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Out of equilibrium functional central limit theorems forardje

network where customers join the shortest of several queues

CARL GRAHAM *

Abstract Customers arrive at rat®¥ « on a network ofN single server infinite buffer queues,
choosel queues uniformly, join the shortest one, and are serveea thdurn at rates. We let

N go to infinity. We prove a functional central limit theoremL{Q for the tails of the empirical
measures of the queue occupations, in a Hilbert space vétivéak topology, with limit given
by an Ornstein-Uhlenbeck process. Tagriori assumption is that the initial data converge.
This completes a recent functional CLT in equilibrium in Gaa [13] for which convergence for

the initial data was not knowa priori, but was deduced posteriorifrom the functional CLT.

Key-words and phrasesMean-field interaction, non-equilibrium fluctuationshilmogeneous

Ornstein-Uhlenbeck process in Hilbert space, infiniteatigsional analysis.

AMS 2000 subiject classificatiarRrimary 60K35; secondary 60K25, 60B12, 60F05.

1 Introduction

1.1 Thequeuing mode

We continue the asymptotic study for largéand fixedL initiated in Vvedenskaya et al][9] of a
Markovian network constituted oWV single server infinite buffer queues. Customers arrive tat ra
Na, are allocated. distinct queues uniformly at random, and join the shortiess, being resolved
uniformly at random. Service is at rafe Arrivals, allocations and services are independent. The
interaction structure depends on sampling from the engbineasure of.-tuples of queue states; in

statistical mechanics terminology, this constituiebody mean-field interaction.

Let X (t) be the length of queugat timet > 0. The proces$X.")i<i;<x is Markoy, its em-
pirical measurg.N = 4 Zﬁvzl Sy~ has samples i?(D(R, N)), and its marginal procegg." ;>0

has sample paths (R, P(N)). We are interested in the tails of the marginals, and conside

V= {(0(k))gen : v(0) = 1, v(k) > v(k +1), imv =0}, VN =Vn %Ny
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with the uniform topology (which coincides here with the got topology) and the procedt’ =
(R)).>0 with sample paths ifd (R, V™) given by

N
1
R (k) = > vy
=1

The processe§ul );>o and (R} );>o are in relation throughp € P(N) «— v € V for v(k) =
plk, 00) andp{k} = v(k) — v(k + 1) for k in N. This classical homeomorphism maps the subspace
of probability measures with finite first moment onton ¢;, corresponding to a finite number of

customers in the network. The symmetry structure implias these processes are Markov.

1.2 Lawsof largenumbers

Let ¢} andfg for p > 1 denote the subspaces of sequences vanishidgfthe classical sequence
spacescy (with limit 0) and ¢, (with summable absolutg-th power). We define mappings with

values inc) given forv in ¢o by
Fr(v)(k) = alv(k = 1)" —o(k)"),  F_(v)(k) = Bo(k) —v(k+ 1)), k>1, (L1
andF = F, — F_, and the nonlinear differential equatian= F(u) on V), explicitly for ¢ > 0
(k) = F(u) (k) = a(ug(k — D)F — (b)) — Blug(k) —wp(k +1)),  k>1. (1.2)

This corresponds to (1.6) in Vvedenskaya et[dl. [9] (witlivatrate A and service raté) and
(3.9) in Graham[[2] (with arrival rate and service rate). Theorem 1 (a) in[]9] and Theorem 3.3
in [B] yield that there exists a unique solutian= (u;);>( taking values inV for ([.2), which is

continuous, and ifiy is in V N ¢; thenu takes values iV N 4.

A functional law of large numbers (LLN) for converging imitidata follows from Theorem 2 in

[B]. We give below a result contained in Theorem 3.4[]n [2].

Theorem 1.1 Let(R)’)n>1 converge in probability tay in V. Then(R™) >, converges in prob-

ability in D(R., V) to the unique solutiom = (u;);>( Starting atug for (L.2).

The networks are stable for= /3 < 1. Then Theorem 1 (b) in Vvedenskaya et f. [9] yields
that (T.2) has a globally stable poinin V N ¢, given bya(k) = p&"~1/(=1 A functional LLN
in equilibrium for (R™V) v, with limit @ follows by a compactness-uniqueness method validating

the inversion of limits for large sizes and large times, seedfem 5 in[[9] and Theorem 4.4 ifj [2].

