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Abstract. We considerN single server infinite buffer queues with service r&teCustomers arrive at rate
Na, chooseL queues uniformly, and join the shortest one. The stabiliydition isa < 3. We study in
equilibrium the fraction of queues of length at least 0. We prove a functional central limit theorem on an
infinite-dimensional Hilbert space with its weak topologjth limit a stationary Ornstein-Uhlenbeck process.
We use ergodicity and justify the inversion of limits y oo lim; oo = lim; o, limpy ., by a compactness-
uniqueness method. The main tool for proving tightness @flttknown invariant laws and ergodicity of the
limit is a global exponential stability result for the namdiar dynamical system obtained in the functional law
of large numbers limit.
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1 Introduction

1.1 The queuing network, and some notation

Customers arrive at rat®« on a network constituted oV > L > 1 infinite buffer single server
gqueues. Each customer is allocafedistinct queues uniformly at random and joins the shortest,
being resolved uniformly. Servers work at rate Inter-arrival times, allocations, and services are
independent and memoryless. Hor= 1 we haveN i.i.d. M,/Mg/1/co queues, and fof. > 2
the interaction structure depends only on sampling fromethpirical measure af-tuples of queue
states. In statistical mechanics terminology, this systeim Z-body mean-field interaction.

The proces$ X}V )1<;<n, WhereX;V(¢) denotes the length of queu@t timet > 0, is Markov.
Its empirical measurg” with samples ir°(D(R,N)) and its marginal proces§” = (X{¥)i>o
with sample paths i)(R, P(N)) are given by

1 Y 1Y

N o N

K :NZ(SXfV’ Xi :NZ(SX{VU)'
i=1 =1

We are interested in the tails of the distributiolig’. We consider

Y= {(v(k:))keN :0(0) = 1, o(k) = v(k +1), lim o(k) = o} ce, VW=vn %NN,
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with the uniform topology. Note that the uniform and the prodtopology coincide oV, We
consider the procesB” = (R} );>o with sample paths iD(R ., V") given by

N
1
RiN(k):NZHXiN(t)zk7 keN,
=1

the fraction of queues at timeof length at leask.

We haveR} (k) = X}¥ ([k, o) and X}V {k} = RN (k) — RY (k + 1) using the classical home-
omorphism betweef®(N) andV, which maps the subspace of probability measures with fimge
moment onto) N ¢; corresponding to having a finite number of customers. Thevsstry structure
implies thatX "V and RV are Markov processes.

The network is ergodic if and only i < 3 (Theorem 5 (a) in[[12], Theorem 4.2 il [6]). The
proofs use non-constructive ergodicity criteria, and ve& laformation and controls on the invariant
laws (stationary distributions). We study the ladyeasymptotics in the stationary regime using an
indirect approach involving ergodicity in appropriatens@gént regimes and an inversion of limits for
large N and large times. Law of large numbers (LLN) results are diydanown, and we shall obtain
a functional central limit theorem (CLT).

General notation We denote by:) and€2 for p > 1 the subspaces of sequences vanishing aft
the classical sequence spaeggwith limit 0) and ¢, (with summablep-th power). The diagonal
matrix with successive diagonal terms given by the sequensealenoted byliag(a). When using
matrix notations, sequences vanishing are often identified with infinite column vectors indexed
by {1,2,---}. Sequence inequalities, etc., should be interpreted tesenvwEmpty sums are equal
to 0 and empty products td. Constants such a& may vary from line to line. We denote by
g0 = (0%),>1 the geometric sequence of reagon

1.2 Previous results: laws of large numbers

We relate results found in essence in Vvedenskaya €ft &l. [2jham [[6] extended some of these
results, and also considered the empirical measures onspatten’, yielding chaoticity results
(asymptotic independence of queues). (The ratasd ) in [B] are replaced here hy and;3.)

Consider the mappings with valuesdhgiven forv in cq by

Fr(0)(k) = a(v(k — DF —o(k)"),  F_()(k) = Bo(k) —o(k +1)), k>1, (L1
andF = F, — F_ and the nonlinear differential equatian= F'(u) onV given fort > 0 by

(k) = F(uy) (k) = aug(k — D)F —up(k)Y) — Blup(k) —wp(k+ 1)),  k>1. (1.2)

This is the infinite system of scalar differential equati¢hs$) in [I2] (where the arrival rate isand
service ratd) and (3.9) in [B]. Note that"_ is linear.

Theorem 1.1 There exists a unique solutian = (u;);>o taking values inV for (L.2), andu is in
C(R4, V). If ug isinV N ¢ thenu takes values iy N /.

Proof. We use Theorem 3.3 and Proposition 2.3[lh [6]. These extieithomeomorphism be-
tween P(N) with the weak topology and with the product topology. Therd (1.2) corresponds
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to a non-linear forward Kolmogorov equation for a pure jumpgess with uniformly bounded
(time-dependent) jump rates. Unigueness within the cladgmonded measures and existence of
a probability-measure valued solution are obtained ugieddtal variation norm. Theorem 1 (a) in
[L3] yields existence (and uniqueness)im /;. O

Firstly, a functional LLN for initial conditions satisfyia LLN is part of Theorem 3.4 ir{|[6] and
can be deduced from Theorem 2in][12].

Theorem 1.2 Assume thatR}’) y> 1, converges in law ta in V. Then(RY) v, converges in law
in D(R4, V) to the unique solutiom = (u;);>( starting atug for (LL.2).

Secondly, the limit equatiorj (1.2) has a globally attracgtable poinfi in V N 4.

Theorem 1.3 For p = /3 < 1 the equation[(1]2) has a unique stable pairih V' given by

@= (@kker,  alk) = plDETD = pETETE

)

and the solution. of (1.2) starting at anyo in V N ¢; is such thatim;_, u; = .

