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Abstract. We determine the universal law for fidelity decay in quantum computations of complex dynamics
in presence of internal static imperfections in a quantum computer. Our approach is based on random
matrix theory applied to quantum computations in presence of imperfections. The theoretical predictions
are tested and confirmed in extensive numerical simulations of a quantum algorithm for quantum chaos
in the dynamical tent map with up to 18 qubits. The theory developed determines the time scales for
reliable quantum computations in absence of the quantum error correction codes. These time scales are
related to the Heisenberg time, the Thouless time, and the decay time given by Fermi’s golden rule which
are well known in the context of mesoscopic systems. The comparison is presented for static imperfection
effects and random errors in quantum gates. A new convenient method for the quantum computation of
the coarse-grained Wigner function is also proposed.

PACS. 03.67.Lx Quantum Computation – 05.45.Pq Numerical simulations of chaotic systems – 05.45.Mt
Quantum chaos; semiclassical methods

1 Introduction

Recently a great deal of attention has been attracted to
the problem of quantum computation (see e.g. [1,2,3]). A
quantum computer is viewed as a system of qubits. Each
qubit can be considered as a two-level quantum system,
e.g. one-half spin in a magnetic field. For nq qubits the
whole system is characterized by a finite - dimensional
Hilbert space with N = 2nq quantum states. It has
been shown that all unitary operations in this space can
be realized with elementary quantum gates which include
one-qubit rotations B(1) and two-qubit controlled oper-
ations, e.g. controlled-NOT gate C(N) or controlled
phase-shift gates B(2)(φ) (see e.g. [3,4]). The gates C(N)

and B(2)(φ) assume that the interaction between qubits
can be switched on and off in a controllable way with suf-
ficiently high accuracy. Various computational algorithms
in the space N can be represented as a sequence of ele-
mentary gates. A general unitary operation (unitary ma-
trix) in this space requires an exponential ( in nq) number
of elementary gates. However, there are important exam-
ples of algorithms for which the quantum computation can
be performed with a number of operations (gates) much
smaller than with the classical algorithms. The most fa-
mous is the Shor algorithm for factorization of integers
with nq digits which on a quantum computer can be per-
formed with O(n3

q) gates contrary to an exponential num-
ber of operations required for any known classical algo-
rithm [5]. Another example is the Grover algorithm for

a search of unstructured database which has a quadratic
speedup comparing to any classical algorithm [6].

A quantum computation can be much faster than a
classical one due the massive parallelism of many-body
quantum mechanics since any step of a quantum evolu-
tion is a multiplication of a vector by a unitary matrix.
A very important example is the quantum Fourier trans-
form (QFT) which can be performed for a vector of size
N = 2nq with O(nq

2) gates instead of O(nq2
nq) classical

operations required for the fast Fourier transform (FFT)
(see e.g. [1,3]). With the help of QFT the quantum evolu-
tion of certain many-body quantum systems can be per-
formed in a polynomial number of gates [7,8]. Another
example can be found in the evolution of quantum dy-
namical systems which are chaotic in the classical limit
(see e.g. [9,10]). Such systems are described by chaotic
quantum maps and include the quantum baker map [11],
the quantum kicked rotator [12], the quantum saw-tooth
map [13] and the quantum double-well map [14]. For them
a map iteration can be performed for N -size vector in
O(nq

2) or O(nq
3) gates while a classical algorithm would

need O(nq2
nq) operations. This however does not neces-

sary lead to an exponential gain since the final step with
extraction of information by measurements also should be
taken into account. Thus, for example, the quantum sim-
ulation of the Anderson metal-insulator transition gives
only a quadratic speedup even if each step of quantum
evolution is performed in a polynomial number of gates
[15]. Among other algorithms, let us refer to the quantum
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computation of classical chaotic dynamics where some new
information can be obtained efficiently [16,17].