The results of[[9] are extended in Grahah [2], in particutat ENs and propagation of chaos
results on path space. Theorem 3.5]n [2] gives convergemaeds in variation norm for the chaotic-

ity result on[0, 7] for (XV)1<;<n for (XV(0))1<i<n i.i.d. of law g, using results in Graham and
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Méléard [4]. These bounds can be somewhat extended fil idata satisfying appropriate a priori

controls, but behave exponentially badly for laige

1.3 Central limit theorems

Graham [[B] and the present paper seek asymptotically tafiesrof convergence and confidence
intervals, and study the fluctuations around the LLN limisr R{ in VY andug in V we consider

the process:”, the solutionu for (L.2), and the process™ = (Z});>o with values inc] given by
ZN = VN(RY —u). (1.3)

Graham [[B] focuses on thetationaryregime fora: < 3 defining the initial datamplicitly: the
law of R{)V is the invariant law forRY andug = @. The main result in[||3] is Theorem 2.12, a
functional central limit theorem (CLT) in equilibrium f¢&Z?¥) x> 1, with limit a stationary Ornstein-
Uhlenbeck process. Thisipliesa CLT under the invariant laws f¢#Z)" ) x> 1, with limit the invariant
law for this Gaussian process, an important result whicmseeery difficult to obtain directly. The
proofs actually involve appropriateansientregimes, ergodicity, and fine studies of the long-time
behaviors, in particular a global exponential stabilitguk for the nonlinear dynamical systefn {1.2)

using intricate comparisons with linear equations and téctral theory.

We complete here the study ifj [3] and derive a functional Qi Telation to Theorerp 1.1, for
the Skorokhod topology on Hilbert spaces with the weak gyl for a wide class of2}’ andu
under theassumptiorthat (Z3') y>, converges in law (for instance satisfies a CLT). This covers
without constraints o and 8 many transient regimes witikplicit initial conditions, such as i.i.d.
queues with common law appropriately converginghagrows. Sectior{]2 introduces in turn the
main notions and results, and Sect[pn 3 leads progressivehe proof of the functional CLT by a

compactness-unigueness method.

2 Thefunctional central limit theorem

For a sequence = (w(k))x>1 such thatu(k) > 0 we define the Hilbert spaces

k: 2
a(w) = {o € R 010) =0, il = 35 (55 ) wl) = S alhul) ™ < oo
k>1 w(k) k>1
of which the elements are considered as measures identifiedheir densities with respect to the
reference measure. ThenL;(w) = ¢} and if w is summable thefjz|; < HwH}/ZHmHM(w) and

Lo(w) C £9. For boundedv we have the Gelfand tripldts (w) C €9 C Lo(w)* = La(w™).



Also, Ly(w) is anly space with weights, and we consider thespace with same weights

a(w) = {o € R 0(0) =0, el = 3 le(Bo(h) * < .

E>1
Clearlyx € Lo(w) < 22 € £1(w). The operator norm of the inclusionn ¢1(w) — V N La(w) is

bounded by 1 sinctr]2, = 2], ) < 2]l fo le ]l < 1.

In the sequel we assume that= (wy,);>; satisfies the condition that
de,d>0: cwk+1) <w(k) <dw(k+1)fork>1. (2.1)

This holds for > 0 for the geometric sequenc¢é®),>1, yielding quite strong norms fat < 1.

Theorem 2.1 Letw satisfy [2.]L). Then i the mappings”, F', and F_ are Lipschitz for thels(w)
and the/; (w) norms. Existence and uniqueness holds[fof (1.2) inLy(w) and inV N ¢ (w).

