Out of equilibrium functional central limit theorems for a large network where customers join the shortest of several queues
 Carl Graham

- To cite this version:

Carl Graham. Out of equilibrium functional central limit theorems for a large network where customers join the shortest of several queues. 2003. hal-00000958v1

HAL Id: hal-00000958

https://hal.science/hal-00000958v1

Preprint submitted on 17 Dec 2003 (v1), last revised 31 Mar 2004 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Out of equilibrium functional central limit theorems for a large network where customers join the shortest of several queues

Carl Graham *

Abstract

Customers arrive at rate $N \alpha$ on a network of N single server infinite buffer queues, choose L queues uniformly, join the shortest one, and are served there in turn at rate β. We let N go to infinity. We prove a functional central limit theorem (CLT) for the tails of the empirical measures of the queue occupations, in a Hilbert space with the weak topology, with limit given by an Ornstein-Uhlenbeck process. The a priori assumption is that the initial data converge. This completes a recent functional CLT in equilibrium in Graham [3] for which convergence for the initial data was not known a priori, but was deduced a posteriori from the functional CLT.

Key-words and phrases. Mean-field interaction, non-equilibrium fluctuations, inhomogeneous Ornstein-Uhlenbeck process in Hilbert space, infinite-dimensional analysis.

AMS 2000 subject classifications. Primary 60K35; secondary 60K25, 60B12, 60F05.

1 Introduction

1.1 The queuing model

We continue the asymptotic study for large N and fixed L initiated in Vvedenskaya et al. [9] of a Markovian network constituted of N single server infinite buffer queues. Customers arrive at rate $N \alpha$, are allocated L distinct queues uniformly at random, and join the shortest, ties being resolved uniformly at random. Service is at rate β. Arrivals, allocations and services are independent. The interaction structure depends on sampling from the empirical measure of L-tuples of queue states; in statistical mechanics terminology, this constitutes L-body mean-field interaction.

Let $X_{i}^{N}(t)$ be the length of queue i at time $t \geq 0$. The process $\left(X_{i}^{N}\right)_{1 \leq i \leq N}$ is Markov, its empirical measure $\mu^{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{N}}$ has samples in $\mathcal{P}\left(\mathbb{D}\left(\mathbb{R}_{+}, \mathbb{N}\right)\right)$, and its marginal process $\left(\mu_{t}^{N}\right)_{t \geq 0}$ has sample paths in $\mathbb{D}\left(\mathbb{R}_{+}, \mathcal{P}(\mathbb{N})\right)$. We are interested in the tails of the marginals, and consider

$$
\mathcal{V}=\left\{(v(k))_{k \in \mathbb{N}}: v(0)=1, v(k) \geq v(k+1), \lim v=0\right\}, \quad \mathcal{V}^{N}=\mathcal{V} \cap \frac{1}{N} \mathbb{N}^{\mathbb{N}}
$$

*CMAP, École Polytechnique, 91128 Palaiseau, France. UMR CNRS 7641. carl@cmapx.polytechnique.fr December 1, 2003.
with the uniform topology (which coincides here with the product topology) and the process $R^{N}=$ $\left(R_{t}^{N}\right)_{t \geq 0}$ with sample paths in $\mathbb{D}\left(\mathbb{R}_{+}, \mathcal{V}^{N}\right)$ given by

$$
R_{t}^{N}(k)=\frac{1}{N} \sum_{i=1}^{N} \mathbb{I}_{X_{i}^{N}(t) \geq k} .
$$

The processes $\left(\mu_{t}^{N}\right)_{t \geq 0}$ and $\left(R_{t}^{N}\right)_{t \geq 0}$ are in relation through $p \in \mathcal{P}(\mathbb{N}) \longleftrightarrow v \in \mathcal{V}$ for $v(k)=$ $p[k, \infty)$ and $p\{k\}=v(k)-v(k+1)$ for k in \mathbb{N}. This classical homeomorphism maps the subspace of probability measures with finite first moment onto $\mathcal{V} \cap \ell_{1}$, corresponding to a finite number of customers in the network. The symmetry structure implies that these processes are Markov.

