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Abstract

We present an approximate analytical solution of the Cahn-Hilliard equa-

tion describing the coalescence during a first order phase transition. We have

identified all the intermediate profiles, stationary solutions of the noiseless

Cahn-Hilliard equation. Using properties of the soliton lattices, periodic so-

lutions of the Ginzburg-Landau equation, we have construct a family of ansatz

describing continuously the processus of destabilization and period doubling

predicted in Langer’s self similar scenario [1].

Pacs numbers : 05.45.Yv, 47.20.Ky, 47.54.+r

I. INTRODUCTION

When a homogenous system departs suddenly from equilibrium, the fluctuations around
the initial ground state are linearly amplified and the homogenous phase can for example
spontaneously separate into two different more stable states. The interfaces which delimit
the numerous resulting monophasic domains can either form a complex pattern and interact
with each other, giving rise for example to pattern formation, or merge into a single interface
when the domains of the same state slowly coalesce, minimizing the overall interfacial energy.
It results then in only two well separated domains. This process of first order phase transition
arises particularly for binary mixtures [2] or alloys [3], vapor condensation [4].

It can either initiate via a nucleation process, where the homogenous state is put sud-
denly in a metastable configuration, and an energy barrier has to be crossed before the
transition appears. Or via a spinodal decomposition when the system is led into a linearly
unstable configuration. In this latter case, the leading instability selects a modulation of the
order parameter at a well defined length scale, which will grows and, due to non-linearities,
saturates. The resulting pattern is composed of well defined interfaces delimiting domains
containing one of the two stable phases. Remarkably, this intermediate stage conserves quite
perfectly the modulation width, so that the resulting pattern is of almost the same length
scale than the one selected initially [5,6]. The dynamics finally ends with a much slower,
self-inhibiting dynamics, dominated by the interactions between the interfaces. The different
regions of each phase coalesce in the so-called Ostwald ripening where the number of domains
diminishes whereas their typical size increases. The asymptotic state is decomposed into two
domains, one for each phase. In this article, by spinodal decomposition, we refer to the first
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stage of the dynamics only, while coarsening will denote the second stage. Although this
coarsening dynamics is in fact already present, its influence can be often neglected during
the first stage of the processus.

Hillert [3], Cahn and Hilliard [7] have proposed a model equation describing the segre-
gation for a binary mixture. This model, known as the Cahn-Hilliard equation (C-H later
on), belongs to the Model B class in Hohenberg and Halperin’s classification [8]. It is a
standard model for phase transition with conserved quantities and has applications to phase
transition in liquid crystals [9], segregation of granular mixtures in a rotating drum [10] , or
formation of sand ripples [11,12]. It is a partial differential equation to which a conservative
noise is added to account for thermal fluctuations [13].

Figure (1) shows snapshots of a numerical integration of the (C-H) dynamics which rep-
resents the full phase transition process after a quench in temperature. Thermal fluctuations
have been omitted in the dynamics, but were present in the initial conditions. The three
main stages of the spinodal decomposition described above are clearly distinguished: first,
from Fig. (1 (a)) to Fig. (1 (b)), we observe the selection of a typical length scale for the
modulations, then, from Fig. (1 (b)) to Fig. (1 (c)), the non-linear growth and its satu-
ration. We note that the number of peaks has been almost conserved between these two
configurations. On the contrary, during the coarsening dynamics observed between Fig. (1
(c)) and Fig. (1 (d)) the typical length of the pattern is increasing while on the other hand
the amplitude of the modulation slowly growth to reach its asymptotic value.

An important activity has been devoted to the description of the dynamics of phase
transition, using both statistical methods or numerical simulations (for a review see [14]).
The late stage of the spinodal decomposition where the coarsening dynamics dominates
exhibits ”dynamical scaling” : the dynamics presents a self-similar evolution where time
enters only through a length scale L(t), associated with a typical length of the domains
or the rate of decay of the inhomogeneities. For instance, scaling arguments and stability
criteria give the law L(t) ∼ t1/3 for spatial dimensions greater than one and a logarithmic
behavior for one dimension in the case of the (C-H) equation [14].