Proof. We give the proof for; (w), the proof forL,(w) being similar (see Theorem 2.2 in Gra-

ham [B]). The identitys” — y~ = (z — ) (L~ + 282y 4 - + yL 1) yields
lu(k — )% —v(k — 1)*|w(k)™ < u(k —1) —v(k — 1)| Ldw(k — 1),
Ju(k)" = v(k)|w(k) ™t < fu(k) — v(k)| Lw(k) ™,
lu(k +1) —v(k + D] w(k) ™ < |ulk+1) — ok +1)] ¢ wk+1)71,

hencel| ' (1) — Fy (0) ) < aL(d + Dl = 0],y @nd[[F () = F(0) e,y < Ble™ +

)|l — vl¢, (w)- Existence and uniqueness follows using a Cauchy-Lipschéthod. O

The linearization of[(1]2) around a particular solutioim V is the linearization of the equation

satisfied by: = g — u wherey is a generic solution fof (7.2) i, and is given fot > 0 by
2 = K(ur)z (2.2)
where forv in V the linear operatoK (v) : = — K(v)x oncj is given by
K(v)z(k) = alv(k — 1)E ek — 1) — (aLo(k)™ Y + B)a(k) + Bz(k + 1), k>1. (2.3)

The infinite matrix in the canonical bagi8, 1,0,0...), (0,0,1,0...), ... is given by

— (aLv(1)E71 + ) B
aLv(1)F1 — (aLv(2)L71 + ) g
0 aLv(2)l-1 — (aLv(3)F"1 + )
0 0 aLv(3)L1




andK (v) is the adjoint of the the infinitesimal generator of a sub-ké&ian birth and death process.
The spectral representation of Karlin and McGredpr [7] w&eytool in Graham([]3], but here it

varies in time and introduces no true simplification.

Let (M (k))ken be independent real continuous centered Gaussian maesngketermined in

law by their deterministic Doob-Meyer brackets givenfar 0 by

(M (k) = /O [F, (u)(k) + F_(ug)(k)} ds (2.4)

The processes! = (M (k))r>o and(M) = ((M(k))),cx have values irf).

Theorem 2.2 Let w satisfy [2.]1) andug be inV N ¢;(w). Then the Gaussian martingal®/ is

square-integrable Lo (w).

Proof. We haveE(||M;|7,,,)) = E([{M)¢]l¢,w)) and we conclude using (2.4), Theorém 2.1, and

uniform bounds ir?; (w) on (us)o<s<¢ in function ofug given by the Gronwall Lemma. O

The limit Ornstein-Uhlenbeck equation for the fluctuatiomghe inhomogeneous affine SDE
given fort > 0 by
Zy = Zp + /Ot K(us)Zsds + M, (2.5)
which is a perturbation of (3.2). A well-defined solution &led an Ornstein-Uhlenbeck process.
In equilibrium v = @ and settingC = K(a) and using [(1]1) and”, (@) = F_(a) yields
the simpler and more explicit formulation in Section 2.2 iraBam [B]. We recall that strong (or

pathwise) uniqueness implies weak uniqueness, andtha} C La(w).

Theorem 2.3 Let the sequence satisfy [2.]1).

(a) Forv in V, the operatoK (v) is bounded inL,(w), and its operator norm is uniformly bounded.
(b) Letu, be inV N Ly(w). Then inLy(w) there is a unique solution, = efo K(w:)ds ¢ for (22)
and strong uniqueness of solutions holds for](2.5).

() Letu, be inV N £1(w). Then inLy(w) there is a unique strong solutiaf, = efo K(us)ds 7, 4
I ol K drgnr for (8) and ifE<||Z0H%2(w)> < o0 thenE<supt§T \|Zt||%2(w)> < oo0.

Proof. Considering[(2]3)y < 1, convexity bounds, and( (2.1), we have

IN

2L+ 8)  (aLx(k — 1)*dw(k — 1)~" + (aL + B)z(k)*w(k) "
k>1

K ()|, ()
+ Bk + 1)%c tw(k +1)71)
< 2(al + f)(aL(d+1) + Bc™ + 1)) l2ll7, )
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and (a) and (b) follow, the Gronwall Lemma yielding uniquemelUnder the assumption ap in (c)
the martingaleM is square-integrable ihs(w). If E(HZOH%Q(M) < oo then the formula folZ is
well-defined, solves the SDE, and the Gronwall Lemma yiEéSuptST \|Zt||%2(w)) < o0, else for
anye > 0 we can findr. < oo such thafP (|| Zo||, () < r-) > 1 — ¢, and a localization procedure

using pathwise unigueness yields existence. d

Our main result is the following functional CLT. We refer takilibowski [b] for the Skorokhod
topology for non-metrizable topologies. For the weak togyl of a reflexive Banach space, the
relatively compact sets are the bounded sets for the nosRsdin [B] Theorems 1.15 (b), 3.18, and
4.3. Hence B(r) denoting the closed ball centered at O of radipa set7 of probability measures
is tight if and only if for alle > 0 there exists. < oo such that(B(r.)) > 1 — e uniformly for p

in 7, which is the case if is finite.