Proof. Theorem 1 (b) in[[32] yields that is globally asymptotically stable il N ¢;. A stable point
win V satisfies3u(k + 1) — au(k)* = Bu(k) — au(k — 1)* = --- = Bu(1) — o and converges to
0, henceu(1) = o/ andu(2), u(3), ... are successively determined uniquely. O

Lastly, a compactness-uniqueness method justifying thersion of limitslim y_. oo limg e =
lim¢ o0 limy—,o Yields a result in equilibrium. This method was used by Wi§f] for the star-
shaped loss network, and is described in detail in Grajan8¢slions 9.5 and 9.7.3. The fol-
lowing functional LLN in equilibrium (Theorem 4.4 i][6]) cabe deduced from{ [12], but is not
stated there as such; it implies using uniform integrabitibunds that under the invariant laws
limy o E(RY (k)) = a(k) for k € N, a result stated in Theorem 5 (c) [n]12].

Theorem 1.4 Letp = «/3 < 1 and the networks of sizZ& > L be in equilibrium. ThedRY) x>,
converges in probability id(R;, V) to a.

Note thatu(k) decays hyper-exponentially in for L > 2 instead of the exponential decay
p* corresponding to i.i.d. queues in equilibriuh & 1). The asymptotic large queue sizes are
dramatically decreased by this simple choice.

We seek rates of convergence and confidence intervals. &@ine®s5 in [B] gives convergence
bounds wher{ X} (0));<;<y are i.i.d. for the variation norm o (ID([0, T, N¥)) using results in
Graham and Méléard][7]. This can be extended if the initiais satisfy a priori controls, but it is not
so in equilibrium, where on the contrary controls are olgdinsing the network evolution.

1.3 The outline of this paper

We consider the procesg” with values inV", a solutionu = (ut):>o for [:3) in V, and the
empirical fluctuation processeg" = (Z}¥);>o with sample paths inJ given by

ZN = NY2(RN —w),  ZN = NY2(RN —u,). (1.3)



We are interested in particular in the stationary regimdckvidefinesmplicitly the initial data: the
law of R} is the invariant law fol?" andug = .

Our main result is a functional CLT: in equiIibriun(rZN)NZL converges in law to a stationary
Ornstein-Uhlenbeck process, which we characterize. hiesa CLT for the marginal laws:
under the invariant law§Z}¥) x>, converges to the invariant law for this Gaussian processs Th
important result seems very difficult to obtain directly. Wse ergodicity ofZ” for fixed N and
intricate fine studies of the long-time behavior of the nosdir dynamics appearing at the laiye
limit, simply in order to prove tightness bounds {cf)¥) v~ under the invariant laws and ergodicity
for the Ornstein-Uhlenbeck process.

Section[R introduces the main theorems, which are provedibisesjuent sections. Sectifjn 3
considers arbitrary,y and R)Y and derives martingales of interest and the limit Ornstéfilenbeck
process. We consider the stationary regime whenever pedsitsimplicity, but the infinite-horizon
bounds used for the control of the invariant laws are obth@wnsideringransientregimes.

We study the Ornstein-Uhlenbeck process in Sediion 4. Weaipectral representation for the
linear operator in the drift term, and prove the existenca spectral gap. A main difficulty is that
the Hilbert space in which this operator is self-adjoinidd large enough (its norm o strong) for
the limit non-linear dynamical system and for the invarikvts for finite V. We obtain results of
global exponential stability in appropriate Hilbert spaaewhich it isnot self-adjoint.

In Sectior[ b we prove thatis globally exponentially stable for the non-linear dyneatisystem
in appropriate Hilbert spaces. In Sect[dn 6, uniformly fogeN, we obtain bounds for the processes
ZN on [0, T] using martingale properties, and then 6 uniformly for ¢ > 0 using the above
result on the dynamical system in order to iterate the boondatervals of lengti”. Bounds on the
invariant laws ofZ” follow using ergodicity. We then prove the functional CLT &gompactness-
uniqueness method and martingale characterizations. ¥i¢edmr the non-metrizable weak topology
on the Hilbert spaces, and use adapted tightness critetitharabove bounds.

2 The functional central limit theorem in equilibrium

In this paper we concentrate on the stationary regime, auhasthap = o/ < 1 andug = @ = u.
We leave the explicit study of transient regimes for a fasthing paper. We quickly introduce
notation and state the main results, leaving most proofiafer.

2.1 Preliminaries

For any sequence = (w(k)),>1 such thatv > 0 we define the Hilbert spaces

2
Lo(w) = {x e RN : 2(0) =0, [|2]|7, 0 = Z(%) wk) = w(k)wk) " < oo}
k>1 k>1
and in matrix notationz, y) 1., (w) = r*diag(w1)y. We consider the elements b$ (w) as measures
identified with their densities with respect to the refeeenteasurev. ThenL;(w) = £} and ifw is
summable thetjz||; < HwH%/ZHﬂEHLQ(w) and Ly (w) C £9. Using Ly(1) = #9 as a pivot space, for
boundedw we have the Gelfand triplet of Hilbert spacks(w) C €9 C Lo(w)* = La(w™1).
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Lemma 2.1 If w = O(v) andv = O(w) then theLy(v) and Lo (w) norms are equivalent.

Proof. This follows from obvious computations. d

We give a refined existence result {@ir2). We recall thayy = (6%)5>1.

Theorem 2.2 Letw > 0 be such that there exists> 0 andd > 0 with
cw(k+1) <w(k) < dw(k+1), k>1.