The main obstacle to experimental implementation of
a quantum computer is believed to be decoherence induced
by unavoidable couplings to external world (see e.g. [18]).
However, even if we imagine that there are no external
couplings there still remains internal static imperfections
inside a quantum computer. These static imperfections
generate residual couplings between qubits and variation
of energy level-spacing from one qubit to another. As it
was shown in [19] such imperfections lead to emergence
of many-body quantum chaos in a quantum computer
hardware if a coupling strength exceeds a quantum chaos
threshold. In a realistic quantum computer this thresh-
old drops only inversely proportionally to the number of
qubits nq while the energy spacing between nearby lev-
els drops exponentially with nq. The dependence of this
threshold on quantum computer parameters was studied
analytically and numerically by different groups [19,20,21,
22,23] The time scales for onset of quantum chaos were
also determined.

It is of primary importance to understand how effects
of external decoherence and internal static imperfections
affect the accuracy of quantum computations. A very con-
venient characteristic which allows to analyze these ef-
fects is the fidelity f of quantum computation. It is de-
fined as f(t) = | < ψε(t)|ψ(t) > |2 where |ψ(t) > is
the quantum state at time t computed with perfect (or
ideal) gates, while |ψε(t) > is the quantum state at time
t computed with imperfect gates characterized by an im-
perfection strength ε. If the fidelity is close to unity then
a quantum computation with imperfections is close to the
ideal one while if f is significantly smaller than 1 then the
computation gives, generally, wrong results.

At first the fidelity was used to characterized the ef-
fects of perturbation on quantum evolution in the regime
of quantum chaos [24]. Indeed, for the classical chaotic
dynamics the small errors grow exponentially with time
while for the quantum evolution in the regime of quantum
chaos small quantum errors only weakly affect the dynam-
ics. For example, the time reversibility is broken by small
errors for classical chaotic dynamics while it is preserved
for the corresponding quantum dynamics in presence of
small quantum errors [25,26]. In the context of quantum
computation the qualitative difference between classical
and quantum errors is analyzed in [16]. Recently, the in-
terest to the fidelity decay induced by perturbations of dy-
namics in the regime of quantum chaos has been renewed
[27,28,29,30,31]. It has been shown that the rate Γ of ex-
ponential decrease of f is given by the Fermi golden rule
for small perturbations while for sufficiently strong pertur-
bations the decay rate is determined by the Kolmogorov-
Sinai entropy related to the Lyapunov exponent of classi-
cal chaotic dynamics [28]. For small perturbations the fi-
delity decay can be expressed with the help of correlation
function of quantum dynamics that allows to understand
various peculiarities of the decay [30].

Until recently the fidelity decay and accuracy of quan-
tum computations have been mainly analyzed for the case

of random noise errors in the quantum gates [32,16,13,
14,33,34]. Quite naturally in this case the rate of fidelity
decay is proportional to the square of error amplitude ε
(Γ ∝ ε2). Indeed, a random error of amplitude ε trans-
fers a probability of order ε2 from the ideal state to all
other states and as a result the fidelity remains close to
unity (within e.g. 10% accuracy) during a time scale tf ∼
1/(ε2ng). Here ng is the number of gates per one map it-
eration and for polynomial algorithms ng ∼ nγ

q (e.g. for
the quantum saw-tooth map γ = 2 [13]).

Contrary to the case of random errors the effects of
static imperfections on fidelity decay have been studied
only in [13,33]. The numerical simulations performed there
with up to 18 qubits show that for small strength of static
imperfections ε the time scale tf varies as tf ∼ 1/(εng

√
nq).

Such a dependence implies that in the limit of small ε the
effects of static imperfections dominate the fidelity decay
comparing to the case of random errors [13,33]. Simple es-
timates based on the Rabi oscillations have been proposed
to explain the above dependence extracted from numerical
data [13,33].