Theorem 2.4 Letw satisfy [2]1). Considef.(w) with its weak topology an@(R;, Lo (w)) with
the corresponding Skorokhod topology. kgtbe inV N ¢;(w) and R} be in VY. ConsiderZ¥
given by [1B). {Z})n>1 converges in law t&, in Ly (w) and is tight, the Z") y> 1, converges
in law to the unique Ornstein-Uhlenbeck process soling)(&arting atZ, and is tight.

3 The proof

Let (z)r = z(x —1)---(z — k + 1) for z € R (the falling factorial of degre¢ < N). Let the

mappingsF¥ and £ and with values in) be given forv in ¢ by

(No(k — 1)), — (Nv(k))L
(M) ’

whereF_ is given in (T.1). The procesg” is Markov onV?, and when in state has jumps in its

FY(0)(k) = a k>1,  FVu)=FY(v) - F_(v), (3.1)

k-th coordinatef > 1, of sizel/N atrateNF?{ (r)(k) and size-1/N atrateNF_(r)(k).
Lemma3.1 Let R} be inVY, u solve [T]) starting atiy in V, and Z" be given by[(T]3). Then
t
zN =z} +/ VN (FN(RY) — F(uy)) ds + MY (3.2)
0

defines an independent family of square-integrable maateggM/ N = (M" (k))ren independent

of Z}¥ with Doob-Meyer brackets given by
t
(MN(k)), = /0 {FY(RY)(k) + F_(RY)(k)} ds. (3.3)
Proof. This follows from a classical application of the Dynkin riaula. 0

The first lemma below shows that it is indifferent to chooseltlgueues with or without replace-

ment at this level of precision, the second one is a linetiizdormula.
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Lemma3.2 For N > L > 1 anda in R we have

L-1

N(g) — (Na)L_aL: a— 1)l i
A% (a) : 5P ]2( 1) 1§i1<---z<z‘j§L—1 (N —ip)--- (N — i)

and AN (a) = N~1O(a) uniformly fora in [0, 1].

Proof. We developlGale = T/ et = T/ (a + (a— 1)N’;i> to obtain the identity for

AN (a) and we deduce easily from it that it d~*O(a) uniformly for a in [0, 1]. O

Lemma3.3 For L > 1 anda andh in R we have
L o/L
B h) = hL— L_L L*lh: L*Z’hi
(a,h) == (a+h)" —a a ZZ_; . )a

with B(a,h) = 0 for L = 1 and B(a,h) = h? for L = 2. For L > 2 we have0 < B(a,h) <
hl + (21 — L — 2) ah? for aanda + R in [0, 1].

Proof. The identity is Newton’s binomial formula. A convexity amgent yieldsB(a, h) > 0. Fora

anda + hin [0,1] andL > 2, B(a,h) < A + 05" (H)ah? = Y + (28 — L —2) ah?. O
Forvin V andz in ¢}, considering [(Z]1)[(3 1) and Lemrha]3.2d&t’ : V — ] be given by
GN () (k) = aAN (v(k — 1)) — aAN (v(k)), k>1, (3.4)
and considering[(1.1)[ (2.3) and Lemina 3.3t V x ¢J — ) be given by
H(w,z)(k) = aB(o(k — 1),2(k — 1)) — aB(u(k),z(k)), k>1 (3.5)
so that forv + z in V
FN=F+GY, Flw+z)—-F@) =K@)z+H(,z), (3.6)

and we derive the limit equatiofi (2.5) arid {2.4) for the flatiens from [3]2) and (3.3).