This last stage, as observed in two-dimensional demixion of copolymer [15] and as sug-
gested initially by Langer [1], can be described as a self similar processus of synchronous
fusion and evaporation of domains. This observation motivated our work and the aim of
this article is to present a one dimensional ansatz describing continuously the coalescence
process. This ansatz is in the form of a one parameter family of symmetric profiles which
interpolates between two stationnary states composed of homogeneous domains of length
λ/2 and λ. It allows to realize a self similar sequence of coalescence process in 1D, starting
from the regular micro phase separated states issued from the non-linear saturation of the
spinodal decomposition dynamics and ending with the single interface which characterize
the infinite time, thermodynamic stable state.

The paper is organized as followed: first, we present a brief review on general properties
of phase segregations and on the (C-H) model, mainly to fix the notations. We will repro-
duce briefly the original derivation by Cahn and Hilliard, restricting ourselves to the one
dimensional case. In part III, we present a family of symmetric solutions of the Ginzburg-
Landau equation which is used to study the dynamics of spinodal decomposition and to
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determine all the symmetric stationary state of the (C-H) dynamics. Then in part IV, the
main original part of this work, we introduce a non-symmetric family of solutions of the
(G-L) equation which is used to construct a continuous interpolation between two consecu-
tive symmetric stationary states. After a study of the energy landscape associated with this
ansatz, we finally discuss the numerical accuracy of our calculations. In the conclusion, we
justify the hypothesis we have made and compare the suggested scenario with coalescence
in real systems.

II. THE CAHN-HILLIARD MODEL

The Cahn-Hilliard theory is a modified diffusion equation; it is a continuous conservative
model for the scalar order parameter Φ, which reads in its dimensionless form:

∂Φ

∂t
(r, t) = ∇2(

ε

2
Φ + 2Φ3 −∇2Φ) + ξ (r, t) . (1)

The real order parameter can correspond to the dimensionless magnetization in Ising fer-
romagnet, to the fluctuation of density of a fluid around its mean value during a phase
separation or to the concentration in some region around r of one of the components of a
binary solution. ε is the dimensionless control parameter of the system ; it is often identified
to the reduced temperature (ε = T−Tc

Tc

where Tc is the critical temperature of the phase
transition). This equation, first derived by Cahn and Hilliard [7], has also been retrieved by
Langer [1] from microscopic considerations. As written, the (C-H) equation does account
for thermal fluctuations present in the system through a random white noise ξ (r, t), whose
amplitude is proportional to the square root of the temperature of the system.

The homogeneous stationary solutions for the noiseless (C-H) equation are extrema of the
effective Ginzburg-Landau potential V (Φ) = ε

2
Φ2 + Φ4 (G-L later on). For positive ε, there

is only one homogenous solution Φ = 0 which is linearly stable; for negative ε, the stationary
solution Φ = 0 undergoes a pitchfork bifurcation and three stationary solutions exist. Φ = 0
is still a stationary solution, but it is now linearly unstable ; two other symmetric solutions
Φ = ±

√
−ε
2

are stable and have the same free energy F = −ε2/32. Thus, a first order
transition can be experienced by quenching the system suddenly from a positive reduced
temperature ε to a negative one. Spinodal decomposition is the resulting dynamics.

The stability of the solution Φ = 0 can be studied by linearizing equation (1) around
Φ = 0 (i.e. neglecting the non linear term Φ3); considering Φ as a sum of Fourier modes:

Φ(r, t) =
∑

q

φqe
iq·r+σt

where φq is the Fourier coefficient at t = 0, we obtain for the amplification factor σ(q) :

σ(q) = −(q2 +
ε

2
)q2

It shows immediately that Φ = 0 is linearly stable for ε > 0 while a band of Fourier modes
are unstable for negative ε, since σ(q) > 0 for 0 < q <

√

(−ε/2). Moreover, the most
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unstable mode is for qC−H =
√
−ε/2(with σmax = ε2

16
). This wave number of maximum

amplification factor will dominate the first stage of the dynamics; in particular, it explains
why the modulations appear at length scales close to λC−H = 2π/qC−H , the associated wave
length. Later on, interfaces separating each domain interact through coalescence dynamics,
causing < λ > to change slowly toward higher values [17,5]

We will now use known results on non-homogeneous solutions of the (G-L) equation to
study both the saturation of the spinodal decomposition and the coalescence.

