exponential and gaussian fits have been proposed
for the velocity profiles [31–33]. Figure 3d shows that the
velocity decays slightly faster than exponential. Also the
logarithmic plot of the velocity profile versus (y/d)2 (Fig. 3e)
shows that the velocity profile is rather gaussian when not
too close to the wall. However, the slopes and thus the
shear band characteristic sizes are very scattered among
the different experiments. Finally let us mention that the
velocity profiles measured far from the wall during the
transient establishment of the flow (see inset of Fig. 3
c) recover an exponential tail. These measurements also
show that the shear is localised closer and closer to the
wall while the flow establishes itself.



G.D.R. Milieux Divisés: On dense granular flows. 7

4.3.2 Volume fraction profiles

As shown in figure 3f, the volume fraction slightly in-
creases with the distance to the inner wall. Also the lay-
ering of the material close to the inner wall is more im-
portant for rounder particles (mustard seeds compared to
poppy seeds).

4.3.3 Velocity fluctuations profiles

As shown in figure 3g the velocity fluctuations decrease
exponentially with the distance to the moving wall on a
typical length scale larger than the size of the shear band.
This characteristic length remains constant when varying
the wall shear rate. By contrast, the typical fluctuations
level is shifted upwards with the wall shear rate. The typ-
ical velocity fluctuations δV 2(y) do not scale simply with
V 2

w , but rather with the wall velocity as shown in inset of
figure 3h. The shift between the profiles is indeed reduced
when δV 2(y) is rescaled with Vw

√
gd.

In order to relate the local velocity fluctuations to the
local shear rate, figure 3h displays the relative fluctuations
level

√

δV 2(y)/γ̇d measured at the free surface as a func-

tion of the dimensionless shear rate γ̇(y)
√

d/g. The data
are compatible with a local relationship between these two
quantities. The exponent [33] has been recovered numeri-
cally in [26].

5 Vertical chute flow

5.1 Experimental Set-up

Flows in silo have been extensively investigated motivated
by their numerous practical applications [39–47]. In its
most simplified geometry, the container reduces in three
dimensions to a cylinder of diameter L and in two di-
mensions to two parallel walls separated by a distance L
(Fig. 4a). Gravity drives the material down between the
walls. Far from the free surface and from the bottom, the
flow is uniform along the x direction. The flow rate Q can
be controlled either by an aperture at the bottom of the
device, whose opening is precisely controlled, or by mov-
ing the bottom retaining wall at a controlled velocity. The
walls are made rough by gluing particles at the walls.

In this geometry the stress distribution is given by the
equilibrium. If the column is high enough, Janssen effect
imposes that stresses are independent of the x position.
Under this assumption, the normal stress σxx is a constant
whereas the tangential stress varies linearly with the dis-
tance to the walls: σxy = 2τwy/L where τw is the shear
stress at the wall. No shear stress exists along the symme-
try axis y = 0. Data used in this section are summarised
in table 3.

5.2 Kinematic properties

5.2.1 Velocity profile

Typical velocity profiles obtained in quasi-static regime
are plotted in figure 4b. The velocity is rescaled by the
maximum velocity in the centre of the channel. In both
experiments and numerical simulations, the profiles are
characterised by a plug region in the centre part of the
channel where the velocity is constant and the material
not sheared. Variation of the velocity is localised in two
shear zones close to the rough walls. The thickness of the
shear zones is of the order of 5 to 10 particles diameters
in 2D or 3D, both in experiments and simulations.

In some specific cases, intermittent flow occurs [48]
or, for much larger flow rates, density waves are observed
[47], which might be related to the role played by the air
trapped between the particles.

5.2.2 Volume fraction profile

Figure 4c shows typical volume fraction profile Φ(y) mea-
sured in simulations and experiments. In both cases the
material is slightly less compact in the shear zone. In nu-
merical simulations carried out with slightly polydispersed
material, layering is observed as a consequence of the or-
der induced by the walls.

5.2.3 Velocity fluctuations profile

In figure 4d the velocity fluctuations profile measured in
2D numerical simulations is plotted. It is rescaled by its
mean value across the channel. We observe that the ve-
locity fluctuates more in the shear zones close to the walls
than in the plug region.

5.3 Parametric study

The existence of shear zones close to the wall in the verti-
cal chute flow configuration is a very robust observation. It
is then interesting to study the influence of the parameters
of the problem on the thickness of the shear zones.

In figure 4e, we have plotted the experimental measure-
ment obtained in 3D experiments for different flow rates.
As expected in a quasi-static regime, the rescaled velocity
profile and subsequently the width of the localised shear
are independent of the flow rate.

Figure 4f displays velocity profiles obtained for differ-
ent channel width L. The interesting result, also observed
in other experiments [39], is that the thickness of the shear
zone does not vary much with L. It means that the rel-
evant lengthscale that determines the shear zone is the
particle diameter and not the channel width as it would
be in a Poiseuille flow.

Another parameter that can be changed is the rough-
ness of the wall. In figure 4g we have plotted the velocity
profiles obtained when changing the size of the particles
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Fig. 4. Vertical chute flow. (a) Set up. (b) Typical velocity profiles for L = 45d from experiments VC1 (◦) and from 2D
simulations VC2, dw = d (�). The velocity V is rescaled by its value Vm at the centre. (c) Volume fraction profile for L = 45d
from experiments VC1 (•) and from simulations VC2, dw = d (solid line). Dashed line is the mean profile obtained by averaging
over one particle diameter. (d) Typical velocity fluctuation profile normalised by its averaged value across the channel, From
VC2, dw = d. (e) Rescaled velocity profiles for different flow rates from VC3: V max = 11

√
gd (◦) , V max = 20

√
gd (�),

V max = 30
√

gd (△). (f) Rescaled velocity profiles for different channel width from VC1: L = 16d (•), L = 28d (�), L = 45d
(N). (g) Rescaled velocity profiles for different wall roughness from VC3: dw = 0.5d (◦) , dw = d (△), dw = 4d (�). (h)
Rescaled velocity profiles in a channel inclined at θ from vertical, from VC1: θ = 0o (◦) , θ = 33o (△), θ = 59o (�).
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# Exp./Num. 2D/3D Bulk particles L/d Walls. Ref.
VC1 Exp. 2D aluminium cylinders,

60mm long, mixture of
d=2 and 3mm

16 → 45 Plastic cylinders
dw = 2.5 mm

[41]

VC2 Num (CD) 2D Disks, e = 0, µp = 0.4 45 Disks
dw = 0.5d → 4d

[44]

VC3 Exp (MRI) 3D mustard seeds
d = 1.3mm

42 mustard seeds
dw = 1.3mm

[43]

Table 3. Data sources for vertical chute flow. CD is for contact dynamics, MRI for magnetic resonance imaging.

glued at the walls. Clearly, increasing the roughness in-
creases the shear zone.

Finally the last parameter one can change is the in-
clination of the chute. Interestingly, as shown in figure 4f
changing the angle θ from vertical changes the thickness
of the shear zones: the bottom one increases and the top
one shrinks. This is attributed to the change in stress dis-
tribution that occurs when inclining the silo [41].

One can conclude from the parametric study that the
flow in vertical channel develops localised shear zones close
to the wall, whose thickness scales with the particle diam-
eter. Changing the roughness or inclining the silo are the
two main ways to change the shear zone thickness.

6 Flow on inclined plane

6.1 Set-up.

The flows of granular material down an inclined plane are
encountered in both geophysical and industrial contexts.
The configuration (see Fig. 5a) consists in a rough bottom
inclined at an angle θ from horizontal. In experiments,
both 2D and 3D, the granular material flows out from a
reservoir located at the top of the plane. The flow rate
is controlled by the opening of a gate. A dense granular
flow then develops from the outlet. We will not discuss
the case of rapid and dilute flows obtained when inject-
ing the granular material from a hopper located far above
the plane [49–51]. The bottom of the inclined plane is
made of different materials: glued grains [51,52,44,53–56],
carpet [57] or velvet cloth [58,59]. In numerical simula-
tions, periodic boundary conditions are imposed along the
flow direction. The rough bottom is made of fixed parti-
cles. The simulation reported here are 2D only, but recent
heavy computations have allowed 3D geometry [60,61].
All these configurations are reported in table 4.