Then inV N Ly(w) the mappingsF, Fy and F_ are Lipschitz for theLy(w) norm and there is
existence and uniqueness fpr [1.2). The assumptions amtlis@ms hold forw = g, for 6 > 0.
Proof. The identityz” — y* = (z — y)(x% 1 + 2% 2y + .- + yL~1) yields
(u(k — 1)" = vk — 1)) w(k) ™!
(u(k)" = o))" w(k) ™
(wlk +1) — vk +1))2wk)™ < (uk+1)—vk+1)*ctwlk+1)7,

IN

(u(k —1) —v(k —1))* L2dw(k —1)71,
(u(k) — v(k))? L*w(k) ",

IN

hence we have the Lipschitz bounig, (u) — F+(U)H%2(w) < 2a%L2%(d + 1)|lu — UH%Q(w) and
|F_(u) — F_ (U)H%Q(w) <28%(c7t 4+ 1)||u — ”H%Q(w) and existence and uniqueness follows by a
classical Cauchy-Lipschitz method. We havd 01 < g% < =19+ for k > 1. 0
2.2 The Ornstein-Uhlenbeck process
We consider the linear operatti: = € ¢ — Kx € ] given by
Ka(k) = aLa(k — 1)* (k- 1) — (aLa(k)* " + 8) 2(k) + Bz(k + 1)
— L™ ek — 1) — (ﬁLpL‘“ + 6) s(k)+ Bk +1), k>1, (21)

which we identify with its infinite matrix in the canonical &ia(0,1,0,0...),(0,0,1,0...),...

— (BLp" + ) 8 0 0
BLet —(BLo" + ) 8 0
K = 0 pLet  — (8Lt + ) g | @2
0 0 BLp" ~ (8Lo"" + )

used identifying the sequenae= (0,z(1),z(2),...) with its coordinates in the canonical basis
(z(1),z(2),...) taken as a column vector.

Note thatC = A* where A is the infinitesimal generator of a sub-Markovian birth aredtti
process. We shall develop this point of view and obtain atsglelecomposition fokC in Section4.2,
to which we give a few anticipated references below. Thengiatecoefficients of4 given by

m=(w(k)kz1,  w(k) = LFpE R/ = o E L g



solve the detailed balance equatior(& + 1) = Lo~ n(k) with 7(1) = 1.
The linearization of{(T]2) around its stable painis the linearization of the equation satisfied by
z = u — u and is given for > 0 by the forward Kolmogorov equation
Let B = (B(k))ken be independent Brownian motions such tB40) = 0 andvar(B;(k)) =
E(Bi(k)?) = 9(k) whered in ¢ is given by
(k) = 28 (alk) — a(k + 1)) = 28pF D/ =D (1 py 0 g >,

The infinitesimal covariance matrix @ is given bydiag(v).

Theorem 2.3 The process3 is an Hilbertian Brownian motion irl.;(w) if and only if
S alkywk) ™ =3 pE D E (k) < oo (2.4)
k>1 k>1

This is true forw = 7 andw = gy for § > 0 whenL > 2 or for w = gg for 6 > p whenL = 1.

Proof. This follows from obvious computations. d

The Ornstein-Uhlenbeck proce8s= (Z(k))ren Solves the affine SDE given for> 0 by
t
Zt == ZO —|—/ ,CZS ds + Bt (25)
0
which is a Brownian perturbation df (2.3).

Theorem 2.4 Letw > 0 be such that there exists> 0 andd > 0 with
cwlk+1) <wk) <dp 2 wk+1), k>1.

(@) In Ly(w), the operatork is bounded, equatiorf (2.3) has a unique solutipe= ¢!z, wheree !
has a spectral representation given thy [4.1), and there iguemess of solutions for the SDEE [2.5).
The assumptions and conclusions holddoe = andw = gy for 6 > 0.

(b) In addition letw satisfy [2.#). The SDE (2.5) has a unique solutin= ¢* 7, + f(f K(t=5) 4B,

in Ly(w), further explicited in [(4]2). The assumptions and conolasihold forw = 7 andw = gy
for & > 0 whenL > 2 or for w = gy for 6 > pwhenL = 1.

Theorem 2.5 (Spectral gap.) The operatde is bounded self-adjoint i.o (7). The least pointy
of the spectrum ok is such that) < v < 3. The solutionz; = ez, for (2.3) in Ly(7) satisfies

1261l Lo (ry < €7 20l Ly () -

The Ly () norm is too strong for studying the CLT. Indee®( X + --- + XY > Nk) <
P(XYN > k) +---+P(X¥ > k) and since the total service rate in the system cannot exeed
by comparison with ad/y./Myg/1 queue, in equilibrium

1
E(R (k) = P(X;" (1) > k) > p""*
decreases at most exponentiallykir- 0. Further, the mapping’; is not Lipschitz in) N Lo () for
the Lo(7) norm, see Theorein 2.2 and the contrasting assumptions antigfrTheoren{2]4. We
prove global exponential stability in appropriate spaces.
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Theorem 2.6 Let0 < # < 1 whenL > 2or p < 8 < 1whenL = 1. There existsy > 0 andCy <
oo such that the solution; = ¢z, for (2.3) in Ly(ge) satisfies|z | 1,(5,) < ¢ 'Cyllz0]| 1, (gy)-

We deduce exponential ergodicity for the Ornstein-UhleRlygrocess, valid for any satisfying
the conclusions of Theoreris]2.4 dnd 2.6.

Theorem 2.7 Letw = worw = gy With0 < § < 1 whenL > 2 orletw = gy withp < 6 < 1
whenL = 1. Any solution for the SDH (2.5) ih2(w) converges in law for large times to its unique
invariant law (exponentially fast). This law is the Iawﬁj>O ¢**dB, which is Gaussian centered
with covariance matrix/;° e*diag(v)e" dt, further explicited in [4]3) and (4.4). There is a unique
stationary Ornstein-Uhlenbeck process solving the (@.Lo(w).

2.3 Global exponential stability for the dynamical system ad tightness estimates

Global exponential stability of the dynamical system alosontrol of the invariant laws using the
long time behavior. We need uniformity over the state space, Theoremp 3.5 ¢r 2.6 are useless for
this purpose (except in the linear cdse- 1). Such a result doasot hold in Ly (7) for L > 2.