1.2 Laws of large numbers

Let c_{0}^{0} and ℓ_{p}^{0} for $p \geq 1$ denote the subspaces of sequences vanishing at 0 of the classical sequence spaces c_{0} (with limit 0) and ℓ_{p} (with summable absolute p-th power). We define mappings with values in c_{0}^{0} given for v in c_{0} by

$$
\begin{equation*}
F_{+}(v)(k)=\alpha\left(v(k-1)^{L}-v(k)^{L}\right), \quad F_{-}(v)(k)=\beta(v(k)-v(k+1)), \quad k \geq 1, \tag{1.1}
\end{equation*}
$$

and $F=F_{+}-F_{-}$, and the nonlinear differential equation $\dot{u}=F(u)$ on \mathcal{V}, explicitly for $t \geq 0$

$$
\begin{equation*}
\dot{u}_{t}(k)=F\left(u_{t}\right)(k)=\alpha\left(u_{t}(k-1)^{L}-u_{t}(k)^{L}\right)-\beta\left(u_{t}(k)-u_{t}(k+1)\right), \quad k \geq 1 . \tag{1.2}
\end{equation*}
$$

This corresponds to (1.6) in Vvedenskaya et al. [6] (with arrival rate λ and service rate 1) and (3.9) in Graham (with arrival rate ν and service rate λ). Theorem 1 (a) in and Theorem 3.3 in [2] yield that there exists a unique solution $u=\left(u_{t}\right)_{t \geq 0}$ taking values in \mathcal{V} for (1.2), which is continuous, and if u_{0} is in $\mathcal{V} \cap \ell_{1}$ then u takes values in $\mathcal{V} \cap \ell_{1}$.

A functional law of large numbers (LLN) for converging initial data follows from Theorem 2 in [9]. We give below a result contained in Theorem 3.4 in [2].

Theorem 1.1 Let $\left(R_{0}^{N}\right)_{N \geq L}$ converge in probability to u_{0} in \mathcal{V}. Then $\left(R^{N}\right)_{N \geq L}$ converges in probability in $\mathbb{D}\left(\mathbb{R}_{+}, \mathcal{V}\right)$ to the unique solution $u=\left(u_{t}\right)_{t \geq 0}$ starting at u_{0} for (I.2).

The networks are stable for $\rho=\alpha / \beta<1$. Then Theorem 1 (b) in Vvedenskaya et al. [6] yields that (1.2) has a globally stable point \tilde{u} in $\mathcal{V} \cap \ell_{1}$ given by $\tilde{u}(k)=\rho^{\left(L^{k}-1\right) /(L-1)}$. A functional LLN in equilibrium for $\left(R^{N}\right)_{N \geq L}$ with limit \tilde{u} follows by a compactness-uniqueness method validating the inversion of limits for large sizes and large times, see Theorem 5 in [[$]$] and Theorem 4.4 in [2].

The results of [[] are extended in Graham [2] , in particular to LLNs and propagation of chaos results on path space. Theorem 3.5 in [2] gives convergence bounds in variation norm for the chaoticity result on $[0, T]$ for $\left(X_{i}^{N}\right)_{1 \leq i \leq N}$ for $\left(X_{i}^{N}(0)\right)_{1 \leq i \leq N}$ i.i.d. of law q, using results in Graham and

Méléard [4]. These bounds can be somewhat extended for initial data satisfying appropriate a priori controls, but behave exponentially badly for large T.

1.3 Central limit theorems

Graham [3] and the present paper seek asymptotically tight rates of convergence and confidence intervals, and study the fluctuations around the LLN limits. For R_{0}^{N} in \mathcal{V}^{N} and u_{0} in \mathcal{V} we consider the process R^{N}, the solution u for (1.2), and the process $Z^{N}=\left(Z_{t}^{N}\right)_{t \geq 0}$ with values in c_{0}^{0} given by

$$
\begin{equation*}
Z^{N}=\sqrt{N}\left(R^{N}-u\right) \tag{1.3}
\end{equation*}
$$

Graham [3] focuses on the stationary regime for $\alpha<\beta$ defining the initial data implicitly: the law of R_{0}^{N} is the invariant law for R^{N} and $u_{0}=\tilde{u}$. The main result in [3] is Theorem 2.12, a functional central limit theorem (CLT) in equilibrium for $\left(Z^{N}\right)_{N \geq L}$ with limit a stationary OrnsteinUhlenbeck process. This implies a CLT under the invariant laws for $\left(Z_{0}^{N}\right)_{N \geq L}$ with limit the invariant law for this Gaussian process, an important result which seems very difficult to obtain directly. The proofs actually involve appropriate transient regimes, ergodicity, and fine studies of the long-time behaviors, in particular a global exponential stability result for the nonlinear dynamical system (1.2) using intricate comparisons with linear equations and their spectral theory.