In a given range of parameters that will be discussed
below, a steady uniform flow of thickness h is obtained. In
this case, assuming a constant density ρ, the force bal-
ance leads to the following stress distribution : σxy =
ρg sin θ(h − y), σyy(y) = ρg cos θ(h − y) and σxx(y) re-
mains undetermined.

6.2 Flow threshold: transition between static and
flowing states.

An initially static granular layer of uniform thickness h
starts flowing when the plane inclination reaches a criti-
cal angle θstart. Once initiated, the flow is sustained un-
til the inclination is decreased down to a second critical
angle θstop. The existence of these two angles is the ev-
idence of the hysteretic nature of granular flows. In the
case of inclined plane, these critical angles depend on the
layer thickness h. Reciprocally, these thresholds can be in-
terpreted in terms of critical layer thickness hstop(θ) and
hstart(θ). Indeed, the measurement of hstop is easier as it
corresponds to the thickness of the deposit remaining on
the plane once the flow stops. The two curves hstop(θ) and
hstart(θ) divide the phase diagram (h, θ) in three regions:
a region where no flow is possible (h < hstop), a subcrit-
ical region where both static and flowing layer can exist
(hstop < h < hstart) and a region where flow always occurs
h > hstart.

Measurements of these critical curves carried out for
different materials and different rough bottoms are plotted
in figures 5b and 5c. The curves hstop(θ) and hstart(θ)
exhibit the same shape for all the materials and can be
fitted by:

hstop,start(θ)/d = B
tan θ2 − tan θ

tan θ − tan θ1

where the fit parameters θ1, θ2 and B depend on both the
bulk material and the roughness conditions. As underlined
in figure 5c, changing the bottom rough plane from glued
particles to velvet clothes dramatically shifts the critical
curves hstart and hstop toward higher angles.

In the flowing regime i.e. when h > hstop(θ), the flow
is steady and uniform for moderate inclination, but ac-
celerates along the plane for too large inclinations [44,51,
60,61]. In the following we concentrate on the steady and
uniform regime.

6.3 Kinematic properties.

6.3.1 Velocity profiles

Figures 5h and 5i respectively display the velocity profiles
for thin and thick flows for different inclinations. In both
cases, increasing θ increases the average shear rate and
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Fig. 5. Rough inclined plane. (a) Set up. (b) hstop(θ) (black symbols) and hstart(θ) (white symbols) from simulations IP3
(N), experiments IP5 with glass beads (◦,•), IP6 with mustard seeds (♦, �) or with glass beads on carpet (�, �). See text
for the fit. (c) Same as (b) for experiments IP5 with glass beads (◦,•), IP7 with glass beads on velvet (▽, H). Inset: hstop for
different roughness condition from experiment IP8 θ = 27◦ (•), θ = 28◦ (�), θ = 28.3◦ (H), θ = 30◦ (N). (d) Froude number
〈V 〉/√gh as a function of h/hstop(θ) from simulation IP3 (◦ ), experiments IP5 with glass beads on glass beads (•), sand on
sand (�), IP6 sand on moquet (�), IP7 glass beads on velvet (△). Lines are fits by eq. (7). (e) Effective friction deduced from
the flow rule (see text). Experiment IP5 with glass beads (•), with sand (�). Continous lines are deduced form eq. (8) and
fit of hstop(θ). (f) Velocity profiles from simulations IP4 (θ = 14.4◦, µ = 0.) for different restitution coefficients e = 0.4 (△),
e = 0.6 (▽), e = 0.7 (�) and e = 0.8 (◦). (g) Velocity profiles from simulations IP4 (θ = 18◦, e = 0.6) for different friction
coefficients µ = 0. (N), µ = 0.25 (�) and µ = 0.5 (•).
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Fig. 5. Rough inclined plane. (h) Velocity profiles for thin flows from experiment IP2 for θ = 34◦, 36◦ (black bow ties),
IP1 for θ = 21◦ (•) , 22◦ (�), 23◦ (N), 25◦ (H, 27◦ (�), and simulations IP4 (e=0.6) with θ = 12.6◦ (▽), 14.4◦ (△), 16.2◦

(�), 18◦ (◦); (i) Velocity profiles for thick flows from numerical simulations IP3. (j) Volume fraction profiles for thin layers
from simulations IP4 (e = 0.7) for θ = 14.4◦, (�), IP3 for θ = 23◦ (�), from experiments IP2 for θ = 34◦ (•), IP1 for θ = 22◦

(H), IP9 for θ = 27◦ (N); (k) Volume fraction profiles for thick flows from simulation IP3; Inset: mean volume fraction versus
inclination angle for different flow thickness; (l) Velocity fluctuations profiles for thin layers from experiment IP2 for θ = 34◦

(black bow ties) and from simulations IP4 (e = 0.6) for θ = 12.6◦ (▽), θ = 14.4◦ (△), θ = 16.2◦ (�) and θ = 18◦ (◦); (m)
Velocity fluctuations profiles for thick layers from simulations IP3.
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# Exp./Num. 2D/3D material and plane h/d Walls Ref

IP1 Exp. 2D aluminium beads: d = 3 mm e =
0.5; plane: 2m long

≈ 10 side walls: glass; bottom:
glued grains

[51]

IP2 Exp. 2D polystyrene disks: d = 8 mm e =
0.4; plane: 2 m long

≈ 10 side walls: glass; bottom:
glued grains

[52]

IP3 Num. (CD) 2D Disks: e = 0, µp = 0.5 ≈ 50 side walls: none; bottom:
glued grains

[44]

IP4 Num. (MD) 2D Disks: e = 0.4 → 0.8, µp = 0 → 0.5 ≈ 10 side walls: none; bottom:
glued grains

[53]

IP5 Exp. 3D glass beads d = 0.5 mm and sand
d = 0.8mm; plane: 2m long, 0.7m
wide.

< 20 side walls: none; bottom:
glued grains

[54]

IP6 Exp. 3D glass beads d = 1.5 mm, sand d =
1 mm, mustard seeds d = 2 mm;
plane: 2 m long, 0.7 m wide

≈ 10 side walls: none; bottom:
carpet

[57]

IP7 Exp. 3D glass beads d = 0.24 mm; plane: 1.35
m long, 0.6 m wide

≈ 10 side walls: none; bottom:
velvet cloth

[58] [59]

IP8 Exp. 3D glass beads d = 0.14 → 0.53 mm;
plane: 1.3 m long, 0.6 m wide

< 20 side walls: none; bottom:
glued grains

[55,56]

IP9 Exp. 3D glass beads d = 1 mm; plane 2 m
long, 0.05 m wide

< 100 side walls: Plexiglas with
antielectrostatic film; bot-
tom: glued grains

[50]

Table 4. Data sources for inclined plane flow. MD stands for molecular dynamics simulations and CD for contact dynamics
simulations

leads to more and more concave profile. Closer inspec-
tion of these profiles [44] and recent numerical analysis
for 3D flows [60,61] reveal that for flow parameters (h,θ)
far enough from the flowing threshold curve hstop(θ) the
velocity roughly obeys a Bagnold like profile:

V (y)√
gd

= A(θ)

(

h3/2 − (h − y)3/2
)

d3/2
(6)

We will see in section 8.4.3 how one can extract the pref-
actor A(θ) from the bulk measurements, where Bagnold
like rheology is valid. The continuous lines plotted in fig-
ure 5 i display the velocity profile obeying this rheology.
One clearly see that the Bagnold profile fits the numer-
ical data in the core region but not at the base nor at
the free surface, where data exhibit a non zero shear rate.
These regions of discrepancies apparently enlarge when
inclination decreases. Close to the flowing threshold, for
thin layers or low inclinations, the velocity profile becomes
more linear (Fig. 5h) [61]. Also, it is worth noting that for
experiments IP9 carried out in a narrow channel [50], the
velocity profiles can differ significantly from the above de-
scription and become convex. This observation reveals the
role of the additional friction induced by lateral walls.