Theorem 2.8 Letp < 6 < 1 andu be the solution of (1] 2) starting a in V N La(gy). There exists
Y9 > 0 anng < oo such thad\ut — {LHLQ(QQ) < effyethHUQ — aHLz(gg)'

The following finite-horizon bounds yield tightness estiesafor the processesZ V) v, pro-
vided the initial laws are known to satisfy similar bounds.

Lemma 2.9 For 8 > 0 andT > 0 we have

ims N2 ims ‘ N2
s (1237,q,) < 00 = h%EpE(O;@H@ HLQ(%)) < 0.

Theorem[ 2]8 is an essential ingredient in the proof of thieviehg infinite-horizon bound for the
marginal laws of the processes.

Lemma 2.10 Letp < 6 < 1whenL > 2or p < § < 1whenL = 1. Then

: N2 . N2
timsup E (1|20, ) < 00 = Himsupsup® (127, ) < oo

This yields control of the long time limit of the marginalbgtinvariant law, which in turn will enable
us to use Lemmp 3.9 to prove tightness of the processes ilibeigumn.

Lemma2.11 Letp < 6 < 1whenL > 2or p < § < 1 whenL = 1. Then under the invariant laws

limsupE< ZN 12 )<oo.



2.4 The main result: the functional CLT in equilibrium

This result is obtained by a compactness-uniqueness metadrefer to Jakubowsk([]8] for the
Skorokhod topology for the non-metrizable weak topologyrdimite-dimensional Hilbert spaces.

Theorem 2.12 Let the networks of siz& > L be in equilibrium. ForL > 2 considerLs(g,) with

its weak topology an®(R ., L2 (g,)) with the corresponding Skorokhod topology. THER ) x>,
converges in law to the unique stationary Ornstein-Uhl@kigrocess solving the SDE (R.5), which
is continuous and Gaussian, in particulaZ’) v~ converges in law to the invariant law for this
process (see Theordm|2.7). Hor= 1 the same result holds ihy(gy) for p < 6 < 1.

3 The derivation of the limit Ornstein-Uhlenbeck process

Let(z)y =x(x—1)--- (x —k+ 1) for x € R denote the Jordan or falling factorial of degiee N.
Considering[(Z]1), let the mapping8" and F* with values inc) be given forv in ¢y by
(Nv(k —1))r — (Nv(k))r

FN(w) = FN(v) - F_(v), FY () (k) = a )1 , k>1.

The procesR” is Markov onV?, and when in state has jumps in its:-th coordinatef > 1, of
sizel/N atrateNFY (r)(k) and size-1/N at rateN F_(r)(k).

Lemma 3.1 Let R} be inVY, u solve [T]) starting at in V, and Z" be given by[(T]3). Then
t
zN =z +/0 NY2(FN(RY) — F(us)) ds + M} (3.1)

defines an independent family of square integrable martesgel ¥ = (M” (k))rcn independent of
R} with Doob-Meyer brackets given by

(MN(k)), = /0 [FN(RY)(F) + F_(RY)()} ds (3.2)

Proof. This follows from a classical application of the Dynkin rfiaula. O

The first following combinatorial identity shows that it redifferent to choose thé queues with
or without replacement at this level of precision. The sécone is a linearization formula.

Lemma 3.2 For N > L anda in R we have

AN(CL) — (NG)L —aL:Iil(a—l)jaL_j Z ZlZ]
(N)r j=1 1<y < <i;<L—1 (N —iy)--+ (N — ij)

andAY (a) = N~1O(a) uniformly forain [0, 1]. We haved? (a) < 0forain {0, N~1 2N~1 ... 1}.

Proof. We have




and by developing the product we obtain the first identityebtiinspection of the right-hand side of
the identity shows that™¥ (a) = N~1O(a) uniformly forain [0, 1]. Forain {0, N~1,2N~1 ... 1}
the product either is composed of terms which are positicedmnot exceed or contains a term
equal to0, and hence does not exceefd O

Lemma 3.3 For N > L anda andh in R we have
L oL
B h) = hL— L_L L*lh: L*Z’hi
(a,h) = (a+h)" —a ~ La ;2: e

with B(a,h) = 0 for L = 1 and B(a,h) = h? for L = 2. For L > 2 we have0 < B(a,h) <
hl + (2 — L — 2) ah® for a anda + h in [0, 1].

Proof. Newton’s binomial formula yields the identity. Feranda + 4 in [0, 1] andL > 2
L-1 I
B(a,h) < h* h? = ht + (2% — L - 2) ah®.
(a,h) < +Z;<Z>a +( )a
A convexity argument yield#(a, h) > 0. O

We define the function& mappingv in ¢y to GV (v) in ¢ given by
GN=FN-F=F)-F., GNW)k)=aAY(w(k—-1)) —aAV(v(k), k>1, (3.3)
andK and H mapping(v, x) in ¢y x ¢ to K(v)z and H (v, ) in ¢} given by

K(v)z(k) = aLv(k — 1)F ek — 1) — (aLv(k)X + B)z(k) + fz(k + 1), k>1,
H(v,z)(k) = aB(v(k —1),z(k — 1)) — aB(v(k),xz(k)), k=>1. (3.4)
Forv andv + 2 in V we may use the bounds in Lemn{ad 3.2 3.3. We have
Flv+z)—Fw)=Fr(v+z)—Fi(v)+ F_(z) = K@)z + H(v,z). (3.5)

We derive a limit equation for the fluctuations fropn {3.1) gBd) using [(313),[(3]5), and Lem-
mas[3.p and 3 3. Let solve {1.) inV and (M (k))xen be independent real continuous centered
Gaussian martingales, determined in law by their detestiinDoob-Meyer brackets given by

(M(K))e :/O {F, (us)(k) + F_(us)(k)} ds.

The processed! = (M (k))r>o and(M) = ((M(k))),cy have sample paths with valuesdh and
K(ut) : z — K(u;)z are linear operators afy. The natural limit equation for the fluctuations is the
inhomogeneous affine SDE given ol 0 by

t
Z, = Zo + / K (us)Zs ds + M, .
0

We setC = K(@). Forug = 4, [L.3) andF, (i) = F_ (@) yield the formulation in Sectiop 3.2.