Since the numerical results show that the static imper-
fections lead to a more rapid fidelity decay, compared to
random errors fluctuating from gate to gate, it is impor-
tant to investigate their effects in more detail. This is the
aim of this paper in which we carry out extensive numeri-
cal and analytical studies of static imperfections effects on
fidelity decay using as an example a quantum algorithm
for the quantum tent map which describes dynamics in
a mixed phase space with chaotic and integrable motion.
For the case when the algorithm describes the dynam-
ics in the regime of quantum chaos a scaling theory for
universal fidelity decay is developed on the basis of the
random matrix theory (RMT) [35,36,37]. This theory is
tested in extensive numerical simulations with up to 18
qubits and the obtained results confirm its analytical pre-
dictions which are rather different from the conclusions of
the previous studies [13,33]. We also investigate the regime
of fidelity decay for integrable quantum dynamics where
the situation happens to be more complicated. In addi-
tion, a simple quantum algorithm is proposed for approx-
imate computation of the coarse-grained Wigner function
(the Husimi function) [38,39] and its stability in respect
to imperfections is tested on the example of quantum tent
map.

It is important to note that all quantum operations re-
quired for implementation of the quantum tent map have
been already realized for 3 - 7 qubits in the NMR-based
quantum computations reported in Refs. [40,41]. An effi-
cient measurement procedure for fidelity decay in quan-
tum computations is proposed in [42].

The paper is organized as follows. In Sec. 2 we describe
the classical and quantum tent map. The algorithm for
quantum dynamics is derived in Sec. 3. The fidelity decay
for random errors in quantum gates is analyzed in Sec. 4.
The analytical theory for fidelity decay induced by static
imperfections is developed on the basis of RMT approach
in Sec. 5. This theory is tested in extensive numerical sim-
ulations presented in Sec. 6. An approximate algorithm for
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the quantum computation of the Husimi function is stud-
ied in Sec. 7. The conclusion is given in Sec. 8.

2 Classical and quantum tent map

We consider a kicked rotator whose dynamics is governed
by the time dependent Hamiltonian,

H(t) =
Tp2

2
+ V (θ)

∞
∑

m=−∞
δ(t−m) (1)

with the potential of kick

V (θ) =

{

−k
2 θ(θ − π) , 0 ≤ θ < π

k
2 (θ − π)(θ − 2π) , π ≤ θ < 2π

(2)

where θ is taken modulo 2π and δ(t) is a δ-function, m is
an integer. The parameter k determines the kick strength
and T gives the rotation of phase between kicks. It is easy
to see that the classical evolution for a finite time step
t → t + 1 with respect to the Hamiltonian (1) can be
described by the map,

p̄ = p− V ′(θ) , θ̄ = θ + p̄ T ( mod 2π) . (3)

Here bars mark new values of the dynamical variables after
one map iteration. This map is similar in structure to the
Chirikov standard map [43]. The derivative of the kick-
potential,

V ′(θ) =

{

k(π
2 − θ) , 0 ≤ θ < π

k(− 3π
2 + θ) , π ≤ θ < 2π

, (4)

has a tent form and is continuous but not differentiable at
θ = 0 and θ = π. This is an intermediate case between the
standard map [43] with a perfectly smooth kick-potential
and the saw-tooth map [13] with a non-continuous poten-
tial.

k = 0:53 k = 4=3 k = 1:7

Fig. 1. Classical Poincaré sections of the map (3) in (θ, p)
plane for T = 1 and K = k = 0.53, K = k = 4/3 and K = k =
1.7.

The dynamics of the classical tent map (3) depends
only on one dimensionless parameter K = kT , its prop-
erties have been studied in [44,45]. For small values of

K the dynamics is governed by a KAM-scenario with the
Kolmogorov-Arnold-Moser (KAM) invariant curves and a
stable island at θ = 3π/2, p = 0 and a chaotic layer around
separatrix starting from the unstable fixed point (saddle)
at θ = π/2, p = 0. At K = 4/3, the last invariant curve
is destroyed and one observes a transition to global chaos
with a mixed phase space containing big regions with reg-
ular dynamics [44,45].

In Fig. 1, the Poincaré sections of the map (3) for the
three values K = 0.53, 4/3, 1.7 are shown. Here we have
replaced p by its value modulo 2π/T which is appropri-
ate since the classical map is invariant with respect to the
shift p→ p+ 2π/T . Fig. 1 confirms the above scenario of
a transition to global chaos at K = 4/3. In the following,
we are particularly interested in a typical case K = 1.7,
which exhibits global chaos with quite large stable islands
in phase space related to the main and secondary reso-
nances.