6.3.2 Volume fraction profile

The volume fraction profile Φ(y) is plotted in figures 5j
and 5k for thin and thick layers. All the reported mea-
surements show the same tendency: Φ(y) remains almost
constant across the layer, except close to the free surface.
This constant value appears to be independent of the flow

thickness but decreases with the inclination as shown in
the inset of figure 5k. This behaviour is common to both
experiments and numerical simulations [62,44,60,61].

6.3.3 Velocity fluctuation profile

The velocity fluctuations δV 2(y) are shown in figure 5l
and 5m. Overall, for both thin and thick flows, δV 2(y) in-
creases with the inclination angle. The profiles exhibit two
maxima, one close to the bottom, the other close to the
surface. Both are of the same order for thin flows, whereas
the fluctuations at the bottom dominate for thick flows.
However, these features observed in numerical simulations
do not show up in the only experimental measurements
carried out with disk in 2D configuration (Fig. 5l).

6.4 Effective friction

The inclined plane configuration gives information about
the effective friction coefficient µeff between the flowing
layer and the rough bottom. The stress distribution for
steady uniform flows implies that µeff defined as the ratio
between tangential and normal stress is simply equal to
tan θ. Choosing an inclination for the plane is then equiv-
alent to imposing the effective friction. The flow then ad-
justs its velocity so that the friction is equal to tan θ. One
can then deduce how the effective friction evolves with
velocity and thickness by measuring the flow rule : how
does the mean velocity 〈V 〉 of the granular layer varies
with its inclination θ and thickness h? Figure 5d shows
experimental and numerical measurements of the relation
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〈V 〉(θ, h). The Froude number Fr = 〈V 〉/√gh is plotted
versus the ratio h/hstop(θ). Each set of data collapse on
a single curve indicating that the influence of the inclina-
tion seems to be encoded in the function hstop(θ). This
correlation between flow velocity and deposit thickness is
observed for different materials and different bottom cov-
erage both in experiments and 2D simulations. Except for
the experiments carried out with glass beads on velvet
cloth (IP6), one observes the following scaling relation:

〈V 〉√
gh

= α + β
h

hstop(θ)
(7)

However, the coefficients α and β are system dependent.
Notice that for experiments using glass beads, α is zero.
The same is observed in recent 3D simulations using spheres
[61]. It is worth noting that the above relation may not be
accurate in the vicinity of h = hstop.

As µeff = tan θ, the effective friction coefficient is ob-
tained by inverting relation 7 in order to express θ as a
function of 〈V 〉 and h. It is straightforward to show that
according to relation 7, µeff should be a function of a single
parameter [63] :

µeff (〈V 〉, h) = µeff

( 〈V 〉d
h
√

gh
− α

d

h

)

. (8)

Figure 5e shows the effective friction coefficient ob-
tained by this procedure for two different materials. The
continuous lines are µeff functions extrapolated from eq. (7)
using fits of hstop(θ). In both cases, the effective friction
coefficient increases when increasing the shear rate. Once
again it is important to note that this relations is not valid
for thickness close to the critical thickness h = hstop.

6.5 Parametric study

6.5.1 Dependence on the bottom roughness

We have seen in the previous results that the roughness
condition of the bottom plane strongly influences the flow
properties. A systematic study has been carried out by
gluing beads of diameter dw and by changing gradually the
flowing beads diameter d [55]. In inset of figure 5c, the de-
posit thickness hstop is plotted versus the beads diameter
ratio d/dw for different inclinations. This work points out
the existence of a given ratio d/dw for which the deposit
is maximum, which might correspond to a maximum of
effective bottom friction. This ratio, independent of θ, is
mainly determined by the surface fraction of glued beads
on the bottom plane [55].

6.5.2 Influence of particle interaction parameters

Such studies are essentially carried out in numerical sim-
ulations where one can independently vary the internal
coefficient of friction µp or the restitution coefficient e. In
figure 5f, we have plotted velocity profiles for the same θ

and h but for different coefficient of restitution e. The in-
teresting result is that in the range e < 0.8, the profiles do
not depend on e. This is to be contrasted with what would
be expected in a kinetic regime dominated by binary col-
lisions. The dependence on the friction coefficient µp is
also weak as shown in figure 5g. Decreasing µp slightly in-
creases the values of the velocities [51]. However, choosing
µp = 0 seems to increase more dramatically the velocities.

7 Surface flows: heap flow and rotating drum

Granular flows confined to a surface layer on a static gran-
ular bed are probably the most frequently encountered in
industrial process and nature. Accordingly, they have been
extensively studied in the past for practical interest and
more recently as model system in fundamental studies [9,
64–84].

7.1 Set-up

Most experimental work has been conducted in two sys-
tems: down a heap [66,67,64,68,69] and inside the so-
called rotating drum [9,65,70–84], both shown schemat-
ically on figure 6a and 6d. The flow down a heap is most
commonly obtained in a Hele Shaw cell: beads are poured
in between two glass plates separated by a distance W .
The flow rate per unit of width Q is controlled by the
hopper outlet. After a transient stage, the cell is full and
one obtains a stationary regime with equilibrated fluxes
at the pouring point and at the exit of the cell. The ro-
tating drum of width W and diameter 2R, is half-filled
with the grains and rotated at constant angular velocity
Ω. For an appropriate range of angular velocity, one ob-
tains a stationary flowing layer, with a given flow rate per
unit of width Q = ΩD2/8, where D is the drum diameter.
In both cases, the rescaled flow rate

Q∗ =
Q

d
√

gd
(9)

is the unique parameter controlling the flowing layer thick-
ness h, the angle of the free surface θ, once the geometrical
parameters D/d and W/d are fixed.

The major advantage of the heap geometry is that it
easily produces homogeneous flows. However, it is diffi-
cult to explore a wide range of flowing layer thickness
and surface inclination. Conversely, the rotating drum set
up allows to explore stationary flows in a much broader
range of both h and θ but the flow is not strictly homo-
geneous in the flowing direction. Still, for drums of large
enough diameter, one expects the flow at the centre of
the drum to be independent of the drum size, which we
will discuss further in the light of the experimental data.
Under this assumption of uniformity, the stress distribu-
tion in the central part of the drum is the same as in
the inclined plane case, that is σxy = ρg sin θ(ys − y) and
σyy = ρg cos θ(ys − y), where ys is the free surface co-
ordinate. The table 5 summarises the various flow data
sources used in the present section.
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Fig. 6. Heap and Drum surface flows. (a) Heap set up. (b) Velocity profiles for different flow rates in the heap configuration
from exp. SF4 with d=0.15 mm. (c) Same as (b) plotted as a function of (y − yb)/d (the y origin at the boundary between
linear and exponential profile). Inset: Lin Log of the fastest profile. The fits are exponential (dashed line), linear (dotted line)
and γhe ln(1 + exp(y/he)) (solid line). (d) Rotating drum set up. (e) Velocity profiles from exp. SF6: D/d = 150, w/d = 4.66;
from bottom to top Q∗ = 5.25, 10.5, 15.75, 21, 30.75, 41.25. Inset: velocity profiles from 2D CD simulation SF11, D/d = 150 and
Q∗ = 21, 30.75, 51.75. (f) Velocity profiles as a function (y − yb)/d for different flow rates, different materials, in different set
up: steel beads with D/d = 150, w/d = 7.33 and Q∗ = 5.25, 10.5, 15.75, 21, 30.75, 41.25 from SF6; steel beads with D/d = 133,
w/d = 1 and Q∗ = 6, 10, 18 from SF5; glass beads with D/d = 100, w/d = 40 and Q∗ = 7.5, 17, 26, 36.5 from SF7. Inset: same
plot with data from SF6 only.
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Fig. 6. Heap and Drum surface flows. (g) Shape of the flowing layer (free surface ys and bed-layer interface yb) observed
with steel beads. Black labels are from SF10: gap/d = 5, D/d = 160 with Q∗ = 16.0; 52.8; 94.4. White labels are from SF6:
gap/d=2.33, D/d = 150 with Q∗ = 30.75. (h) Volume fraction profiles as a function of (y − ys)/d obtained with steel beads
with D/d = 133, w/d = 1 and Q∗ = 6.0, 9.7, 18.1 from SF5 (dark labels), and with white labels, D/d = 150, w/d = 1 and
Q∗ = 31.0 from SF6, numerically with steel beads, D/d = 150 and Q∗ = 21, 30.75, 51.75 from SF11. (i) Same profiles as for (h)
but plotted as a function of (y−ys)/d rescaled by