We complete here the study in [$[3]$ and derive a functional CLT in relation to Theorem 1.1, for the Skorokhod topology on Hilbert spaces with the weak topology, for a wide class of R_{0}^{N} and u_{0} under the assumption that $\left(Z_{0}^{N}\right)_{N \geq L}$ converges in law (for instance satisfies a CLT). This covers without constraints on α and β many transient regimes with explicit initial conditions, such as i.i.d. queues with common law appropriately converging as N grows. Section introduces in turn the main notions and results, and Section 3 leads progressively to the proof of the functional CLT by a compactness-uniqueness method.

2 The functional central limit theorem

For a sequence $w=(w(k))_{k \geq 1}$ such that $w(k)>0$ we define the Hilbert spaces

$$
L_{2}(w)=\left\{x \in \mathbb{R}^{\mathbb{N}}: x(0)=0,\|x\|_{L_{2}(w)}^{2}=\sum_{k \geq 1}\left(\frac{x(k)}{w(k)}\right)^{2} w(k)=\sum_{k \geq 1} x(k)^{2} w(k)^{-1}<\infty\right\}
$$

of which the elements are considered as measures identified with their densities with respect to the reference measure w. Then $L_{1}(w)=\ell_{1}^{0}$ and if w is summable then $\|x\|_{1} \leq\|w\|_{1}^{1 / 2}\|x\|_{L_{2}(w)}$ and $L_{2}(w) \subset \ell_{1}^{0}$. For bounded w we have the Gelfand triplet $L_{2}(w) \subset \ell_{2}^{0} \subset L_{2}(w)^{*}=L_{2}\left(w^{-1}\right)$.

Also, $L_{2}(w)$ is an ℓ_{2} space with weights, and we consider the ℓ_{1} space with same weights

$$
\ell_{1}(w)=\left\{x \in \mathbb{R}^{\mathbb{N}}: x(0)=0,\|x\|_{\ell_{1}(w)}=\sum_{k \geq 1}|x(k)| w(k)^{-1}<\infty\right\}
$$

Clearly $x \in L_{2}(w) \Leftrightarrow x^{2} \in \ell_{1}(w)$. The operator norm of the inclusion $\mathcal{V} \cap \ell_{1}(w) \hookrightarrow \mathcal{V} \cap L_{2}(w)$ is bounded by 1 since $\|x\|_{L_{2}(w)}^{2}=\left\|x^{2}\right\|_{\ell_{1}(w)} \leq\|x\|_{\ell_{1}(w)}$ for $\|x\|_{\infty} \leq 1$.

In the sequel we assume that $w=\left(w_{k}\right)_{k \geq 1}$ satisfies the condition that

$$
\begin{equation*}
\exists c, d>0: c w(k+1) \leq w(k) \leq d w(k+1) \text { for } k \geq 1 \tag{2.1}
\end{equation*}
$$

This holds for $\theta>0$ for the geometric sequence $\left(\theta^{k}\right)_{k \geq 1}$, yielding quite strong norms for $\theta<1$.

Theorem 2.1 Let w satisfy (2.1). Then in \mathcal{V} the mappings F, F_{+}and F_{-}are Lipschitz for the $L_{2}(w)$ and the $\ell_{1}(w)$ norms. Existence and uniqueness holds for (1.2) in $\mathcal{V} \cap L_{2}(w)$ and in $\mathcal{V} \cap \ell_{1}(w)$.

Proof. We give the proof for $\ell_{1}(w)$, the proof for $L_{2}(w)$ being similar (see Theorem 2.2 in Graham [3]). The identity $x^{L}-y^{L}=(x-y)\left(x^{L-1}+x^{L-2} y+\cdots+y^{L-1}\right)$ yields

$$
\begin{aligned}
\left|u(k-1)^{L}-v(k-1)^{L}\right| w(k)^{-1} & \leq|u(k-1)-v(k-1)| L d w(k-1)^{-1} \\
\left|u(k)^{L}-v(k)^{L}\right| w(k)^{-1} & \leq|u(k)-v(k)| L w(k)^{-1} \\
|u(k+1)-v(k+1)| w(k)^{-1} & \leq|u(k+1)-v(k+1)| c^{-1} w(k+1)^{-1}
\end{aligned}
$$

hence $\left\|F_{+}(u)-F_{+}(v)\right\|_{\ell_{1}(w)} \leq \alpha L(d+1)\|u-v\|_{\ell_{1}(w)}$ and $\left\|F_{-}(u)-F_{-}(v)\right\|_{\ell_{1}(w)} \leq \beta\left(c^{-1}+\right.$ 1) $\|u-v\|_{\ell_{1}(w)}$. Existence and uniqueness follows using a Cauchy-Lipschitz method.