III. STATIONARY STATES OF THE CAHN-HILLIARD DYNAMICS

A. Symmetric Soliton Lattice Solutions

For ε < 0, there exists a stationary solution of the one dimensional (C-H) that relies

the two homogenous phases Φ = ±
√
−ε
2

Φ(x) =

√

|ε|
2

tanh(

√

|ε|x
2

). (2)

Such a monotonic solution describes a continuum interface between the two stable homo-
geneous phases, and corresponds to the thermodynamically stable solution that ends the
phase transition dynamics. But this is a particular member of a one parameter family of
stationary solutions of the (G-L) equation

ε∗

2
Φ + 2Φ3 −∇2Φ = 0 (3)

These solutions, the so-called soliton-lattice solutions, are :

Φk,ε(x) = k∆Sn(
x

ξ
, k) with ξ = ∆−1 =

√

2
k2 + 1

−ε∗ (4)

where Sn(x, k) is the Jacobian elliptic function sine-amplitude, or cnoidal mode. This family
of solutions is parametrized by ε∗ and by the modulus k ∈ [0, 1], or ”segregation parameter”.
These solutions describe periodic patterns of periods

λ = 4K(k)ξ, where K(k) =

∫ π

2

0

dt
√

1 − k2 sin2 t
(5)

is the complete Jacobian elliptic integral of the first kind. Together with k, it characterizes
the segregation, defined as the ratio between the size of the homogeneous domains, 0.5× λ,
and the width of the interface separating them, 2× ξ. This family of profiles (or alternating
interfaces) can be obtain exactly as a periodic sum of single solitons and antisolitons [18]

∑

n

(−1)n tanh(πs(x− n)) =
2k(s)K(s)

πs
Sn(x, k) with s =

K(k)

K(k′)
and k′2 = 1 − k2 (6)

Using equations (4) and (5), we find that λ, k and ε∗ are related to one another through the
state equation

ε∗(k) = −2(1 + k2)

(

4K

λ

)2

. (7)
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B. Antsatz for the Spinodal Decomposition Dynamics

The preceding family of profile can be used to explore the spinodal decomposition dy-
namics. Equations (5) and ξ = ∆−1, enable to rewrite this family as :

Ψ∗(x, k, λ) =
4K(k) · k

λ
Sn(

4K(k)

λ
x, k).

The soliton-lattice solution can be associated with a micro phase separation locally limited
by the finite diffusion coefficient. For k = 1, Sn(x, 1) = tanh(x), we recover the usual single
interface solution ; it is associated with a one soliton solution and corresponds to a strong,
or macroscopic segregation. Note that K(1) diverges ; the solution

Φ1,ε(x) =

√

|ε|
2

tanh(

√

|ε|
2

x).

is thus the limit of infinite s, when the solitons are far apart one each others.
In the opposite limit (weak segregation regime), it describes a sinusoidal modulation

limk→0Φk,ε(x) = k

√

|ε|
2

sin(

√

|ε|
2
x) = k

2π

λ
sin(

2π

λ
x)

It will correspond to the Fourier mode of the initial white noise at wave number q = 2π
λ

:

Φ(x, t = 0) = ν sin(qx)

where ν = kq is an arbitrary small amplitude. Since experiences, numerical simulations and
linear stability analysis show that λ, the period of the pattern is constant during the whole
spinodal decomposition process, we choose λ to coincide with the most instable wave length
obtain with the Cahn Hilliard linear approach, λ = λC−H = 4π√

−ε0

, where ε0 is the quench
temperature. And thus, we obtain a one parameter family of profile which describe very
well both the linear growth and the saturation: the dynamics of Ψ∗(x, t) is now reduced to
the evolution of k(t) (or equivalently ε∗(t), if we use equation of state (7) for λ = λC−H).

Given a function Φ (obtained either from experimental data or numerical simulation of
equation (3)) at time t, the ansatz assumes that there exists k so that Φ(x, t) ∼ Ψ∗(x, k).
For this purpose, we have developed three different algorithms, taking advantage of the
general properties of the family of solutions Ψ∗(x, k, λ) : either, k can be deduced both
from the amplitude of the oscillation equals to 4kK(k)/λ, or from the relation k = 1 −
((Φ(λ/2, t)/Φ(λ/4, t))2 − 1)

2
; thirdly, a straightforward computation relates k to the ratio

of the two first terms of the Fourier transform of Φ. We have observed that the three
methods show in general similar results within an error of one percent.