√
Q∗. (j) Flowing layer thickness h/d at the centre of the cell as a function of√

Q∗. Inset: is a zoom on small Q∗. Data from drum experiments SF2, SF5, SF6, SF7, SF8, SF9, SF10, with different materials
-sand, glass, steel– with different drum size, D/d = [40 − 2500] and different gap size w/d = [2.33 − 610]. The points linked
together are from heap experiments SF4. (k) Rescaled free surface and bed-layer interface from SF8, SF9, SF10 at two different
flow rate, with different materials (the layers are rotated relatively to each other to match their dynamical angle of repose).
Upper curves: steel beads (d = 1mm; d = 2mm) and glass beads (d = 2mm); D/d = 160 and Q∗ = 52.8. Lower curves: sand
(d = 0.4mm and d = 0.8mm) and glass beads (d = 0.8mm); D/d = 400 and Q∗ = 210. (l) Critical angles θstart (N) and θstop

(•) as a function of the gap width W for glass beads d=1.85 mm. Solid lines correspond to fit by eq.(10). Inset: Characteristic
length scale hc of wall effect as a function of d. (m) Free surface slope θ as a function of

√
Q∗ for the heap experiment; data

from SF3 with w/d ∈ [10 − 610]; the lines corresponds to the approximation tan θ = µ∞ + µw

√
Q∗d/w. (n) Free surface slope

θ as a function of
√

Q∗ in rotating drums same data as in (j).
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# Exp/Num 2D/3D particles material Q* W/d D/d Ref
SF1 Exp Heap 2D&3D glass; d = 0.1mm < 1 1 → 10 [67]
SF2 Exp Drum 3D glass; d = 0.23 → 3 mm < 1 10 → 90 60 − 700 [83,85]
SF3 Exp Heap 3D glass d = 0.5 mm 1 → 75 10 → 610 [86]
SF4 Exp Heap 3D glass d = 0.25 mm and d = 0.15 mm 1 → 15 120 [87]
SF5 Exp Drum 2D steel; d = 1.5 mm 5 → 20 1 133 [9]
SF6 Exp Drum 2D&3D steel, aluminium; d = 3 mm 5 → 50 1 → 7.33 150 [88,80]
SF7 Exp Drum 3D glass; d = 0.2 → 2 mm 5 → 4500 2.5 → 120 50 → 2500 [82]
SF8 Exp Drum 3D glass; d = 0.8 → 4 mm 2 → 360 5 → 12.5 40 → 400 [79]
SF9 Exp Drum 3D sand; d = 0.4 → 0.8 mm 5 → 360 12.5 → 25 5 → 400 [79]
SF10 Exp Drum 3D steel; d = 1 → 4 mm 2 → 260 5 → 10 40 → 320 [79]
SF11 Num Drum 2D steel; d = 0.23 → 8 mm 5 → 50 150 [84]

Table 5. Data sources for Surface Flows (heap and rotating drum. Experiment SF1 and SF2 are dedicated to the study of
avalanches, whereas experiment SF3 to SF10 deal with stationary flows. Nota Bene: simulation SF11 is real 2D, that is the
particles used are infinite cylinders.

7.2 Transition between static and flowing regimes

For small flow rate, typically Q∗ < 1, intermittent avalanches
occur [9,58,65,70,72,83,89]. As a result, the surface slope
angle oscillates between the angle at which an avalanche
is triggered θstart and the static angle of repose θstop that
remains after the avalanche. The presence of confining lat-
eral walls is known to improve the stability of a pile [66–68,
90]. For narrow channel (small W ) the angles are higher.
A typical evolution of both characteristic angles θstart and
θstop with W , obtained for glass beads in a rotating drum
set-up with glass walls is displayed in figure 6l: both θstart

and θstop decrease with increasing W towards asymptotic
values for large gap widths. These evolutions are well de-
scribed by the equation:

tan θstart,stop = tan θ∞start,stop +
hc

W
, (10)

where θ∞start,stop are the asymptotic values of θstart,stop and
hc the corresponding characteristic length scale of wall ef-
fect. This equation is physically consistent with additional
friction forces induced by the walls [83,85]. The inset of
figure 6l displays the characteristic length hc as a function
of the bead diameter d obtained with equation (10) for all
data sets found in the literature involving glass beads in
various setups. It clearly puts in light two different regimes
depending on the bead diameter d. Whereas hc is propor-
tional to d for large beads (d > 0.5mm), which implies
that wall effect is a geometric effect, hc is constant for
small bead diameters (d < 0.5mm). One explanation to
this constant value, independent of d, could be that small
beads aggregate because of surface forces such as van der
Waals forces [83,85].

7.3 Kinematic properties

Figure 6g displays the typical shape of the flowing layer in
the rotating drum, when the flow is stationary – in prac-
tice when Q∗ > 1 – with the characteristic S-shape of the
free surface ys(x) and the essentially convex shape of the
bed-layer interface yb(x). The maximum layer thickness

h = ys − yb increases and the free surface becomes more
S-shaped with increasing Q∗. Accordingly the slope in the
centre of the drum is also accentuated. Qualitatively, sim-
ilar observations are made with all materials. Obviously
the flow is not homogeneous, apart from the centre of the
drum where both the layer thickness and the local slope
of the interfaces vary slowly along the interface, for large
enough drum D/d > 50. Accordingly, in the drums, kine-
matic profiles have always been measured in the centre of
the drum. In the heap, profiles has been measured at in
the centre of the cell in between the hopper and the outlet.

7.3.1 Velocity profile

Figure 6b and 6e displays typical velocity profiles obtained
respectively in heap [87] and drum configuration [80]. The
similarity between both configurations is striking. In both
cases, the profiles are localised under the free surface and
are composed of an upper linear part in the flowing layer
and a lower exponential tail in the granular bed. The ex-
ponential tail is clearly evidenced in inset of figure 6c.
The crossover between these two behaviours extends over
a wide zone of approximately ten grains. An interface be-
tween the flowing layer and the quasi static pile can be de-
fined extrapolating the linear part of the velocity profile to
zero. One can plot the profiles putting the y origin at this
interface as done in figures 6c and 6f. In both geometries,
one observes a collapse indicating that a universal profile
exists. By increasing the flow rate, one simply explores a
wider and wider zone of this profile. The shear rate γ̇ in
the linear part –when it exists– is essentially constant, in-
dependent of the flow rate and in both geometries equal
to :

γ̇ ≃ 0.5

√

g

d
. (11)

Still, in recent real 2D numerical results in the rotating
drum geometry [84], under the same condition as in [80],
the flowing layer appears twice deeper and the linear pro-
files exhibit a dependence of the shear rate with Q∗ (inset
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of figure 6e). This preliminary result which has to be con-
firmed, might indicate some non trivial effect of the wall
friction.