The linearization of (1.2) around a particular solution u in \mathcal{V} is the linearization of the equation satisfied by $z=g-u$ where g is a generic solution for (1.2) in \mathcal{V}, and is given for $t \geq 0$ by

$$
\begin{equation*}
\dot{z}_{t}=\mathbf{K}\left(u_{t}\right) z_{t} \tag{2.2}
\end{equation*}
$$

where for v in \mathcal{V} the linear operator $\mathbf{K}(v): x \mapsto \mathbf{K}(v) x$ on c_{0}^{0} is given by

$$
\begin{equation*}
\mathbf{K}(v) x(k)=\alpha L v(k-1)^{L-1} x(k-1)-\left(\alpha L v(k)^{L-1}+\beta\right) x(k)+\beta x(k+1), \quad k \geq 1 \tag{2.3}
\end{equation*}
$$

The infinite matrix in the canonical basis $(0,1,0,0 \ldots),(0,0,1,0 \ldots), \ldots$ is given by

$$
\left(\begin{array}{cccc}
-\left(\alpha L v(1)^{L-1}+\beta\right) & \beta & 0 & \cdots \\
\alpha L v(1)^{L-1} & -\left(\alpha L v(2)^{L-1}+\beta\right) & \beta & \cdots \\
0 & \alpha L v(2)^{L-1} & -\left(\alpha L v(3)^{L-1}+\beta\right) & \cdots \\
0 & 0 & \alpha L v(3)^{L-1} & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

and $\mathbf{K}(v)$ is the adjoint of the the infinitesimal generator of a sub-Markovian birth and death process. The spectral representation of Karlin and McGregor [7]] was a key tool in Graham [3], but here it varies in time and introduces no true simplification.

Let $(M(k))_{k \in \mathbb{N}}$ be independent real continuous centered Gaussian martingales, determined in law by their deterministic Doob-Meyer brackets given for $t \geq 0$ by

$$
\begin{equation*}
\langle M(k)\rangle_{t}=\int_{0}^{t}\left\{F_{+}\left(u_{s}\right)(k)+F_{-}\left(u_{s}\right)(k)\right\} d s \tag{2.4}
\end{equation*}
$$

The processes $M=(M(k))_{k \geq 0}$ and $\langle M\rangle=(\langle M(k)\rangle)_{k \in \mathbb{N}}$ have values in c_{0}^{0}.

Theorem 2.2 Let w satisfy (2.1) and u_{0} be in $\mathcal{V} \cap \ell_{1}(w)$. Then the Gaussian martingale M is square-integrable in $L_{2}(w)$.

Proof. We have $\mathbf{E}\left(\left\|M_{t}\right\|_{L_{2}(w)}^{2}\right)=\mathbf{E}\left(\left\|\langle M\rangle_{t}\right\|_{\ell_{1}(w)}\right)$ and we conclude using (2.4), Theorem 2.1, and uniform bounds in $\ell_{1}(w)$ on $\left(u_{s}\right)_{0 \leq s \leq t}$ in function of u_{0} given by the Gronwall Lemma.

The limit Ornstein-Uhlenbeck equation for the fluctuations is the inhomogeneous affine SDE given for $t \geq 0$ by

$$
\begin{equation*}
Z_{t}=Z_{0}+\int_{0}^{t} \mathbf{K}\left(u_{s}\right) Z_{s} d s+M_{t} \tag{2.5}
\end{equation*}
$$

which is a perturbation of (2.2). A well-defined solution is called an Ornstein-Uhlenbeck process.
In equilibrium $u=\tilde{u}$ and setting $\mathcal{K}=\mathbf{K}(\tilde{u})$ and using (1.1) and $F_{+}(\tilde{u})=F_{-}(\tilde{u})$ yields the simpler and more explicit formulation in Section 2.2 in Graham [3]. We recall that strong (or pathwise) uniqueness implies weak uniqueness, and that $\ell_{1}(w) \subset L_{2}(w)$.

Theorem 2.3 Let the sequence w satisfy (2.1).
(a) For v in \mathcal{V}, the operator $\mathbf{K}(v)$ is bounded in $L_{2}(w)$, and its operator norm is uniformly bounded.
(b) Let u_{o} be in $\mathcal{V} \cap L_{2}(w)$. Then in $L_{2}(w)$ there is a unique solution $z_{t}=\mathrm{e}^{\int_{0}^{t} \mathbf{K}\left(u_{s}\right) d s} z_{0}$ for (2.2) and strong uniqueness of solutions holds for (2.5).
(c) Let u_{o} be in $\mathcal{V} \cap \ell_{1}(w)$. Then in $L_{2}(w)$ there is a unique strong solution $Z_{t}=\mathrm{e}^{\int_{0}^{t} \mathbf{K}\left(u_{s}\right) d s} Z_{0}+$ $\int_{0}^{t} \mathrm{e}_{s}^{t} \mathbf{K}\left(u_{r}\right) d r d M_{s}$ for (2.5) and if $\mathbf{E}\left(\left\|Z_{0}\right\|_{L_{2}(w)}^{2}\right)<\infty$ then $\mathbf{E}\left(\sup _{t \leq T}\left\|Z_{t}\right\|_{L_{2}(w)}^{2}\right)<\infty$.