ε∗(t) can be then interpreted as a fictitious temperature or “local temperature” of the
domains: it is the temperature extracted from the profile at a given time, using the cor-
respondence between ε∗ and k of equation (7). For instance, at t = 0, the amplitude is
small and we find that k(0) = νλm

2π
→ 0 and thus ε∗(0) = 8π2/λ2, different a priori from ε0

(ε∗(0) = ε0

2
for λ = λC−H).

Somehow, the dynamics of (C-H) can be projected at first order onto a dynamics along the
sub-family Ψ∗(x, k), which can be considered as an attractor of the solutions, i.e. the density
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profile of the system will evolve with time, staying always close to a function Ψ∗(x, k, λC−H).
And using a solubility condition, it is possible to compute the full non linear part of this
dynamics, the saturation of the spinodal decomposition, which leads the system in a well
defined stationary state [6].

C. Saturations of the Spinodal Decomposition Dynamics

According to the previous interpretation of ε∗(t), the dynamics saturates when this
fictitious temperature reaches the thermodynamic one, i.e. the quench temperature ε0; that
is, using equation of state (7) for λ = λC−H , when k = ks solution of the implicit equation :

2(1 + ks2)K(ks)2 = −ε0λ
2
C−H

16
= π2.

We obtain numerically ks
1 =0.687. Note that the width of the interface, which was initially,

just after the quench, proportional to 2√
−ε0

has now become proportional to π√
−ε0K(ks

1
)

=√
2(1+ks

1
2)

√
−ε0

⋍
1.7√
−ε0

. Using linear stability analysis, Langer has shown that the stationary

profile thus obtained, Ψ∗(x, ks
1, λC−H), is destroyed by stochastic thermal fluctuations and

he has identified the most instable mode as an ”antiferro” mode, leading to a period doubling.
The result of this destabilization is another profile of alternate interface, where the length
of the domains is now :λ = 2λC−H = 8π√

−ε0

. This means that the new stationary profile is

given by Ψ∗(x, ks
2, 2λC−H), where ks

2 is solution of the implicit relation

2(1 + ks2
2 )K(ks

2)
2 = −ε0(2λC−H)2

16
= 4π2 = 8(1 + ks2

1 )K(ks
1)

2.

We obtain numerically ks
2 =0.985, i.e. a profile where the interface is relatively sharper

(the width of the interface is now proportional to π√
−ε0K(ks

2
)

=

√
1+ks

1
2

√
2
√
−ε0

⋍
0.99√
−ε0

) compare to the

size of the homogeneous domains which has double, see Fig. (2).Again, this new stationary
profile turns out to be linearly instable with respect to an ”antiferro” perturbation.

Thus these families of profiles and instabilities enable to describe the one dimensional
coarsening as a cascade of doubling process, leading from a pattern of wave length λC−H

composed of domains separated by interfaces to a single tanh(
√
−ε0

2
x) interface separating

two semi infinite domains. Each of these successive intermediate profiles is also described
by an element of the above family of soliton lattice Ψ∗(x, ks

n, 2
n × λC−H). We thus have a

family of segregation parameter {ks
n}, which are determined by the implicit relations

2(1 + ks2
n )K(ks

n)2 = −ε0(2
nλC−H)2

16
= π222n. (8)

We have found numerically

ks
1 =0.6869795924
ks

2 =0.9851675587
ks

3 = 0.99997210165
ks

4 =0.99999999990275
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and we see that it converge to ks
∞ = 1 (single interface case). For large n, we can con-

clude from the implicit relation (8) that the ratio of the domain size to the interface width
characterized by K(ks

n) behaves as π2n−1. Each of the stationary profile

Ψ∗
n(x) = Ψ∗(x, ks

n, 2
n−1λC−H) =

√−ε0K(ks
n) · ks

n

2n−1π
Sn(

√−ε0K(ks
n)

2n−1π
x, ks

n),

for which the interface width is proportional to 2n−1π√
−ε0K(ks

n
)
(which tends to 2√

−ε0

, in agreement

with tanh(
√
−ε0

2
x)) , is identically destroyed by the Langer ”antiferro” instability.