4 Main properties of the Ornstein-Uhlenbeck process

4.1 Proof of Theorem[Z.}4
Considering[(2]1) and convexity bounds we have

el ) = 8 3 (E0P (k= 1) = (Lo 4 1) (k) + 2k + 1)) wi(k)™

E>1
< B2(2L +2) < ST e = D)2wk) T+ LY pPE (k) w (k)
E>1 k>1
+)° S ek 1 >
k>1 E>1
< B*(2L +2) (Ldz 2k — 12wk — )7+ (Lp*" + 1)) 2(k)*w(k) ™!
k>2 k>1
Y 2k + 1) w(k+ 1) >
k>1

< BP2L+2) (Lp*" + Ld + ¢ +1) 12|, ()
The Gronwall Lemma yields uniqueness. kor 1 we have
(Lp") 'k +1) < 7(k) = (Lp") Mk +1) < L5 (k4 1),
g—1gk+1 < gk < 971pr72Lk9k+1‘

WhenB is an Hilbertian Brownian motion, the formula faris well-defined and solves the equation.

4.2 Arelated birth and death process, and the spectral decoposition

Considering [(2]2),A = K* is the infinitesimal generator of the sub-Markovian birttd ateath
process on the irreducible clagk 2, . ..) with birth rates\, = ﬂLka and death rateg;, = 3 for
k > 1 (killed at rateu; = (3 at statel). The process is well-defined since the rates are bounded.

Karlin and McGregor{[1ld, 11] give a spectral decompositiansiuch processes, used by Callaert
and Keilson [[L[]2] and van Doorifi][3] to study exponential €iigity properties. The state space in
these works ig0, 1,2, .. .), possibly extended by an absorbing barrier or graveyatd ata-1. We
consider(1, 2, ...) and adapt their notations to this simple shift.

The potential coefficients|[([10] eq. (2.2)] [3] eq. (2.10% given by

k) = ML pnt R el D)) sy
2 - g
and solve the detailed balance equatipps;7(k + 1) = A\ (k) with (1) = 1.

The equationdQ(z) = —xQ(z) for an eigenvecto)(z) = (Qn(z))n>1 Of eigenvalue—z

yields\1Q2(z) = (A + 1 — 2)Q1(z) and\,Qni1(z) = (A + i — 2)Qn(x) — 1 Qpn—1(z) for
n > 2. With the natural conventio, = 0 and choicel); = 1, we obtain inductivelyQ,, as the
polynomial of degree. — 1 satisfying

—2Qn(7) = BQn_1(z) — (BLY™" + B) Qu(z) + BLY" Qnia(z),  n>1.
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These recursions correspond [to] [10] eq. (2.1) §hd [3] efj5§2As stated there, such a sequence of
polynomials is orthogonal with respect to a probability sweay onRR, and

/ " Qule)? (dr) = (i) / T Q)@@ d(dr) =0, i1, i,
0 0

or in matrix notation[;* Q(z)Q(z)* ¥ (dz) = diag(7 ).
Let P, = (p(4,7))i;>1 denote the sub-stochastic transition matrix for The adjoint matrix
Py is the fundamental solution for the forward Kolmogorov dpraz; = A*z, = Kz. The
representation formula of Karlin and McGregpr|[L0, 11] (€e€) and (2.18) in[[3]) yields
eKt = Ptﬂ< = (pr(laj))l,jzl ) P:(ZJ) = pt(]al) = W(Z) / eithl(x)Q](x) T/J(dx) ) (41)

0
or in matrix notatiore™* = diag(r) [;° e "'Q(2)Q(z)* ¢ (dx).
The probability measure is called the spectral measure, its sup@oit called the spectrum,

and we sety = min S. The Ornstein-Uhlenbeck process in Theorenh 2.4 (b) andhntriant law
and its covariance matrix in Theorefns|2.7 &nd]2.12 can beewrit

7y = diag(w)/geth(az)* <Z0+/0 e®s st> Q(x) Y(dr), (4.2)
Kt = diag(m z)* cxje*"”t T T
[ an, = ) [ <Q( " dBt) Q) b (dx), (4.3)
| Faag(o)ek a = ding(m) [ HEDEDID G000, y(an)u(ay) g (o). (2.9
0 S2 rTy

4.3 The spectral gap, exponential stability, and ergodicyt

Proof of Theorenh 2/5The potential coefficientér(k))x>1 solve the detailed balance equations for
A and hencél = A* is self-adjoint inLy(7).

For the spectral gap, we follow Van Doorfj [3], Section 2.3e Bithogonality properties imply
that forn > 1, @, hasn — 1 distinct zerod) < z,,1 < ... < Ty -1 SUCh thate, 1 ; < x,; <
Tnt1,i+1 forl < i < n—1. Hence; = limy, o0 y,; > 0 €Xists,§; < €11, ando = lim; o &
exists in[0, oo]. Theorem 5.1 in[]3] establishes that> 0 if and only if & > 0, Theorem 5.3 (i) in
[B] thate = 3 > 0, and Theorem 3.3 if][3] that = ¢&; < o. (Estimating; is impractical.)

For the exponential stability, we have:||7 () = (Xt 20, et 20) The fact thate<t is

Lo(m)"
self-adjoint inLy(7) and the spectral representatipn 4.1) yield

(¢*20.€%20) 1) = (20,67 20) 1) = /562“28 (2)Q(x)" 20 (dx)

< o2 /S 2Q@)Q) 20 ¥(dx) = " (20,20 1,
We refer to Callaert and Keilsofi| [2] Section 10 for relateslits.

Proof of Theoreni 2.6 (non self-adjoint casé)is similar to and simpler than the proof for Theo-
rem[2.8 in the interactive cade> 2, and we wait till that point to give it.