Proof. Considering (2.3), $v \leq 1$, convexity bounds, and (2.1), we have

$$
\begin{aligned}
& \|\mathbf{K}(v) x\|_{L_{2}(w)}^{2} \leq 2(\alpha L+\beta) \sum_{k \geq 1}\left(\alpha L x(k-1)^{2} d w(k-1)^{-1}+(\alpha L+\beta) x(k)^{2} w(k)^{-1}\right. \\
& \left.+\beta x(k+1)^{2} c^{-1} w(k+1)^{-1}\right) \\
& \leq 2(\alpha L+\beta)\left(\alpha L(d+1)+\beta\left(c^{-1}+1\right)\right)\|x\|_{L_{2}(w)}^{2}
\end{aligned}
$$

and (a) and (b) follow, the Gronwall Lemma yielding uniqueness. Under the assumption on u_{0} in (c) the martingale M is square-integrable in $L_{2}(w)$. If $\mathbf{E}\left(\left\|Z_{0}\right\|_{L_{2}(w)}^{2}\right)<\infty$ then the formula for Z is well-defined, solves the SDE, and the Gronwall Lemma yields $\mathbf{E}\left(\sup _{t \leq T}\left\|Z_{t}\right\|_{L_{2}(w)}^{2}\right)<\infty$, else for any $\varepsilon>0$ we can find $r_{\varepsilon}<\infty$ such that $\mathbf{P}\left(\left\|Z_{0}\right\|_{L_{2}(w)} \leq r_{\varepsilon}\right)>1-\varepsilon$, and a localization procedure using pathwise uniqueness yields existence.

Our main result is the following functional CLT. We refer to Jakubowski [5] for the Skorokhod topology for non-metrizable topologies. For the weak topology of a reflexive Banach space, the relatively compact sets are the bounded sets for the norm, see Rudin [8] Theorems 1.15 (b), 3.18, and 4.3. Hence, $B(r)$ denoting the closed ball centered at 0 of radius r, a set \mathcal{T} of probability measures is tight if and only if for all $\varepsilon>0$ there exists $r_{\varepsilon}<\infty$ such that $p\left(B\left(r_{\varepsilon}\right)\right)>1-\varepsilon$ uniformly for p in \mathcal{T}, which is the case if \mathcal{T} is finite.

Theorem 2.4 Let w satisfy (2.1). Consider $L_{2}(w)$ with its weak topology and $\mathbb{D}\left(\mathbb{R}_{+}, L_{2}(w)\right)$ with the corresponding Skorokhod topology. Let u_{0} be in $\mathcal{V} \cap \ell_{1}(w)$ and R_{0}^{N} be in \mathcal{V}^{N}. Consider Z^{N} given by (1.3). If $\left(Z_{0}^{N}\right)_{N \geq L}$ converges in law to Z_{0} in $L_{2}(w)$ and is tight, then $\left(Z^{N}\right)_{N \geq L}$ converges in law to the unique Ornstein-Uhlenbeck process solving (2.5) starting at Z_{0} and is tight.

3 The proof

Let $(x)_{k}=x(x-1) \cdots(x-k+1)$ for $x \in \mathbb{R}$ (the falling factorial of degree $k \in \mathbb{N}$). Let the mappings F_{+}^{N} and F^{N} and with values in c_{0}^{0} be given for v in c_{0} by

$$
\begin{equation*}
F_{+}^{N}(v)(k)=\alpha \frac{(N v(k-1))_{L}-(N v(k))_{L}}{(N)_{L}}, \quad k \geq 1, \quad F^{N}(v)=F_{+}^{N}(v)-F_{-}(v) \tag{3.1}
\end{equation*}
$$

where F_{-}is given in (1.1). The process R^{N} is Markov on \mathcal{V}^{N}, and when in state r has jumps in its k-th coordinate, $k \geq 1$, of size $1 / N$ at rate $N F_{+}^{N}(r)(k)$ and size $-1 / N$ at rate $N F_{-}(r)(k)$.