IV. AN ANSATZ FOR THE 1D COARSENING PROCESS

A. Non-symmetric soliton lattice Profile

In order to describe one step of the coalescence process, i.e. the dynamics that start
from Ψ∗

n(x) and ends with the profile Ψ∗
n+1(x) , we will use another family of equilibrium

profiles, solutions of (G-L) equation, which write:

ψ(a, k, x) =
α(a, k) − k/

√
aβ(a, k)Sn(4xK(k)

λ
, k)

1 − k/
√
aSn(4xK(k)

λ
, k)

where α(a, k) = −2k2/a+1+k2

((1+k2)2−12k2+2(a+k2/a)(1+k2))
1

2

and β(a, k) = 2a−1−k2

((1+k2)2−12k2+2(a+k2/a)(1+k2))
1

2

.

It is still a periodic lattice of interfaces, but now, the mean value of the order parameter
is non zero (non symmetric case). The parameter a > 1 controls the aperiodicity of the
profile [19]: if a goes infinity, we recover the previous family of periodic profiles.

B. Ansatz for the continuous interpolation between two stationary states

If we choose a to be equal to 1+k′ (where k′2 = 1−k2), we can then construct symmetric
profiles using the sum of two non-symmetric ones. Indeed, using Gauss’ transformation (or
descending Landen transformation [20]), which relate the soliton lattice of spatial period 2λ
(and of modulus k) to the soliton lattice of period λ (and of modulus µ = 1−k′

1+k′
), we have

1 −
√

5−k2

2
(ψ(k, x− λ

2
) + ψ(k, x+ λ

2
)) = kSn(2xK(k)

λ
, k) (9)

1 −
√

5−k2

2
(ψ(k, x− λ) + ψ(k, x+ λ)) = (1 − k′)Sn((4x+ 2λ)K(µ)

λ
, µ) (10)

where ψ(k, x) = ψ(1 + k
′

, k, x). Thus, we then can show from equation (9) that

K(k)

[

1 −
√

5 − k2

2
(ψ(k, x− λ

2
) + ψ(k, x+

λ

2
))

]

= kK(k)Sn(2x
K(k)

λ
, k).

This is the solution of the G-L equation of period 2λ. Moreover, if we use the fact that

K(k) =
2

1 + k′
K(µ) or K(µ) =

1

1 + µ
K(k) (11)
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we can write

(1 − k′)K(k)Sn((4x+ 2λ)
K(µ)

λ
, µ) = 2µK(µ)Sn((2x+ λ)

2K(µ)

λ
, µ)

and thus, using relation (10) the stationary solution of period λ can be expressed as follows

K(k)

[

1 −
√

5 − k2

2
(ψ(k, x− λ) + ψ(k, x+ λ))

]

= 2µK(µ)Sn((2x+ λ)
2K(µ)

λ
, µ).

So, we see that both the initial state Ψ∗(x, ks
n−1, 2

n−1λC−H) and the final state
Ψ∗(x, ks

n, 2
nλC−H) of a step of the coalescence process can be describe, modulo a phase

shift, by the same function :

Φ(x, k, φ) =
4K(k)

λ

[

1 −
√

5 − k2

2
(ψ(k, x− (1 − φ/2)λ) + ψ(k, x+ (1 − φ/2)λ))

]

with k = ks
n and λ = 2nλC−H . Therefore we can describe the coalescence by a transformation

at constant segregation parameter k, while the degree of freedom φ evolves in time from 0
to 1 according to the C-H dynamics.

This result can also be understand if one notes that this non-symmetric lattice of in-
terfaces can also be obtain as a periodic sum of alternating single interfaces (kinks and
antikinks). In the same spirit as relation (6), if one forget in the infinite sum every two out
of four interfaces, one gets :

ψ(x) ∽
∑

n

[tanh(πs(x− 2 ∗ n)) − tanh(πs(x− 2 ∗ n + 0.5))] .

Then (see Fig.3) adding ψ(x) to ψ(x + 1) enables to recover relation (6), while, after a
translation, adding ψ(x) and ψ(x + 0.5) gives the soliton lattice of double period, because
of the cancelation of half of the interfaces (annihilation of kinks and antikinks).