Lemma 3.4 Letw satisfy [2]L). Letiy be inV N ¢1(w) and RYY be inVY. For T' > 0 we have

o N2 i . N2
lim sup E (12817 y) < 0 = hglj;PE<0;ggT 12 Hmm) < oo,

Proof. Using (3.) and[(3]6)
zN =7 + MM + \/N/Ot GN(RN)ds + /Ot\/N(F(R?j) — F(us)) ds (3.7)

where Lemm43|2 anf((2.1) yield that" (R))(k) = N'O(RY (k — 1) + RY (k)) and
lG™ (R

s = NOURS Lyu) - (3.8)
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We have

1By < Mts gy + N 2N 280 (3.9)

Theorel yields that,, F_ andF are Lipschitz, the Gronwall Lemma that for solige: < oo
. N N —1/2 . N
20 17 Ny < Ko (18 3R B+ 52 1)

and we conclude using the Doob inequalify,](3.8),](3.6),
1 (B + P (B Ly < KRSy (3.10)

and the boundd (3.8) and (3.9). O

Lemma 3.5 Letw satisfy [2.]), and considdi, (w) with its weak topology anB (R, Lo (w)) with
the corresponding Skorokhod topology. kgtbe inV N ¢ (w) and R}’ be in VY. ConsiderZ¥
given by [TR). {Z{¥) >y, is tight then(Z™V) v, is tight and its limit points are continuous.

Proof. Fore > 0 letr. < oo be such thaP(Z}¥ € B(r.)) > 1 — e for N > 1 (see the discussion
prior to Theoren 2]4). LeR) " be equal tak)’ on {Z} € B(r.)} and such thaZ, < is uniformly
bounded inLy(w) on {Z¥ ¢ B(r.)} (for instance deterministically equal to some outcomer§f
on{z{¥ € B(r.)}). ThenZéV’E is uniformly bounded irLs(w) and we may use a coupling argument
to constructZ™-¢ andZ¥ coinciding on{Z}¥ € B(r.)}.

Hence to prove tightness ¢&V)y>; we may restrict our attention t6Z} )y, uniformly
bounded inLy(w), for which we may use Lemnia 3.4.

The compact subsets @f,(w) are Polish, a fact yielding tightness criteria. We deducenfr
Theorems 4.6 and 3.1 in JakubowdRi [5], which considers ¢eily regular Hausdorff spaces (Ty-

chonoff spaces) of which. (w) with its weak topology is an example, thg ™) x>, is tight if

1. For eacHl’ > 0 ande > 0 there is a bounded subsktr . of Ly(w) such that forV > L we
haveP (Z" € D([0,T], K1) > 1 —e.

2. For eachl > 1, thed-dimensional processé&” (1), ..., Z"(d)) N>, are tight.

Lemma[3} and the Markov inequality yield condition 1. We (&) (derived from|[(3]2)) and
(B-3) and[(3%), and the bounds {3.8),]3.9) dnd {3.10). Tifem bounds in Lemmp 3.4 and the fact
that ZN (k) has jumps of sizeV—1/2 classically imply that the above finite-dimensional preess
are tight and have continuous limit points, see for instéfiteer-Kurtz [1] Theorem 4.1 p. 354 or

Joffe-Métivier [§] Proposition 3.2.3 and their proofs. O



End of the proof of Theorefn 2.4.emma[3} implies that from any subsequenceZéf we
may extract a further subsequence which converges to sotevith continuous sample paths.

NecessarilyZ5® has same law ag). In B.7) we have considering (B.6)
VN (F(RY)(k) — F(us)(k)) = K(us) ZY + VNH (us, N2 ZN) . (3.11)

We use the bound$ (3.8], (3.9) afnd (B.10), the uniform boimtdemma[3.}, and additionally (3.5)
and Lemmd 3]|3. We deduce by a martingale characterizatarZth has the law of the Ornstein-
Uhlenbeck process unique solution fgr [2.5)lin(w) starting atZs°, see Theorem 3.3; the drift
vector is given by the limit for[(3}2) and (8.7) considerifgyl(]), and the martingale bracket by the
limit for (B-3). See for instance Ethier-Kurtf] [1] Theoreni4. 354 or Joffe-Métivier{]6] Theorem
3.3.1 and their proofs for details. Thus, this law is the uri@ccumulation point for the relatively

compact sequence of laws @ V) y>1, which must then converge to it, proving Theoren] 2.4.
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