At K ≥ 4, the phase space becomes completely chaotic
and the dynamics is characterized by a diffusive growth in
p. The diffusion rate D in p can be obtained with the help
of random phase approximation that gives

〈(p− p0)
2〉 ≈ D t , D = 〈V ′(θ)2〉θ =

π2

12
k2 . (5)

Here and below t is an integer which gives the number of
map iterations (kicks).

The quantum dynamics of the Hamiltonian (1) is given
by the Schrödinger equation,

i
∂

∂t
|ψ(t)> = H(τ) |ψ(t)> . (6)

Here in the Hamiltonian H(t) the variables p̂ and θ̂ are

operators with the commutator [p̂, θ̂] = −i. They have
integer eigenvalues p for p̂ and real eigenvalues θ in the

interval [0, 2π[ for θ̂. As in the classical case one can de-
termine the evolution for one map iteration:

|ψ(t+ 1)> = U |ψ(t)> = e−iT p̂2/2 e−iV (θ̂) |ψ(t)> . (7)

Eq. (7) corresponds to the quantized version of the clas-
sical map (3) and defines a quantum map that can be
efficiently simulated on a quantum computer. Here h̄ = 1
and the quasiclassical limit correspond to T → 0, k → ∞
with K = kT = const.

For quantum dynamics we concentrate our studies on
the case K = kT = 1.7 and T = 2π/N that corresponds
to evolution on one classical cell (see Fig. 1) with N quan-
tum states. As an initial state we use a minimal coherent
wave packet corresponding to a given N which is placed
in a chaotic or integrable component (near the unstable
or stable fixed point at p = 0, θ = π/2 or θ = 3π/2). An
example of the Husimi function (see Sec. 7) for a chaotic
case is shown in Fig. 2 for different moments.

3 Quantum algorithm

The quantum map (7) can be simulated on a quantum
computer in a polynomial number of gates. The quantum
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Fig. 2. Density plots of the Husimi functions (see below Sec. 7)
of the quantum state |ψ(t)> for t = 5 (top left panel), t = 15
(top right panel) and t = 5625 (bottom left panel) with an
initial state |ψ(0)> chosen as a minimal coherent (gaussian)
wave packet closely located to the saddle at θ = π/2, p = 0.
The bottom right panel corresponds to the quantum state after
5625 iterations computed on a quantum computer with static
imperfections for ε = 7 · 10−7, here the fidelity is f = 0.9388
(see below Secs. 3,6 for details). The density is minimal for
blue/black and maximal for red/white. All panels correspond
to nq = 16 qubits, i.e. to a finite dimensional Hilbert space of
dimension N = 216, T = 2π/N .

algorithm has similarities with those described in [12,13].
To perform one iteration of the quantum map (7) we repre-
sent the states |ψ> by a quantum register with nq qubits.
In particular, the eigenstates |p> of the momentum oper-
ator are identified with the quantum-register states

|α0, α1, . . . , αnq−1> = |α0>0 |α1>1 . . . |αnq−1>nq−1 (8)

where αj = 0 or 1 and

p =

nq−1
∑

j=0

αj 2j . (9)

The states |0>j and |1>j correspond to the two basis
states of the j−th qubit. Obviously, this representation
introduces a Hilbert space of finite dimension N = 2nq ;
the operator p̂ has the eigenvalues: p = 0, . . . , N − 1.

A quantum computer is a machine that is able to pre-
pare a quantum register with a well defined initial condi-
tion and to perform certain well controlled unitary oper-
ations on this quantum register. These particular opera-
tions are called quantum gates and one typically assumes
that the quantum computer can be constructed with quan-
tum gates that manipulate at most two qubits. Here we

use as elementary gates the phase-shift gates B
(1)
j and

controlled phase-shift gates B
(2)
jk :

B
(1)
j (φ) |p> = eiαjφ |p> , (10)

B
(2)
jk (φ) |p> = eiαjαkφ |p> , j 6= k (11)

where p is of the form (9). These gates provide a phase
factor eiφ if αj = 1 for the simple phase-shift or if αj =
αk = 1 for the controlled phase-shift. Using Eq. (9), one
easily verifies that the momentum dependent factor of the
unitary operator U in (7) can be expressed in terms of
these gates by:

e−iT p̂2/2 =

nq−1
∏

j<k

B
(2)
jk (−T 2j+k)

nq−1
∏

j=0

B
(1)
j (−T 22j−1) .