The thickness of the flowing layer h = ys−yb has been
measured in all the experiments. Fig 6j demonstrates the
existence of a general scaling

h

d
∝

√

Q∗ (12)

for all the data collected in surface flows, heap and drum,
with different materials – glass, sand, steel – and very dif-
ferent drum size ranging from 40 to 2500. As a matter of
fact, assuming a purely linear velocity profile in the flow-
ing layer, the above scaling is exactly equivalent to the
existence of a constant shear rate of the order of 0.4

√

g
d .

This is slightly smaller than the shear rate measured di-
rectly from the velocity profiles (eq. 11).

7.3.2 Compacity profile

As shown on figure 6h the compacity – here measured in
2D configurations – increases across the layer from 0.6,
at the free surface to 0.8, its close random packing value,
at the bed-layer interface. This behaviour is common to
both experiments and numerical simulations. The compac-
ity seems to decrease on a typical scale

√
Q∗d as shown in

figure 6i.

7.4 Effective friction

As for the flow down an inclined plane, the stress distribu-
tion in the flowing layer is such that the effective friction
coefficient is again the tangent of the dynamical angle of
repose.

In the case of the flow down a heap (see Fig. 6m), the
pile slope increases linearly with

√
Q∗. This dependency

becomes weaker when the channel width increases and for
the widest channel the pile slope even becomes indepen-
dent of the flow rate. This suggests that the increase of
the effective friction with flow rate is purely induced by
the additional wall friction. Accordingly, one can propose
a single fit to describe this wall effect:

tan(θ) = tan(θ)∞ + µw

√

Q∗
d

W
, (13)

where
√

Q∗ is again interpreted as the dimensionless thick-
ness of the flowing layer experiencing the wall friction.
This is reminiscent from eq. (10) where the length hc

would be equal to µw

√

Q∗
cd. The critical flow rate

√

Q∗
c is

then equal to 1.5 and can be interpreted as the flow rate
below which no permanent flow can be sustained.

In the case of the rotating drum, a similar general ten-
dency is observed on figure 6n. For a given drum width,
the pile slope increases with the flow rate although facing
the different set of data, one can hardly conclude to the
linear dependency with

√
Q∗. Also, the pile slope becomes

less sensitive to the flow rate for wider drums despite some
discrepancies across the numerous experiments.

Altogether, these results lead us to conjecture that in
the limit of infinite gap, the effective friction is constant,
independent of Q∗ and that the observed dependencies are
related to intricate wall and geometrical effects.

7.5 Parametric study

Except for the pile slope, the materials intrinsic properties
seem to have very little effect on the flow properties in a
rotating drum. The velocity gradient inside the flowing
layer is identical for three different materials (glass, steel
and aluminium) as observed on figure 6e. Also, the relation
between the flowing thickness and the flow rate is the same
for different materials (sand, glass and steel) as shown on
figure 6j.

Finally, it is worth noting that the independence of
the flowing layer thickness with the material extends to
non-uniform flows. This is very well demonstrated on fig-
ure 6k, where the free surface and the bed-layer interface
for different materials and different drum size are plotted
in a frame scaled by the drum radius, and rotated so that
the dynamical angles of repose coincide.

8 Discussion

In the above sections we have gathered data for each of the
flow configurations, obtained with different experimental
or numerical conditions. Doing so, we were able to iden-
tify the relevant flow characteristics in the different ge-
ometries. In order to identify simple and basic features
underlying common physical phenomena, we now review
the common features and differences arising among the
configurations.

A first general observation is that the driving force
must overcome some ”static” threshold – the yield stress
– in order to enable a dense granular flow. Once the flow
is running, it can be sustained for driving forces lower
than this ”static” threshold resulting into a hysteretic be-
haviour. This has been clearly evidenced in the annular
shear cell (Fig. 3b), on the inclined plane (Figs. 5b and
5c) as well as in the heap – or drum – geometry (Fig. 6l).
In the other geometries, the data we have correspond to
flows where the deformation is imposed, whereas hystere-
sis is observed when the stresses are imposed. The static
threshold usually depends on the history of the sample
[91]. Also, the static and dynamical friction coefficients
depend on the material mechanical properties. But the
latter do not strongly influence the kinematic properties
of the flows.

In all the geometries, a dense flow regime - either quasi-
static or inertial - was identified, separated from the dilute
collisional regime. A striking feature is the diversity of ve-
locity profiles observed in the different geometries. When
the flow is confined (annular shear, chute flow) the shear
is localised close to the driving wall and the velocity de-
creases over few grain sizes. However, in the perfect plane
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shear, no localisation is observed and the velocity profile
remains linear. In the case of free surface flows, the veloc-
ity follows either Bagnold or linear profiles in the case of
the inclined plane geometry (Figs. 5h and 5i), whereas it
is always linear with an exponential tail in the drum and
heap cases (Fig. 6b and 6e). There are two interesting con-
nections between these three types of profile (exponential,
linear and Bagnold). First, flow on a heap present simul-
taneously (one on the top of the other) the dense inertial
flow (linear profile) and the quasi-static confined flow (ex-
ponential profile) (Fig. 6c). Second, the flow on an inclined
plane exhibits a Bagnold profile (Fig. 5i) in the limit when
the flowing height h is large compared to the critical layer
thickness hstop. As soon as h becomes comparable to hstop,
the profile becomes linear (Fig. 5h). This suggests that a
continuous transition between the inclined plane flow and
the surface flow could exist. Finally, it is worth underlining
that the velocity fluctuations, when they were measured,
seem to be strongly related to both the local shear rate
and pressure (Figs. 2g and 3h).

Although rudimentary, this transverse reading raises
many questions. What are the relevant time and length
scales in the different configurations? How does the transi-
tions arise between the different flow regimes in the differ-
ent configurations? Is a single rheometer - for instance the
plane shear - sufficient to predict the kinematic properties
in all the geometries? By comparing the data can we get
information about the granular rheology? In the following
we discuss in more details the similarities and differences
arising from the different configurations. We first analyse
the relevant length and time scales, before studying the
different flow regimes and discussing some minimal rheo-
logical descriptions based on dimensional analysis.

8.1 Relevant parameters

We wish to discuss first the relevant dynamical mecha-
nisms and the corresponding parameters. For this, it is
useful to distinguish three scales of very different natures:
the microscopic scale at which the contact between grains
is established, the grain level at which the different forces
act and the scale of the flow itself (of the geometry) which
determines the nature of the granular flow.

8.1.1 Microscopic mechanisms at the contact scale

The roughness of the grains at the microscopic scale is
responsible for the contact friction between grains. The
results presented here, for instance the numerical simu-
lations of shear flows (Fig. 2), show no influence of this
roughness on the kinematic properties of the flow. The
same thing is demonstrated for the shape of the grains,
by the rotating drum experiment (sand vs glass beads,
Fig. 6k). These microscopic lengthscales only modify the
effective friction coefficients (Figs. 2e, 5b, 5c, 5e and 6k)
and seem entirely encoded in them. It is striking to ob-
serve that the effective friction µeff increases dramatically
with the interparticle friction coefficient µp, near µp = 0.

We see on Fig. 2e that the effective friction coefficients
measured for 0.1 < µp < 0.8 almost collapse on the same
curve but are far above those obtained for vanishing µp.
The same tendency can be inferred from Fig. 5g for the
inclined plane experiment : the two velocity profile for non
zero µp are very close whereas the case µp = 0 yields larger
velocities. It would be interesting to study the behaviour
of the effective friction µeff as a function of µp for very
small µp (with log-scale variations).

During a collision between grains, there is at the same
time a contact force that push the grains back and a dissi-
pation of energy related to the inelasticity. One can asso-
ciate two different timescales to these two effects: the colli-
sion time, which is determined by the elastic properties of
the grain and the dissipation timescale, given by the typ-
ical time for the internal elastic vibrations to be damped.
In the simplest case of a collision between two grains, the
effective restitution coefficient e decreases with the ratio
of the dissipation timescale to the elastic timescale. It is
much more difficult to estimate these timescales as soon
as one considers an assembly of grains in permanent con-
tact. For instance, in a system of size W , the time needed
for the elastic wave to propagate across the cell is in fact
W/d times the collision time [26]. The influence of these
two parameters have not been investigated separately but
only through e. As seen in the plane shear flow simula-
tions, this restitution coefficient influences the transition
from dense to dilute collisional regimes: more elastic par-
ticles have a ”gaseous” behaviour for smaller shear rate
[23]. However, it turns out to have no influence on the
granular flow itself (Figs. 2e, 5f and 6k).