Proof of Theorenh 21 7We use the uniqueness result and explicit formulaZon Theorem{2}4, and
Theoren{ 2]5 of 2]6.
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5 Exponential stability for the nonlinear system

5.1 Some comparison results

Considering [(3]5)K = K(a) and F(@) = 0, if u is a solution of [(1]2) inV starting atu, then
y = u — 4 iS a solution to the recentered equation startinghat uo — @ given by

gu(k) = Kye(k) + H (i, yr) (k)
= BLo" y(k — 1) + aB(a(k — 1),y (k — 1))
— (BLo™ k) + aBG@(k), s (k) + Bur(k)) + Byelk + 1), k=1, (D)
and ifug isin VN ¢; thenu isin V N ¢; and hencey is in 69 and fork > 1
9e(k) + Ge(k+ 1) + -+ = BLM "ye(k — 1) + aB(a(k — 1), y:(k — 1)) — Bye(k) . (5.2)

Reciprocally, ify is a solution to the recentered equatipn](5.1) starting, auch thaty, + @ is in
V, thenu = y + @ is a solution of [1]2) inV starting atug = yo + @. Then—a < y < 1 — @ and
—1 <y < 1.Foryy+@in VN ¢, we havey in £9.

Lemma 5.1 Letu andv be two solutions for{ (1]2) i such thatug < vg. Thenu; < v, fort > 0.
Lety, + @ be inV andy solve [G.1). Ifyy > 0 theny, > 0 and ifyy < 0 theny; < 0fort > 0.

Proof. Lemma 6 in [1R] yields the result fof (1.2) (the proof writtéor L = 2 is valid for L > 1).
The result for [5]1) follows by consideration of the solasa. = y + @ and for ([L.2). O
We shall compare solutions of the nonlinear equatfor} (Stl)af certain linear equations.

Lemma 5.2 Let A be the generator of the sub-Markovian birth and death precegh birth rate
A, > 0 and death rate3 at k > 1. Letsup,, A, < co. In ¢9 the linear operator

Az(k) = Mpaz(k — 1) — Ce + Bz(k) + Ba(k+1),  k>1,

is bounded and there exists a unique= (z;):>0 given byz, = At solving the forward Kol-
mogorov equatiore = A%z If zo > 0thenz > 0andifzy < Othenz < 0. Fork > 1,
k) + Z(k+1) 4+ = Nprze(k — 1) — Bze(k).

Proof. The operator norm iff! of A* is bounded by (sup,, A\x+3), hence existence and uniqueness.
Uniqueness and linearity imply thatif, = 0 thenz; = 0 and else ifzg > 0 thenthonf1 is the
instantaneous law of the process startingyéito||;* and hence; > 0. If 2, < 0 then—z solves the
equation starting at zg > 0 and hence-z; > 0. O

Lemma5.3 LetL > 2 andy = (y;)¢>0 Solve [G.]L) withyo + @ in V N ¢;. Under the assumptions of
Lemmd52, let = (z)¢>0 Solvez = A*z with z in £ andh = (h)¢>0 be given by

h= k)1,  hk)=z2(k)+2z(k+1) 4+ — (k) +ylk+1)+---).

@) Leth, > BLpE" + a(l+ (28 = L —2)a(k)) for k > 1,y > 0, andhg > 0. Thenh; > 0 for
t> 0.
(b) Let )\, > BLpL" for k > 1, yo < 0, andhgy < 0. Thenh, < 0 for ¢ > 0.

12



Proof. We prove (a). Foe > 0 let A correspond to\; = \; + . The operator norm i
of A* — A* is bounded by2e, hencelim._ge?itzy = 2 in 2 and we may assume thaj, >
BLpL" + a1+ (28 = L —2) a(k)) for k > 1. Sincez; = eA"t 2, depends continuously of in
¢9 we may assumg > 0.

Letr =inf{t > 0: {k > 1: h(k) = 0} # 0} be the first time whenh(k) = 0 for somek > 1.
Thenr > 0 and if = oo the proof is ended. Else, Lemrpal5.2 apd](5.2) yield

he(k) = Apo1yr(k — 1) = BLp™ "y (k — 1) — aB(a(k — 1), y-(k — 1))
+ M1(zr(k = 1) = yr(k = 1)) = B(zr (k) = yr (k).
Lemma5.]L yields; > 0 and Lemmd 3]3 angl < 1 yield
B(k — 1), y(k — 1)) < y(k — )" + (25 — L - 2) ik — Dy(k — 1)°
<(1+@Y—-L-2)ak-1))yk
hencehy_1y(k — 1) — BLpY" "y(k — 1) — aB(a(k — 1), y(k — 1)) > 0 with equality only when
y(k—1)=0.ForkinK ={k>1:h.(k) =0} # 0 we have
2e(k—=1) =y (k=1)=h(k—=1) >0, 2z:(k)—yr(k)=—h(k+1) <0,

with equality if only if & — 1is in K U {0} andk + 1 is in K. Henceh, (k) > 0. Moreoverh, (k) > 0
fort < 7 andh. (k) = 0imply A, (k) < 0, henceh. (k) = 0, and the above signs and equality cases
yield thatz,(k — 1) = y,(k — 1) = 0andk — 1isin KU {0} andk + 1 is in K. By induction

2. (1) = y-(i) = 0 fori > 1 which impliesz; = y, = 0 for ¢ > .