Lemma 3.1 Let R_{0}^{N} be in \mathcal{V}^{N}, u solve (1.2) starting at u_{0} in \mathcal{V}, and Z^{N} be given by (1.3). Then

$$
\begin{equation*}
Z_{t}^{N}=Z_{0}^{N}+\int_{0}^{t} \sqrt{N}\left(F^{N}\left(R_{s}^{N}\right)-F\left(u_{s}\right)\right) d s+M_{t}^{N} \tag{3.2}
\end{equation*}
$$

defines an independent family of square-integrable martingales $M^{N}=\left(M^{N}(k)\right)_{k \in \mathbb{N}}$ independent of Z_{0}^{N} with Doob-Meyer brackets given by

$$
\begin{equation*}
\left\langle M^{N}(k)\right\rangle_{t}=\int_{0}^{t}\left\{F_{+}^{N}\left(R_{s}^{N}\right)(k)+F_{-}\left(R_{s}^{N}\right)(k)\right\} d s . \tag{3.3}
\end{equation*}
$$

Proof. This follows from a classical application of the Dynkin formula.

The first lemma below shows that it is indifferent to choose the L queues with or without replacement at this level of precision, the second one is a linearization formula.

Lemma 3.2 For $N \geq L \geq 1$ and a in \mathbb{R} we have

$$
A^{N}(a):=\frac{(N a)_{L}}{(N)_{L}}-a^{L}=\sum_{j=1}^{L-1}(a-1)^{j} a^{L-j} \sum_{1 \leq i_{1}<\cdots<i_{j} \leq L-1} \frac{i_{1} \cdots i_{j}}{\left(N-i_{1}\right) \cdots\left(N-i_{j}\right)}
$$

and $A^{N}(a)=N^{-1} O(a)$ uniformly for a in $[0,1]$.
Proof. We develop $\frac{(N a)_{L}}{(N)_{L}}=\prod_{i=0}^{L-1} \frac{N a-i}{N-i}=\prod_{i=0}^{L-1}\left(a+(a-1) \frac{i}{N-i}\right)$ to obtain the identity for $A^{N}(a)$ and we deduce easily from it that it is $N^{-1} O(a)$ uniformly for a in $[0,1]$.

Lemma 3.3 For $L \geq 1$ and a and h in \mathbb{R} we have

$$
B(a, h):=(a+h)^{L}-a^{L}-L a^{L-1} h=\sum_{i=2}^{L}\binom{L}{i} a^{L-i} h^{i}
$$

with $B(a, h)=0$ for $L=1$ and $B(a, h)=h^{2}$ for $L=2$. For $L \geq 2$ we have $0 \leq B(a, h) \leq$ $h^{L}+\left(2^{L}-L-2\right) a h^{2}$ for a and $a+h$ in $[0,1]$.

Proof. The identity is Newton's binomial formula. A convexity argument yields $B(a, h) \geq 0$. For a and $a+h$ in $[0,1]$ and $L \geq 2, B(a, h) \leq h^{L}+\sum_{i=2}^{L-1}\binom{L}{i} a h^{2}=h^{L}+\left(2^{L}-L-2\right) a h^{2}$.

For v in \mathcal{V} and x in c_{0}^{0}, considering (1.1), (3.1) and Lemma $\widehat{3.2}$ let $G^{N}: \mathcal{V} \rightarrow c_{0}^{0}$ be given by

$$
\begin{equation*}
G^{N}(v)(k)=\alpha A^{N}(v(k-1))-\alpha A^{N}(v(k)), \quad k \geq 1, \tag{3.4}
\end{equation*}
$$

and considering (1.1), (2.3) and Lemma 3.3 let $H: \mathcal{V} \times c_{0}^{0} \rightarrow c_{0}^{0}$ be given by

$$
\begin{equation*}
H(v, x)(k)=\alpha B(v(k-1), x(k-1))-\alpha B(v(k), x(k)), \quad k \geq 1 \tag{3.5}
\end{equation*}
$$

so that for $v+x$ in \mathcal{V}

$$
\begin{equation*}
F^{N}=F+G^{N}, \quad F(v+x)-F(v)=\mathbf{K}(v) x+H(v, x) \tag{3.6}
\end{equation*}
$$

and we derive the limit equation (2.5) and (2.4) for the fluctuations from (3.2) and (3.3).
Lemma 3.4 Let w satisfy (2.1). Let u_{0} be in $\mathcal{V} \cap \ell_{1}(w)$ and R_{0}^{N} be in \mathcal{V}^{N}. For $T \geq 0$ we have

$$
\limsup _{N \rightarrow \infty} \mathbf{E}\left(\left\|Z_{0}^{N}\right\|_{L_{2}(w)}^{2}\right)<\infty \Rightarrow \limsup _{N \rightarrow \infty} \mathbf{E}\left(\sup _{0 \leq t \leq T}\left\|Z_{t}^{N}\right\|_{L_{2}(w)}^{2}\right)<\infty
$$