We can draw a general and solid conclusion: as soon as
there is a separation between the flow timescales (see be-
low) and the microscopic ones, the later have no influence
on the flow characteristics. In other words, the system is
equivalent to rigid inelastic spheres when both the energy
dissipation and the elastic vibrations are much more rapid
than the flow timescales. It is important to note that this
limit becomes difficult to achieve in practice in the elastic
limit e → 1 since the dissipation timescale becomes much
larger than the collision time.

8.1.2 Mechanisms at the grain level

So, there is no influence of microscopic timescales on macro-
scopic flow properties. Accordingly, the grain size d is the
natural lengthscale of granular problems - except specific
lengths related to the geometry (see below). As there is
only one mass in the problem (that of the grain), granular
flows are independent of the material density. In the ho-
mogeneous simple shear flows considered here, the strain
tensor depends only on one parameter, the shear rate γ̇
and the stress tensor on two parameters, the normal stress
P and the shear stress τ . These three quantities define two
independent dimensionless numbers, the effective friction
coefficient,

µeff =
τ

P
. (14)
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and the rescaled shear rate

I =
γ̇d

√

P/ρ
(15)

The parameter I can be interpreted as the ratio of two
different timescales at the grain level:

I =
Tp

Tγ
. (16)

Tγ is the typical time of deformation :

Tγ =
1

γ̇
(17)

and Tp is the confinement timescale:

Tp = d

√

ρ

P
. (18)

Imagine two layers of grains moving one on top of the
other, as shown in figure 7. Tγ is the macroscopic time
needed for one layer to travel over a distance d with re-
spect to the other. Tp can be interpreted as the time
needed by the top layer to be pushed back to its lower
position, once it has climbed over the next particle. These
two timescales can be very different, for instance in the
case of quasi-static deformation. The motion is then made
of a succession of a very slow motions when the particle
climbs over the next one, and a rapid motion when it is
pushed back into the next hole by the confining pressure.
The typical velocity time evolution would be as drawn in
figure 7. Within this simplistic picture, the volume frac-

Fig. 7. Schematic showing the physical meaning of the typical
time of deformation Tγ and the confinement timescale Tp.

tion Φ is governed by the fraction of time during which
the grains actually move. It thus suggests that Φ should
be a slaved variable of I. In the following, we will assume
that it is indeed the case. This is of course a strong hy-
pothesis we shall reconsider in the following. So, if there
exists a local unique rheology, there should be a unique
relationship between the rescaled shear stress µeff and the
rescaled shear rate I.

I can obviously be defined locally in all the situations
but we can also estimate its typical value in the different
geometries. In the annular shear, the pressure increases
linearly with depth. When measurements are performed
at the free surface, P is of the order of ρgd so that I can be
defined as

√

d/gγ̇ which is nothing but the rescaled shear
rate (see Fig. 3h). When measurements are performed at
half width, P is of the order of ρgW/2 so that I can be

defined as
√

W/2gγ̇. In the chute flow, the pressure is
limited to P = ρgL according to Janssen effect and I can
be defined locally as γ̇d/

√
gL. In the free surface flows,

the pressure increases with depth as P = ρg(h − y) cos θ
so that its average value is < P >= ρgh cos θ/2. The mean
velocity gradient scales on < V > /h so that the average
of I can be estimated by:

< I >=
5

2

< V > d

h
√

gh cos θ
(19)

where the factor 5/2 is derived assuming a Bagnold like
velocity profile (see below).

8.1.3 Geometrical parameters

If the dimensionless number I characterising the relative
importance of inertial with respect to confining effects can
be defined in all the cases, there are other parameters that
are specific to a geometry i.e. that characterise the bound-
ary conditions. One can see for instance that the presence
of side walls (surface flow) or a bottom rough boundary
(inclined plane) or both (chute flow) have a strong impact
on the flow itself. Most of the geometrical aspect ratios
turn out to have weak influence on the kinematic proper-
ties, like the cell sizes L/d and W/d in the plane shear,
the annular chute flow and the vertical chute, or even the
rotating drum aspect ratio D/d at given Q∗. The rough-
ness of the boundaries have an influence on the boundary
layers thickness. In the chute flow, the shear band width
increases with the diameter of the beads glued on the wall.
In the inclined plane, the material that covers the plane
modifies the effective friction (hstop and hstart). If small
beads of size d are flowing on large glued ones, part of
them remain blocked in the large holes thus creating an
apparent roughness of size d. If on the contrary large beads
are flowing on small glued ones, the effective friction is
strongly reduced. In surface flows, the lateral boundaries
induce a further friction proportional to the rolling height
to the cell width ratio h/W . In these three cases, the wall
influence can be encoded into effective macroscopic quan-
tities, that can be measured. An important open problem
for future studies is the transition between the different
geometries. In principle, the linear shear should be recov-
ered in the annular shear cell, in the limit of a very large
radius of curvature Ri/d. When does the transition from a
localised shear to a linear profile occurs? Similarly, a sur-
face flow should be recovered on an inclined plane when
the tilt angle tends to the dynamical angle. Can one ob-
tain such surface flows in numerical simulations? Each of
the possible transitions gives rise to new questions (chute
flow vs inclined plane; plane shear vs surface flow; etc).
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8.2 Quasi-static versus inertial regimes

Now that the relevant dimensionless parameters are de-
termined, we can study the different flow regimes, which
classically are divided in a quasi-static, dense inertial and
collisional regimes. The data collected in this paper allows
us to discuss the existence of the three regimes and the
transition from one to another in the different geometries.
We first analyse the case of the plane shear configura-
tion. Figure 2e displaying the effective friction coefficient
as a function of the dimensionless parameter I shows three
regimes. In the limit of zero I the system is rate inde-
pendent, µeff is constant. When I increases, the inertia
starts influencing the flow and the system becomes rate
dependent. Eventually, for large value of I, the flow be-
comes dilute and collisional. The fact that I controls the
transitions means that one can evolve from one regime to
another either by increasing the shear rate or decreasing
the pressure. The transition between the dense regime and
the collisional regime is clearly identified in figure 2e with
the slope discontinuity of µeff(I). By contrast, no sharp
transition is observed between quasi-static and dense in-
ertial flows: the effective friction coefficient continuously
decreases towards its quasi-static value when I decreases.
The same conclusion can be drawn when looking at the
annular shear case (fig. 3b). In the rotating drum, one even
observe the spatial coexistence of a quasi-static creep mo-
tion where I is very small – the exponential tail of the ve-
locity profile – and an inertial dense flow – the linear part
of the velocity profile (Fig. 6c). For some of the authors,
this observation indicates that the intermediate dense flow
regime has more in common with the quasi-static regime
than with the collisional one.

In the following we successively discuss in more detail
the quasi-static limit and the inertial dense regime.

8.3 Quasi-static regime

The limit I → 0 of the quasi-static regime is easily achieved
in configurations where the deformation is imposed, namely
in the plane shear flow, in the annular shear flow and in
the vertical chute flow. In some cases, the flows can ex-
hibit very intermittent behaviours also the mean velocity
profiles remain smooth. Apart from the plane shear ge-
ometry, the velocity profiles observed in this regime ex-
hibit localised shear bands close to wall, the width of the
shear band being few particle diameters. This is indeed
observed in the circular shear cell (Fig. 3c) and the chute
flow (Fig. 4b). In this respect the exponential tail in the
heap and drum geometry could be seen as a particular
case of localisation, where the flowing layer plays the role
of a driving wall (Fig. 6c et 6f). On the contrary, for some
reason that remains to be explained, the simulations of
the plane shear cell shows a velocity profile which is not
localised but linear (Fig. 2b). It is not clear if this un-
expected behaviour is related to the fact that the plane
shear is the only geometry where the stresses are strictly
uniform in the cell. It is also interesting to note that recent

experiments of granular flow in the annular shear config-
uration [92] indicates that the shear band thickness can
dramatically increase when changing the bottom bound-
ary conditions. Altogether, the ingredients underlying the
existence of localisation remain unclear and need further
investigations.