The proof for (b) is similar and involves obvious changesigsWe may assuma;, > ﬁLka
which suffices to conclude since Lemina 3.3 yiel#igi(k — 1), y(k — 1)) > 0. O

Lemma 5.4 For any0 < 6 < 1 there existg{y < oo such that forz in Ly (gg) C £9
@ (k) +a(k+1) + izl py gy < Koll2l g,

Proof. Using a classical convexity inequality

D (@lk) +a(k+1) - )20

k>1
<> n(@k)’ +ak+1)° 4+ ok +n—2°+ @k +n—1) +a(k+n)+--)?) 0"
k>1
<S40+ +0"2)> (k)0 + 00" (a(k) +a(k+1)+--)%07"
k>1 k>1
We taken large enough thatd"~! < 1andK? = (1 —n6"1)"In(l — 6" 1)(1—60)"L. O

5.2 Proofs of Theoremg 2]8 anfi 2.6

Proof of Theoren} 2.8 fol. > 2. Letwuy be inV N La(gg). Thenu; = min{ug,a} anduf =
max{ug, @} are inV N La(gg). Theoren] 2]2 yields that the corresponding solutiensandw™ for
(L2) are iV N La(ge). Lemma[5 1 yields that, < u; < u andu; < @ < u; fort > 0. Then

y=u—1u, yT=ut—a>0, Yy =u —u<0,
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solve (5.1L), and termwise
lyo| = max{yg, —yg }, |yl <max{yS, -y}, ¢>0. (5.3)
We consider the birth and death process with generatdefined in Lemmé 5|2 with
5\k:maX{BLka+a(1+(2L—L—2)&(k)),BH}, kE>1,

which satisfies the assumptions of Lemma 5.3 (a) and (b). \Werpethe same spectral study as in
Sectiong 4]2 and 4.3, all notions being similar and denasétha hat.

Forp < 6 < 1 we havea < 6 and hence\,, is equivalent thH for large k, hence Theo-
rem 5.3 (i) in [8] yields that < 4 < 6 = (VB — VB ) =3(1- \/—) , and moreover

k—1
61 < (k) = 0*1 ] max {9—1L,0L’“ +07 p(1+ (28 — L — 2) (k) ,1}

and the product converges using simple criteria. Hende = O(#*) and#* = O(#(k)) and
Lemma[2.]1 yields that there exists> 0 andd > 0 such that:™ (|- || 1, (z#) < || 1£,(g9) < @l | Lo ()-
The version of Theorerh 2.5 for the the above process yiehtsfth solvesz = A*zin La(gg) then

12l 2 (g0) < @2t ]| Loy < €V dll20l| Lyi) < €7 cdl|Z0]| og) -
Hence ifz* solvesz* = A*>" starting at:; = yg > 0 then Lemm4.5]3 (a) and Lemrfa]5.4 yield

19 1 Eatge) < (" (B) + 3" (B + 1) + - )izl 2a(g)
< Gz (k) + 2" (4 1)+ Jiz1ll 22 (00)

< KGHZt HLz(ge) < eig/thKGHyg—HLg(gg)

and similarly if >~ solvesz~ = A*>~ starting atz; = y; < 0then Lemm45]3 (b) and Lemrfa]5.4
yield [|y; 11 1,(59) < € edKg||yg | 1,(gy)- We Setyy = 4 andCy = cdKy. Considering[(5]3),

HytH%Q(‘g@) S Hyj”%Q(g@) + Hy;H%Q(gg) S e_Q’YHtCGQ (Hyo HL2 90) + Hyo HL2(90 >

and we complete the proof by remarking that fob> 1, eitheryg (k) = yo(k) andy, (k) = 0 or
vy (k) = yo(k) andyg (k) = 0, and hencélyd |2, .\ + 15 12,5, = 140112, (-

Proof of Theorenh 216 and of Theordm]| 2.8 for= 1. The linearization[(2]3) of Equatiof (IL.2) is
obtained from Equatior{ (3.1) by replacing the nonlineacfioms B and H by 0, and coincides with
(B.1) for L = 1. Likewise, the equation fof (3.3) corresponding[to](5.lisained by omitting the
term aB(a(k — 1),y:(k — 1)). We obtain a result for the linear equatidn [2.3) correspundo
Lemma5.B (a) and (b) under the sole assumphipre ﬂL,oLk for k > 1. The proof proceeds as for
Theorem[2]8 forl, > 2 with the difference thad;, = max {3Lp"", 36}. We have,, equal tod
for largek for 0 < 8 < 1whenL > 2 and forp < 6 < 1whenL = 1.
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6 Tightness estimates and the functional central limit theeem

6.1 Finite horizon bounds for the process: proof of LemmgZ]9
We use Lemmé 3.1. Considerirlg (3.1) ahd](3.3),
t t
zN =z + My +N1/2/ GN(RéV)ds+/ NY2(F(RY) - F(w)) ds (6.1)
0 0
where Lemma 32 yields that
GN(RY)(k) = a(AN (RY (k — 1)) — AN (RY (k))) = NT'O (RY (k — 1) + RY (K))
and hence for somg < oo
N pN — N
1GY B 50 < NTENES 1,4 (6.2)

where
1B Lagey < N8 Laay + N2 128 1y ) - (6.3)

The mappingF’ being Lipschitz (Theorerp 3.2), the Gronwall Lemma yields flior someK7 < oo

N N N —1/2 1~
50121, < K (128 sy + 300 (3 s+ 7 Wl )

We conclude using the Doob inequality, {3.9), [3.3), therutsu(6.R) and[(6]3), and (see Theo-
rem[2.2)

|F(RY) + F_(RY) 1 o) KHRg\fHLQ(gQ). (6.4)

6.2 Infinite horizon bounds for the marginals: proof of LemmaP.T0

Let Uy, (v) be the solution of[(1]2) at time > 0 with initial value v in V, in particulara = Uy (1),
andz), = NY2 (RN, — Uy(Ry)) forto > 0. We haveZ}Y,, = Z}, + N2 (Uy(Rf)) — @)
and Theorenh 2.8 yields that

+e Gy || ZY (6.5)

122581 g0y < 1220011 g 2o

The conditional law of Z, h)h>0 givenR)Y = r is the law of ZV started withR}Y = ug = r,
the empirical fluctuation process centered(6fr) and starting a0. We reason as in Sectidn 6.1,
using additionally[(6]5) on the bounfl (6.3) with= ¢, + h. We obtain that for som&r < oo