If we look at the time evolution of the profile Φ(x, k, φ), starting from the region φ = 0,
we can replace the (C-H) equation by a phase field equation, replacing ∂

∂t
Φ(x, k, φ) by

∂
∂φ

Φ(x, k, φ(t)).dφ
dt

. The dynamics will be similar to a spinodal decomposition, with φ growing

and saturating exponentially. ∂
∂φ

Φ(x, k, φ) is the most unstable mode founded in Langer’s
analysis, and it characterizes the synchronous alternate growth and decrease of domains.
Note that when Langer was studying the most instable perturbation, he was looking at the
linearized version of C-H equation around Ψ∗(x, k, λC−H) :

Lϕ =
(ε

2
+ 6Ψ∗2 −∇2

)

ϕ =
(ε

2
+ n× (n + 1)Ψ∗2 −∇2

)

ϕ.

Lϕ = 0 is the Lamé equation, for n = 2 (here ε0 = 1). This equation doesn’t have exact
solution of period 2λC−H . ∂

∂φ
Φ(x, k, φ) for φ = 0 is not an exact solution either. It corre-

sponds to a maximum of the free energy averaged over one period F(φ) =
∫

F (Φ(x, k, φ))dx.
The (G-L) or stationary (C-H) equation, i.e. the first functional derivative δF

δΦ
= 0, admits

Φ(x, k, φ = 0) = Ψ∗(x) as solution. But Lamé equation, obtained when linearizing (G-L)
equation around Ψ∗(x), is related with the second functional derivative of F ; therefore one
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doesn’t expect ∂
∂φ

Φ(x, k, φ = 0) to be an exact solution or eigenvector of L. Nevertheless,
it is a good approximation for the eigenvector of lowest eigenvalue. Due to the concavity of
F(φ) around φ = 0, this eingenvalue will be negative, triggering a linear destabilization and
an exponential amplification of the perturbation.

Langer’s phenomenon of ”antiferro” instability appears because of the existence of two
possible direction of displacement of the interfaces ψ, one with a positive velocity(+dφ

dt
) and

one with a negative one(−dφ
dt

). This correspond to the breaking of symmetry of the dynamics
for the four different kind of interfaces present in a cell of length 2λC−H , which will have
alternately a positive or a negative velocity. This can be seen in Figure 4 as the existence
of two antisymmetric patterns [21], or building blocks for the leading instability around a
intermediate state Ψ∗(x, ks

n, 2
n × λm). Each one is related to a pair of two interfaces : they

are ± d
dx
ψ(x), the spatial derivative of the initial non symmetric profile ψ(x) which has been

used to construct our ansatz.
Note that the breaking of symmetry in Langer analysis for the choice of the antiferro

cell, corresponds here to thefreedom we have when choosing the range of variation of φ: we
could have chosen to go from 0 to −1, ending after a step of coarsening with the symmetric
pattern, or equivalently, a pattern translated of half a period.

C. Approximation for adiabatic evolution with constant k

In the previous part, with relation (8), a implicit relation between kn and kn+1 was
defined:

√

1 + ks2
n+1K(ks

n+1) = 2
√

1 + ks2
n K(ks

n)

It is in fact different from the relation (11) obtained by the Landen transformation. Never-
theless in the region k ≥ ks

1 =0.687, the two transformation almost coincide, as can be seen
on figure 5. This is especially true close to k = 1. As this region is rapidly reach after the
second or third iteration, we pretend that the process of coarsening can be describe with a
reasonable accuracy by our antsatz at constant k. A slight change of segregation parameters
during the nth doubling process, from k = Landen(ks

n) when φ = 0 to k = ks
n+1 when φ = 1,

is indeed present in the dynamics, as seen in the following table

ks
1 =0.6869795924 Gauss(ks

2) = Landen−1(ks
2) = 0.7070743852

ks
2 =0.9851675587 Gauss(ks

3) = Landen−1(ks
3) = 0.9851714206

ks
3 = 0.99997210165 Landen(ks

2) = 0.9999720868
ks

4 =0.999999999902745 Landen(ks
3) = 0.9999999998

But it has only a minor effect in terms of profile shape Φ (r, t). And this k-dynamics,
which affect the value of the modulus by 0.25% during the first step of coarsening, become
negligeable as k goes closer to 1. So we can conclude that this ”k” dynamics is irrelevant ;
this parameter can be considered as constant during the evolution of φ.
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D. Energy Landscape

In order to prove the usefulness of this ansatz, we have plot the energy averaged over one
period, F(φ) =

∫

F (Φ(x, k, φ))dx, as a function of the parameter φ, keeping k constant. We
see for example in Figure6 that the value φ = 0 correspond to a local maximum of energy,
while φ = 1 (or −1) is a minimum. Note that there is no energy barrier in this particular
energy landscape, in agreement with linear stability analysis.