In the quasi-static limit, the velocity profiles (localised
or not) are independent of the imposed shear rate. Shear-
ing twice as fast gives the same velocity profile multiply by
two (see for example Fig. 4e). However, one has to recall
that the macroscopic time scale Tγ associated to the shear
rate is not the only time scale. The other typical time scale
associated to the confining pressure TP (eq. 18) is not zero
even in the quasi-static limit. As a result, granular flows
in the quasi-static regime are not time invariant. Shearing
the material twice as fast does not give the same movie
played twice as fast: the typical time of the rapid events as-
sociated to one particle passing over another is not divided
by two. This remark is of importance when analysing the
velocity fluctuations < δV 2 >, in both the plane shear
(fig. 2g) or the annular shear (fig. 3h). In both cases the

velocity fluctuations
√

< δV 2 > do not simply scale with
γ̇d. In the plane shear

√
< δV 2 >/dγ̇ varies like I−1/2.

In the annular shear
√

< δV 2 >/dγ̇ measure at the free
surface scales with I−2/3, I being equal in this case to
γ̇
√

d/g.
This scaling can be compared with prediction arising

from the naive picture given in figure 7. Based on the idea
of a process made of a succession of rapid events occur-
ring on a time scale TP , one can derive the mean velocity
fluctuations in the limit TP ≪ Tγ . In this limit, δV 2 is
of order P/ρ during the rapid events, and is negligible in
between. One can then write that the averaged velocity

fluctuations is equal to < δV 2 >≃ TP P/ρ
TP +Tγ

. Using the ex-

pressions of TP and Tγ eqs. (17) and (18), we then find

that
√

< δV 2 >/dγ̇ ≃ I−1/2. This simple argument could
then explain the scaling observed in the plane shear, but
not the -2/3 of the annular shear. Nevertheless, this anal-
ogy suggests that the study of the whole velocity distri-
bution in the quasi-static regime could give more infor-
mation about the underlying mechanism than the simple
rms fluctuations.

8.4 Dense inertial regime

When the parameter I increases above 10−2, the effec-
tive friction coefficient is no longer constant but increases
with I, indicating a shear rate dependent regime. The
shear rate dependence is observed in the simulations of
the plane shear cell in figure 2e, in the annular shear fig-
ure 3b, in the inclined plane in figure 5e. However the
plane shear geometry is the simplest configuration as the
velocity profiles are linear. It is then tempting to conclude
that the plane shear plays the role of a rheometer and that
the relation µeff(I) provides the local constitutive law for
dense granular flow. One could then legitimately wonder
if a simple local rheology stipulating that everywhere in
the flow, stresses are related to shear rate through the
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relation τ/P = µ(γ̇d/
√

P/ρ), where µ(I) has the shape
of figure 2e, can describe all geometries of dense granular
flows. In the following section we discuss the implication
of this assumption in regards to the data collected in this
paper, before discussing the necessity to consider a non
local rheology.

8.4.1 The local rheology assumption

Hereafter, we will call local, a rheology for which stresses
and shear rate at a given location in the flow are related
trough a univoque relation, which from dimensional anal-
ysis can be written as:

τ/P = µ(I), (20)

I being given by eq. (15). As soon as τ/P depends on the
rescaled shear rate at other locations or on any further
field whose governing equation would need to be precised,
we consider the rheology as non local.

Under this assumption of a local rheology, one can pre-
dict velocity profiles in both plane shear and inclined plane
configurations. In the following we test this hypothesis fac-
ing the data. In the plane shear case, the stress distribu-
tion is uniform:

P = cte, τ/P = cte. (21)

Accordingly, the parameter I has to be constant across
the cell, equal everywhere to µ−1(τ/P ). The shear rate
γ̇ is then also uniform and the predicted velocity profile
is linear. This is in agreement with the measurement in
figure 2b for moderate I, before the flow becomes colli-
sional. The measurement of the effective coefficient at the
wall τw/Pw then coincides exactly with the rheological law
µ(I).

In the case of surface flows, the stress distribution is
the following:

P = ρg(h − y) cos(θ), τ/P = tan(θ) (22)

The shear rate γ̇ is then selected by the relationship

I =
γ̇(y)d

√

P (y)/ρ
= µ−1(tan(θ)) (23)

Integrating γ̇ in the above relation leads to a profile going
like the depth to the power 3/2, the Bagnold like profile.

V (y)√
gd

= A(θ)

(

h3/2 − (h − y)3/2
)

d3/2
(24)

with

A(θ) =
2

3
I(θ)

√

cos(θ). (25)

It is worth noting that the Bagnold profile does not
result from collisional arguments, but simply relies on di-
mensional reasoning. We can now compare the prediction
of the local rheology with experimental measurements. We

have seen that in the experiments, the depth averaged ve-
locity < V >, the thickness h and the inclination θ are
related trough the scaling 7. The prediction of the local
rheology for depth average velocity are obtained by inte-
grating relation 24 over the flow depth. One get the fol-
lowing relation between < V >, h, and θ :

< V >√
gh

=
3

5

h

d
A(θ) (26)

The predicted scaling is then not fully compatible with
the observed one as it does not predict the coefficient α of
equation 7. However, it is compatible with the case of glass
beads for which α = 0. In this case, equation 26 together
with 7 implies that the Bagnold constant A(θ) has to be
related to hstop :

A(θ) =
5

3
β

d

hstop(θ)
(27)

Fig. 8. Comparison of the effective friction function of I in
the plane shear (•) and the inclined plane (◦) configurations.

Finally, it is interesting to note that, under the as-
sumption of the local rheology, the inclined plane con-
figuration could be used also as a rheometer. The func-
tion µ(I) can indeed be measured as follows. By impos-
ing the inclination, the experimentalist fixes the friction
coefficient µ = tan θ and measures the corresponding pa-
rameter I. From equations (25) and (26) one find that
I should be related to the depth averaged velocity and
thickness through the relation:

< I >=
5

2

< V > d

h
√

gh cos θ
. (28)

This can be tested from data of figure 5. Figure 8 shows
that the data for glass beads collapse relatively well when
tan θ is plotted as a function of I given by equation (28).
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On the same graph we have reported the µ(I) measured
in the 2D simulation of the plane shear. Interestingly, the
shape and the range of I are similar. However, the same
is not true for the other materials. As the coefficient α of
equation 7 is not zero for sand or 2D disks, the effective
friction coefficient is not a function of I only but depends
also on h/d (eq. 8).

As a conclusion, the local rheology assumption cap-
tures some of the basic features observed in both the plane
shear and the inclined plane geometries, in particular the
scaling of the averaged quantities. However, for surface
flows in the rotating drum and down the heap, whereas
the stress distribution is the same as in the inclined plane,
the observed velocity profiles in the flowing layer are lin-
ear and not Bagnold. In particular, the shear rate does
not vanish at the free surface [93]. Let us emphasise that
this violation of the Bagnold profile is not to be attributed
to the specific shape of µ(I). This will force us to relax
the local rheology hypothesis. Let us postpone this to sec-
tion 8.4.3 and introduce first a more general framework of
analysis.