22 125y < (N1 gt 3, 1= 0 g+ i )

and then that for somBr < co we havefol) < A < T

E (12X 4ll} ) < Lr + 200N + 0202 B (| 25 (6.6)

HL2(96)> ’

We fix T' large enough foBe 27T C2 < ¢ < 1. Uniformly for N > Kpe¥?, form € N

(HZ(m-i-l)THm (90) ) <Lr+cE <HZ THL2 99))
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and by induction

Lp
E (1232017, 40)) <LTZ€J LB (12015 00) < 1o T E (120 700,)
and [6.p) yields

sup E(HZ T+h”L2 )) SLT-FSC@QE(HZ THLz 99))

(1281 ) )

6.3 Bounds on the invariant laws: proof of Lemma[Z.7]1

hence

] N2 ) LT
bk <HZt [rate)) < Lt +8C; <1 2

Ergodicity and the Fatou Lemma yield that #6£) distributed according to the invariant law
2 o 2 2
E <HZ£HL2(96)> < hrflzlonfE (HZt]VHLQ(g@)> < iggE (HZt]VHLQ(ge))

and considering Lemn{a 2]10 the proof will be complete as ssome show that we can chooRg’
in VY such that

N
hI;fl;upE (HZO HLg(g9)> < 0. (6.7)

We considell > 2, the casd. = 1 being similar. LetR) = (R} (k))xen With
RN(k)=iN"! for —(2N)'<a(k)—iN'<(@2N)', ie{0,1,...,N},
and
E(N) =inf{k > 1: RY (k) =0} = inf{k > 1:a(k) < (2N)7'}.
Since forr > 0and0 <y <1
y = pE /) o = log (14 (L —1)logy/log p) /log L
© 07" = (1+ (L —1)logy/log p)~ 8%/ 8
we havek(N) = inf {k € N: k > log (1+ (L — 1)log ((2N)~!) /log p) /log L}. Then

k(N)— 1
128 sy = ¥ ) oreN Y
k=1 k>k(N)
—k < L 07RO — g -1 —1log6/log L

and for Iarge enoughv (and hencéc(N))

N Z Z 2(LF-1)/(L-1) g~k

k>k(N) kE>k(N)
_ 2(LFN) —1)/(L—1) 2(LE—LFN)Y /(L—1) p—k
= Np > op 0
k>k(N)
-1 ZpQL’“(N)(Lj—l)/(L—l)g—(jJrk(N))
Jj=20
_ k(N (i — _ _
1 ZpL (LI—1)/(L-1) — o(N 1)‘
Jj=20
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Hence [6]7) holds and the proof is complete.

6.4 The functional CLT: Proof of Theorem [Z.12

Lemma[2.1]L and the Markov inequality imply that in equiliri (Z}¥) x>, is asymptotically tight
for the weak topology of.»(g,), for which all bounded sets are relatively compact. We atersa
subsequence a¥ > L. Let (NN;);>1 denote a further subsequence such (IZ@A{’ )j>1 converges in
law to some square-integrabl® in L»(g,). We decompose the rest of the proof in three steps.

Step 1 We prove that{ Zi),~; is tight in D(R., La(g,)) with the Skorokhod topology, where
L»(g,) is considered with its non-metrizable weak topology. Thmpact subsets of,(g,) are
metrizable and hence Polish, a fact yielding tightneseriait We easily deduce from Theorem 4.6
and 3.1 in Jakubowsk[][8], which considers completely ragtiausdorff spaces (Tychonoff spaces)
of which Ly(g,) with its weak topology is an example, that a sufficient candits that

1. Foreachl’ > 0 ande > 0 there is a (weakly) compact subg€i- . of Lo(g,) such that

P (Z% eD([0,T),Kr.)) >1—¢e, j>1. (6.8)
2. For eachl > 1, thed-dimensional processé&”i (1), ..., Z"i(d)),;>; are tight.

Lemma2.11 implies that the assumptions of Lenjmp 2.9 holdl{&:8) follows considering the
Markov inequality. We use| (6.1) (derived frorh (3.1)) apfd}3.and the boundd (6.2)[ (b.3) and
(6:4). The uniform bounds in LemnfaR.9 and the fact thalt k) has jumps of sizeV—1/2 imply
classically that(Z™i(1),...,Zi(d));>1 is tight, see for instance Ethier-Kurtf] [4] Theorem 4.1
p. 354 or Joffe-Métivier[]9] Proposition 3.2.3 and theiogfs.

Step 2 The tightness result fgz7) ;> implies it converges in law along some further subsequence
to someZ> with initial law given by the law ofZ5°. Considering[(3]5), we have if (5.1)

N2 (F(RN)(k) — F(a)(k)) = K2z + N2 H (u N-1/2zN ) . (6.9)

We likewise consider{(3.2). We use again the bounds$ (4.23) éhd [6}4), the uniform bounds in
Lemma[2.p, and additionally (3.4) and Lemnd 3.3. We deducprtingale characterization that
Z> has the law of the Ornstein-Uhlenbeck process unique saldtr (2.5) inLy(g,) starting at
7, see Theorerh 32.4. The drift vector is given by the limit fadf3and [6.11) considering (6.9), and
the diffusion matrix by the limit for[(3]2). See for instanE¢hier-Kurtz [4] Theorem 4.1 p. 354 or
Joffe-Métivier [9] Theorem 3.3.1 and their proofs for dista

Step 3 The limit in law of a sequence of stationary processes isosiary (see Ethier-Kurtz[J4]
p. 131, Lemma 7.7 and Theorem 7.8). Hence the lavZ®f is the unique law of the stationary
Ornstein-Uhlenbeck process given py [2.5), see Thedrejn \8/& deduce that from every subse-
quence we can extract a further subsequence convergingvitoléhis process. HencgZ ™)y,
converges in law to this process.
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