Proof. Using (3.2) and (3.6)

$$
\begin{equation*}
Z_{t}^{N}=Z_{0}^{N}+M_{t}^{N}+\sqrt{N} \int_{0}^{t} G^{N}\left(R_{s}^{N}\right) d s+\int_{0}^{t} \sqrt{N}\left(F\left(R_{s}^{N}\right)-F\left(u_{s}\right)\right) d s \tag{3.7}
\end{equation*}
$$

where Lemma 3.2 and (2.1) yield that $G^{N}\left(R_{s}^{N}\right)(k)=N^{-1} O\left(R_{s}^{N}(k-1)+R_{s}^{N}(k)\right)$ and

$$
\begin{equation*}
\left\|G^{N}\left(R_{s}^{N}\right)\right\|_{L_{2}(w)}=N^{-1} O\left(\left\|R_{s}^{N}\right\|_{L_{2}(w)}\right) . \tag{3.8}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left\|R_{s}^{N}\right\|_{L_{2}(w)} \leq\left\|u_{s}\right\|_{L_{2}(w)}+N^{-1 / 2}\left\|Z_{s}^{N}\right\|_{L_{2}(w)}, \tag{3.9}
\end{equation*}
$$

Theorem 2.1 yields that F_{+}, F_{-}and F are Lipschitz, the Gronwall Lemma that for some $K_{T}<\infty$

$$
\sup _{0 \leq t \leq T}\left\|Z_{t}^{N}\right\|_{L_{2}(w)} \leq K_{T}\left(\left\|Z_{0}^{N}\right\|_{L_{2}(w)}+N^{-1 / 2} K_{T}\left\|u_{0}\right\|_{L_{2}(w)}+\sup _{0 \leq t \leq T}\left\|M_{t}^{N}\right\|_{L_{2}(w)}\right)
$$

and we conclude using the Doob inequality, (3.3), (3.6),

$$
\begin{equation*}
\left\|F_{+}\left(R_{s}^{N}\right)+F_{-}\left(R_{s}^{N}\right)\right\|_{L_{2}(w)} \leq K\left\|R_{s}^{N}\right\|_{L_{2}(w)}, \tag{3.10}
\end{equation*}
$$

and the bounds (3.8) and (3.9).

Lemma 3.5 Let w satisfy (2.1), and consider $L_{2}(w)$ with its weak topology and $\mathbb{D}\left(\mathbb{R}_{+}, L_{2}(w)\right)$ with the corresponding Skorokhod topology. Let u_{0} be in $\mathcal{V} \cap \ell_{1}(w)$ and R_{0}^{N} be in \mathcal{V}^{N}. Consider Z^{N} given by (1.3). If $\left(Z_{0}^{N}\right)_{N \geq L}$ is tight then $\left(Z^{N}\right)_{N \geq L}$ is tight and its limit points are continuous.

Proof. For $\varepsilon>0$ let $r_{\varepsilon}<\infty$ be such that $\mathbf{P}\left(Z_{0}^{N} \in B\left(r_{\varepsilon}\right)\right)>1-\varepsilon$ for $N \geq 1$ (see the discussion prior to Theorem 2.4). Let $R_{0}^{N, \varepsilon}$ be equal to R_{0}^{N} on $\left\{Z_{0}^{N} \in B\left(r_{\varepsilon}\right)\right\}$ and such that $Z_{0}^{N, \varepsilon}$ is uniformly bounded in $L_{2}(w)$ on $\left\{Z_{0}^{N} \notin B\left(r_{\varepsilon}\right)\right\}$ (for instance deterministically equal to some outcome of R_{0}^{N} on $\left\{Z_{0}^{N} \in B\left(r_{\varepsilon}\right)\right\}$). Then $Z_{0}^{N, \varepsilon}$ is uniformly bounded in $L_{2}(w)$ and we may use a coupling argument to construct $Z^{N, \varepsilon}$ and Z^{N} coinciding on $\left\{Z_{0}^{N} \in B\left(r_{\varepsilon}\right)\right\}$.