(12)
The situation is different for the phase factor containing
the kick-potential since this factor is not diagonal in mo-
mentum representation. It is therefore necessary to trans-

form to the basis of eigenstates of the operator θ̂. For this,
following [1] we consider the unitary operator UQFT de-
fined by:

UQFT |p> =
1√
N

N−1
∑

p̃=0

e2πi p p̃/N |p̃> . (13)

Then the eigenstates of θ̂ with eigenvalues θ = 2πp
N are

simply given by: U−1
QFT |p> and more generally the opera-

tors θ̂ and p̂ are related by:

θ̂ = U−1
QFT

(

2π p̂

N

)

UQFT . (14)

Using Eqs. (2), (9) and (14) it is straight-forward to show
that the unitary factor of U containing the kick-potential
can be written as:

e−iV (θ̂) = U−1
QFT

nq−2
∏

j<k

{

B
(3)
j,k,nq−1(−kπ2 2j+k−2nq+3)

× B
(2)
jk (kπ2 2j+k−2nq+2)

}

(15)

×
nq−2
∏

j=0

{

B
(2)
j,nq−1(−kπ2 2j−nq+2(2j−nq+1 − 1))

× B
(1)
j (kπ2 2j−nq (2j−nq+1 − 1))

}

UQFT .

Here we have used a three-qubit gate for a controlled-
controlled phase-shift defined by (cf. Eqs. (10), (11)):

B
(3)
jkl(φ) |p> = eiαjαkαlφ |p> . (16)

In Eq.(15) it appears for l = nq−1 because of the two dis-
tinct cases in Eq.(2). In principle, this gate is not directly
available in the set of one- and two-qubit gates used for a
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quantum computer. However, it can be constructed from
5 two-qubit gates by:

B
(3)
jkl(φ) = B

(2)
jl

(

φ

2

)

B
(2)
jk

(

φ

2

)

C
(N)
kl B

(2)
jk

(

−φ
2

)

C
(N)
kl

(17)

where C
(N)
kl is the controlled-not gate that exchanges the

states |0 >k and |1 >k for the k-th qubit if αl = 1. In
matrix representation it is given by:

C
(N)
kl =







1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0






(18)

where the index αl corresponds to the outer block struc-
ture and αk to the inner block structure.

Following the description [1], the QFT operator UQFT

can be written in the form:

U±1
QFT = R

nq−1
∏

j=0

{

Aj

nq−1
∏

k=j+1

B
(2)
jk (±π 2j−k)

}

(19)

where R is the unitary operator that reverses the order
of the qubits and Aj is a one-qubit gate with the matrix
representation:

Aj =
1√
2

(

1 1
1 −1

)

. (20)

We note that in the outer product in Eq.(19) the factors
are ordered from left to right with increasing j.

Combining, Eqs.(12), (15) and (19), we see that the
quantum map (7) can be expressed by a total number of
ng = 9

2n
2
q − 11

2 nq +4 elementary quantum gates (and 2 R-
operations). On a classical computer one iteration of the
quantum tent map requires O(nq2

nq) operations coming
mainly from the FFT.

To investigate the stability of the quantum algorithm
for the tent map we consider two models of imperfections.
The first model represents the random errors in quantum
gates fluctuating in time from one gate to another (ran-
dom noise errors). In this case for all phase-shift gates
we replace φ by φ + δφ with random δφ ∈ [−ε, ε] that
is different for each application of the gate. For the gates
containing the Pauli matrix σx we replace it by n ·σ where
n is a random unit-vector close to ex with |n − ex| ≤ ε.