8.4.2 Prandtl mixing length approach

An alternative description can be provided by generalis-
ing Bagnold shear stress τ = ρd2γ̇2, as suggested by Orpe
and Khakhar [79] and Ertas and Halsey [94]. The approach
consists in introducing a correlation length scale l instead
of d, l being related to the size of some clusters in the flow.
This approach is reminiscent of Prandtl closure for turbu-
lence flows where a turbulent viscosity is introduced equal
to ρl2γ̇, l being interpreted as the size of the large eddies.
For our granular case, the shear stress is then written as:

τ = ρl2γ̇2. (29)

The case discussed in the previous section of a local
rheology described by a friction µ(I) is a particular case
of the mixing length description. Indeed, if τ/P = µ(I)
and P = ρd2γ̇2/I2 by definition of I, one obtains:

τ = ρ
µ(I)d2

I2
γ̇2 (30)

that is, a correlation length function of the local properties
of the flow: l(I) =

√

µ(I)d/I.
Assuming a local dependence of the correlation length

is then strictly equivalent to the local rheology case de-
scribed before. However, it gives an insight to the re-
sults observed experimentally in the inclined plane. This
is shown by first deriving the velocity profiles predicted
by equation 29. One recovers the Bagnold profiles with a
function A(θ) expressed in term of l as follows :

A(θ) =
2

3

√
sin θ

d

l
. (31)

We have seen that in order to be compatible with the scal-
ing experimentally observed, the function A(θ) should be

related to hstop (eq. 27). This means that the correlation
length is related to the function hstop:

l(θ) =
2

5

√

sin(θ)

β
hstop(θ) (32)

The function hstop actually measures the correlation length
l, i.e. the characteristic size of coherent motions. This gives
an interpretation to the existence of the flow threshold: no
flow is possible when the thickness becomes less than few
times the correlation length. Altogether, the local rheol-
ogy assumption is equivalent to the Prandtl mixing length
description with l depending on I only, which furthermore
relates the inclined plane rheology to the deposit thickness
hstop.

8.4.3 Towards a non local rheology

In the previous paragraphs, we have checked that the local
rheology assumption is compatible with the average flow
properties. We wish now to check its validity facing the
velocity profiles. To do so, let us define a local correlation
length l(y) that a priori depends on the position y :

l(y)2 =
τ(y)

ργ̇(y)2
. (33)

If the local rheology is valid, l(y) should be constant across
the flowing layer. The numerical simulations or experi-
mental measurements of the velocity profile provide γ̇(y)
and the momentum balance gives τ(y), so that one can
compute l(y). Figure 9 displays the l(y) profiles in the
inclined plane configuration for different inclinations θ.
For high inclinations and far from the bottom or the top,
a plateau is observed, consistent with a constant l pre-
dicted by the local rheology. The correlation length in the
bulk decreases with θ just like hstop. However, the correla-
tion length decreases at the top and bottom of the profile.
These results enlighten the existence of some boundary
layers which could be interpreted as regions where the
grains feel the boundaries and hence experience different
correlations with their neighbours. When decreasing the
inclination i.e. getting closer to the flow threshold, the
plateau disappears as shown in figure 9. The correlation
length becomes of the order of the thickness, meaning that
everywhere the grains feel the boundaries.

Using the plateau value of l obtained in the bulk of
the flow, we can reconstruct the Bagnold profile accord-
ing to eqs. (24) and (31). These profiles are plotted on
figure 5i. They emphasise the existence of deviations close
to the bottom and to the free surface, which become more
and more important and invade the whole layer at low
inclinations.

Performing the same analysis for the flow on a heap,
no plateau is observed (circles in fig. 9). The correlation
length l(y) vanishes at the free surface, increases up to the
transition toward the static phase where it diverges. This
behaviour, drastically different from the expected constant
correlation length, definitely calls for the introduction of
a non-local rheology.
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Fig. 9. Correlation length l(y) obtained from inclined plane
simulations IP4 for θ = 15◦ (◦), θ = 16◦ (�), θ = 17◦ (△),
θ = 18◦ (▽), θ = 21◦ (⋄), and from heap case experiment SF4
(•).

From a general point of view, one could introduce a
non-local dependence of τ/P on I or introduce further
fields such as Φ together with their constitutive relations.
A simple way of doing this in the Prandtl mixing length
framework is to choose a correlation length which depends
on the distance to the free surface [78]. This is what is
classically proposed to describe turbulent boundary layer.
The observed Log velocity profile is recovered by assuming
l to be proportional to the distance to the wall. To be more
specific, choosing

l2 = B(θ)d(h − y) (34)

leads to a linear velocity profile with a shear rate

γ̇ =

√

g sin(θ)

B(θ)
(35)

In conclusion, the description in term of a correlation
length theory, although very crude, allows to describe in
the same formalism the transition from the flow on a rough
plane to that on a heap. It strongly suggests to focus on
correlations in granular flows to better understand what
control coherent motions and to characterise the non lo-
cal mechanisms. As a matter of fact, structures like arches
[43,44], dense correlated grains clusters [81,88,95–97] and
non-local dissipation due to multiple collisions [98] have
been evidenced experimentally or numerically . They have
motivated several non-local models [99,100,27,93]. At the
present time, none of these models have succeeded in ren-
dering the kinematic properties of dense granular flows
throughout the various geometries. This remains a chal-
lenging problem, which calls for further efforts in identi-
fying the origin of non-locality.

9 Conclusion

By collecting data coming from different groups, both in
experiments and simulations, in different geometries, we
have been able to capture important characteristics of
granular flows. The relevant time scales and length scales
have been identified, the transition between flow regimes
has been clarified and some important ingredients such
as the necessity of considering non local rheology have
been discussed. However, we are far from the end of the
story. When trying to compare and extract common phys-
ical mechanisms among the different granular flows, many
open problems have emerged that will provide work for the
future. If a single conclusion has to be formulated about
this collective work, it would be that, at the present time,
with our knowledge of granular flows and the amount of
data available, one can no longer consider a single geom-
etry as a test for constitutive law but should consider the
different geometries.

Acknowledgments
This work is the result of a common work of the Groupement
de Recherche sur les Milieux Divisés (GDR Midi 2181, CNRS),
which gathers the French laboratories involved in granular me-
dia. The data have been collected by Bruno Andreotti, François
Chevoir, Olivier Dauchot, Olivier Pouliquen and Patrick Richard.
It would not have been possible without the administrative
help of Jeanne Pullino, Nelly Sammut and Frédérique Oger.

A Notation

• Geometrical parameters
x: flow direction
y: direction transverse to the flow
θ: flow inclination
L: distance between the walls in the confined flow cases
W : distance in the invariant spanwise direction
Ri,o: inner, resp. outer cylinder radii of the annular
shear cell.
R: drum radius
D = 2R: drum diameter
Ω: angular velocity of the rotating drum or of the an-
nular shear cell inner cylinder
Γ : torque applied to the inner cylinder of the annular
shear cell
Q: flow rate
Vw: wall velocity
γ̇w: characteristic shear rate Vw/L in plane shear, Vw/d
in annular shear
Pw: wall pressure
τw: wall shear stress

• Microscopic parameters
d: particle diameter
dw: diameter of the particles eventually glued on the
walls
e: restitution coefficient
µp: inter-particles friction coefficient
µw: particle-wall friction coefficient
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g: gravity

• Measured quantities
ys: free surface y-coordinate
yb: flow-no flow interface y-coordinate
h = ys − yb: flow thickness
θstart; θstop: limiting angles at which the flow starts
(resp. stops).
hstart; hstop: limiting thickness at a given angle at which
the inclined plane flow starts (resp. stops)
V (y): time averaged velocity profile
δV 2(y): time averaged squared velocity fluctuations
γ̇ = dV

dy : shear rate

Φ(y): volume fraction profile
ρ: flow mass density
< . >: averaging operator over the flow thickness
σ: stress tensor
τ = σxy: shear stress
P = σyy: normal stress
µeff = τ/P : effective friction coefficient

• Dimensionless quantities

I = γ̇d√
P/ρ

: dimensionless shear rate

Fr = <V >√
gh

: Froude number

Q∗ = Q
d
√

gd
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