Hence to prove tightness of $\left(Z^{N}\right)_{N \geq L}$ we may restrict our attention to $\left(Z_{0}^{N}\right)_{N \geq L}$ uniformly bounded in $L_{2}(w)$, for which we may use Lemma 3.4.

The compact subsets of $L_{2}(w)$ are Polish, a fact yielding tightness criteria. We deduce from Theorems 4.6 and 3.1 in Jakubowski [5], which considers completely regular Hausdorff spaces (Tychonoff spaces) of which $L_{2}(w)$ with its weak topology is an example, that $\left(Z^{N}\right)_{N \geq L}$ is tight if

1. For each $T \geq 0$ and $\varepsilon>0$ there is a bounded subset $K_{T, \varepsilon}$ of $L_{2}(w)$ such that for $N \geq L$ we have $\mathbf{P}\left(Z^{N} \in \mathbb{D}\left([0, T], K_{T, \varepsilon}\right)\right)>1-\varepsilon$.
2. For each $d \geq 1$, the d-dimensional processes $\left(Z^{N}(1), \ldots, Z^{N}(d)\right)_{N \geq L}$ are tight.

Lemma 3.4 and the Markov inequality yield condition 1. We use (3.7) (derived from (3.2) and (3.3) and (3.6), and the bounds (3.8), (3.9) and (3.10). The uniform bounds in Lemma 3.4 and the fact that $Z^{N}(k)$ has jumps of size $N^{-1 / 2}$ classically imply that the above finite-dimensional processes are tight and have continuous limit points, see for instance Ethier-Kurtz [叩] Theorem 4.1 p. 354 or Joffe-Métivier [6] Proposition 3.2.3 and their proofs.

End of the proof of Theorem 2.4. Lemma 3.5 implies that from any subsequence of Z^{N} we may extract a further subsequence which converges to some Z^{∞} with continuous sample paths. Necessarily Z_{0}^{∞} has same law as Z_{0}. In (3.7) we have considering (3.6)

$$
\begin{equation*}
\sqrt{N}\left(F\left(R_{s}^{N}\right)(k)-F\left(u_{s}\right)(k)\right)=\mathbf{K}\left(u_{s}\right) Z_{s}^{N}+\sqrt{N} H\left(u_{s}, N^{-1 / 2} Z_{s}^{N}\right) \tag{3.11}
\end{equation*}
$$

We use the bounds (3.8), (3.9) and (3.10), the uniform bounds in Lemma 3.4, and additionally (3.5) and Lemma 3.3. We deduce by a martingale characterization that Z^{∞} has the law of the OrnsteinUhlenbeck process unique solution for (2.5) in $L_{2}(w)$ starting at Z_{0}^{∞}, see Theorem 2.3; the drift vector is given by the limit for (3.2) and (3.7) considering (3.11), and the martingale bracket by the limit for (3.3). See for instance Ethier-Kurtz [1] Theorem 4.1 p. 354 or Joffe-Métivier [6] Theorem 3.3.1 and their proofs for details. Thus, this law is the unique accumulation point for the relatively compact sequence of laws of $\left(Z^{N}\right)_{N \geq 1}$, which must then converge to it, proving Theorem 2.4.

References

[1] Ethier, S. and Kurtz, T. (1986). Markov processes. John Wiley \& Sons, New-York.
[2] Graham, C. (2000). Chaoticity on path space for a queuing network with selection of the shortest queue among several. J. Appl. Probab. 37 198-211.
[3] Graham, C. (2003). A functional central limit theorem in equilibrium for a large network in which customers join the shortest of several queues. Preprint, R.I. 512 du Centre de Mathématiques Appliquées de l'École Polytechnique.
[4] Graham, C. and MÉLÉard, S. (1994). Chaos hypothesis for a system interacting through shared resources. Probab. Theory Relat. Fields 100 157-173.
[5] Jakubowski, A. (1986). On the Skorokhod topology. Ann. Inst. Henri Poincaré Probab. Stat. 22 263-285.
[6] Joffe, A. and Métivier, M. (1986). Weak convergence of sequences of semimartingales with applications to multiype branching processes. Adv. Appl. Probab. 18 20-65.
[7] Karlin, S. and McGregor, J.L. (1957). The differential equations of birth-and-death processes, and the Stieljes moment problem. Trans. Am. Math. Soc. 85 489-546.
[8] Rudin, W. (1973). Functional Analysis. McGraw-Hill, New York.
[9] Vvedenskaya, N., Dobrushin, R. and Karpelevich, F. (1996). Queuing system with selection of the shortest of two queues: an asymptotic approach. Probl. Inf. Transm. 32 15-27.