V. DISCUSSION ON THE HYPOTHESIS

Our analytic method rely on the assumption that at each state of the dynamics, the
system can be characterized through a particular length scale: we need therefore to discuss
how this approach is relevant to the general case where noise is present. We have noted,
for the spinodal decomposition, that the average size of the modulation is λC−H , with a
deviation of less than one percent from the value predicted by the linear theory. It does
not mean that, in a real system, each modulation has a length scale of λC−H , but that
the distribution of the modulations length will be centered around λC−H [6]. Thus, the
coalescence due to the non-periodic pattern selected at short time can be neglected during
the initial growth of the modulations. When this initial growth saturates (as can be seen
from figure (1)), the coalescence will then dominates the future dynamics : the length scale
of the structures slightly increases with time.

As suggested by [1,15], we can suppose that during the ideal coalescence process, that is
for a process that breaks the fewest possible symmetry, the lattice of interface will experience
an antiferro instability. But in a real system, this instability will concern a finite size region
where it choose a certain sublattice, or a range for φ (for example, φ varies from 0 to 1),
while it is the opposite choice in the neighboring region ( φ varies from 0 to -1). Thus on the
overall, the global symmetry is recover. During each step of the process, the width of the
domains will locally double. But due to non synchronization between regions, for system as
a whole, the average length scale will vary continuously. The next step of the calculation is
to compute the characteristic time for the duration of this doubling process as a function of
n, to see if the overall process thus described evolves logarithmically as expected in 1D [14].

These results indebted to Christophe Josserand for many fruitful discussions and com-
ments together with numerical help.

10



REFERENCES

[1] J.S. Langer, Annals of Physics 65, 53 (1971).
[2] C. Wagner, Z. Electrochem. 65, 581 (1961).
[3] M. Hillert, Acta Met. 9, 525 (1961).
[4] J.S. Langer, in Solids Far From Equilibrium, edited by C. Godrèche (Cambridge Uni-
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FIGURES

FIG. 1. Time evolution of the order parameter Φ(x, t) for ε = −1, dx = 0.1227. (a) initial

conditions at t = 0 are taken randomly with a very low amplitude (5 · 10−4) ; (b) at time t = 15,

the amplitude of the small scale spatial modulations has been damped by the (C-H) dynamics,

while only long wavelength contributions are still present. ; (c) at t = 225, the spatial modulation

has almost reached its final amplitude, keeping roughly the same number of peaks as before ; (d)

at t = 1800, we observe that the number of domains has decreased from the coarsening dynamics.

FIG. 2. Profiles of the two first metastable solutions of the (C-H) dynamics, with ks
1 = 0.687

and ks
2 =0.985, corresponding to the first coarsening process.

FIG. 3. Constuction of the two first steady solutions of the (C-H) dynamics, with ks
1 = 0.687

and ks
2 =0.985, using a superposition of the non-symmetric profile ψ(k, x), itself stationary solution

of the (C-H) equation. By changing the phase shift between the two profiles entering into the linear

combinaison, one obtains two different symmetric profiles, of periods λ and 2λ.

FIG. 4. Langer’s most instable perturbation mode of destabilisation of the soliton lattice is

identifyed with ∂
∂φ Φ(x, k, φ) at φ = 0. It is composed of two antisymmetric patterns, plotted

in dotted (plain) line, evolving toward right (left) at velocity +dφ
dt (-dφ

dt ), causing an ”antiferro”

instability leading to a period doubling of the pattern. They are the spatial derivative of the initial

non symmetric profile ψ(x) which has been used to construct our ansatz in Figure 3.

FIG. 5. Comparison between the Landen transformation (upper solid line) and the implicit

relation between consecutive stationary steady state of (C-H) equation (lower dash line) in the

region between k = ks
1 =0.68 and k =1, corresponding to the region of interest for the coarsening

process. The circles mark (from left to right)ks
1, Landen

−1(ks
2), k

s
2 , and Landen−1(ks

3).

FIG. 6. Profiles of the energy landscape during a coarsening process, starting with a profile

characterized by the segregation ratio ks
1 = 0.687 at φ = 0 and ending in the stationnary state

ks
2 =0.985 at φ = 1
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