The second model describes only static imperfections
and is similar to one used in [19,13,33,15]. In this case the
effect of static imperfections is modeled by an additional
unitary rotation between two arbitrary gates which has
the form : Us = eiδH . Here the Hamiltonian δH is given
by:

δH =

nq−1
∑

j=0

δj σ
(z)
j + 2

nq−2
∑

j=0

Jj σ
(x)
j σ

(x)
j+1 (21)

where σ
(ν)
j are the Pauli matrices acting on the jth qubit

and δj , Jj ∈ [−
√

3ε,
√

3ε] are random coefficients which

are drawn only once at the beginning and kept fixed during
the simulation. These coefficients determine one disorder
realization. In addition to a linear chain of qubits we also
analyzed a case with qubits distributed on a square lattice
which gave qualitatively similar results (see Sec. 6).

4 Quantum computation with random errors

The numerical results for fidelity decay induced by ran-
dom errors in quantum gates are presented in Fig. 3. They
clearly show that the decrease is exponential with time t
and is given by the fit:

f(t) = exp(−t/tr) ; tr = 1/(0.095ε2n2
q) ≈ 47/(ε2ng) .

(22)
As discussed in the introduction, the decay rate per gate is
proportional to ε2 since on each step noise transfer such a
probability from an ideal state to all other states (see [32,
16,13,14,33,34]). With a few percent accuracy the numer-
ical constant in (22) is close to the lower bound discussed
in [34].

-0.6

-0.4

-0.2

0

0 0.2 0.4 0.6 0.8

(d)

(a)(c) (b) x

ln(f)

Fig. 3. Data points (d) represent the fidelity decay for the
case of random noise errors in the gates of quantum algorithm.
The fidelity f = |<ψ(t)|ψnoise(t)>|

2 is shown as a function of
the scaling variable x = 0.095 t ε2 n2

q with nq = 10, 12, 14, 16
and 0.001 ≤ ε ≤ 0.1. The full line corresponds to the function
f = exp(−x). Data points (a), (b) and (c) represent the fidelity
decay (f = |<ψ(t)|ψstat(t)>|

2) as a function of the scaling
variable x = t ε2 nqn

2

g for the case of static imperfections with
nq = 10, ng = 9

2
n2

q −
11

2
nq +4 being the number of elementary

gates for one application of the quantum map and with (a)
ε = 3 · 10−5, (b) ε = 6 · 10−6 and (c) ε = 5 · 10−7. The
scaling variable for (a), (b), (c) is chosen in such a way that the
data curves are tangent to exp(−x) for small x. The number
of shown data points has been strongly reduced in order to
increase the visibility of the different symbols. (same approach
is used for other figures). Here and in Figs. 4-8, the initial state
is as in Fig. 2, K = 1.7, T = 2π/N .
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While with random errors the fidelity drops by a sig-
nificant amount in a purely exponential way the situation
in the case of static imperfections is more complicated (see
Fig. 3). In this case the initial exponential decrease is fol-
lowed by a gaussian exponential one. As a result static
imperfections give a faster decay of fidelity. The transi-
tion between these two types of decay depends on the
strength of imperfections ε. Moreover, in scaled variables
the weaker is ε the stronger is the gaussian decrease of
fidelity (see Fig 3). We shall describe these phenomenon
using the following RMT approach.

5 Quantum computation with static

imperfections: RMT approach

Let us denote by Ũ the unitary operator for the quan-
tum map with static imperfections and by U the unitary
operator for the ideal quantum map. We denote by Uj ,
j = 1, . . . , ng the elementary quantum gates which con-
stitute the quantum map. According to the description of
the quantum algorithm in section 3 we write :

U = Ung
· . . . · U2 · U1 (23)

and
Ũ = Ung

· eiδH · . . . · U2 · eiδH · U1 · eiδH (24)

where δH is the hermitian operator describing the static
imperfections. In numerical simulations we have used the
particular expression (21) for δH but we mention that
our approach does not rely on this expression and is much
more general. We now introduce an effective perturbation
operator for the full quantum map by: Ũ = U eiδHeff . The
operator δHeff is determined by:

eiδHeff = eiδH(ng−1) · . . . · eiδH(1) · eiδH (25)

with

δH(j) = U−1
j−1 · . . . · U−1

1 δH U1 · . . . · Uj−1 . (26)

We mention that the precise relation between δHeff and
δH is not important for the following argumentation and
we will need only one characteristic time scale tc defined
by:

1

tc
=

1

N
tr

(

δHeff
2
)

. (27)

We furthermore assume that tr(δHeff) = 0 (the case of
tr(δHeff) 6= 0 can be trivially transformed to the this case
[30] and δH in Eq. (21) has actually a vanishing trace).

The fidelity at time t is given by f(t) = |A(t)|2 with
the amplitude:

A(t) =
〈

U−t
(

UeiδHeff
)t
〉

Q
(28)

=
〈

eiδHeff (t−1) · . . . · eiδHeff (1) · eiδHeff (0)
〉

Q

and
δHeff(τ) = U−τ δHeff U τ . (29)

Here 〈· · ·〉Q denotes the quantum expectation value. For
a fixed initial state |ψ0> this expectation value is given
by: 〈· · ·〉Q = <ψ0| · · · |ψ0>. However, in the following we
average over all possible initial states that corresponds to:
〈· · ·〉Q = 1

N tr(. . .). Since we are interested in the case
where the fidelity is close to 1 we can expand (28) up to
second order in δHeff (or equivalently in ε) :

A(t) ≈ 1 + i

t−1
∑

τ=0

〈δHeff(τ)〉Q − 1

2

t−1
∑

τ=0

〈

δHeff
2(τ)

〉

Q

−1

2

t−1
∑

τ1=0

τ1−1
∑

τ2=0

〈δHeff(τ1)δHeff(τ2)〉Q . (30)

Now we introduce the correlation function C(τ) by:

C(τ1 − τ2) = tc 〈δHeff(τ1)δHeff(τ2)〉Q (31)

= tc 〈δHeff(τ1 − τ2)δHeff(0)〉Q

and we note that 〈δHeff(τ)〉Q = 1
N tr(δHeff) = 0. Com-

bining Eqs. (27), (30) and (31), we obtain:

f(t) ≈ 1 − t

tc
− 2

tc

t−1
∑

τ=1

(t− τ)C(τ) . (32)

This general expression relating the fidelity and the cor-
relation function (31) has been previously obtained by
Prosen et al. [30].

We now assume that the unitary quantum map U can
be modeled by a random matrix drawn from Dyson’s cir-
cular orthogonal (β = 1) or unitary (β = 2) ensemble [35,
36,37]. As we will see it is useful to express U in terms of
its eigenvectors and eigenphases:

U = V eiθ̂ V † , θ =







θ1
. . .

θN






. (33)

The matrix V is either real orthogonal (β = 1) or com-
plex unitary (β = 2). Inserting Eqs. (29), (33) in (31), we
obtain:

C(τ) =
tc
N
tr

(

V e−iτ θ̂ V † δHeff V e
iτ θ̂ V † δHeff

)

. (34)

In the following, we want to evaluate the average of C(τ)
with respect to U . We first evaluate the average with re-
spect to the matrix elements of V which gives for N ≫ 1 :

〈C(τ)〉U =

(

2

β
− 1

)

1

N
+

1

N2

〈

N
∑

j,k=1

eiτ(θj−θk)

〉

θ

. (35)

Here we have used that tr(δHeff) = 0 and we have re-
placed tr(δHeff

2) = N/tc according to Eq. (27). We have
furthermore neglected corrections of order 1/N2 which
arise from small correlations between matrix elements of
V at different positions. We note that in (35) the first
term vanishes for β = 2. For β = 1 this term arises from
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additional contributions (in the V -average) because the
elements of V are real for this case. The diagonal contri-
butions with j = k in the second term of (35) provide
the constant 1/N (which simplifies the first term). The
average over the non-diagonal contributions with j 6= k
can be expressed [36,37] in terms of a double integral over
the two-point density for the eigenphases θj . Since this
two-point density is related to the two-point correlation
function of the random matrix theory we obtain for τ ≥ 1 :

〈C(τ)〉U =
1

N

(

2

β
− b2

( τ

N

)

)

(36)

where

b2(τ̃ ) =

∫ ∞

−∞
ds Y2(s) e

2πi τ̃ s (37)

is the “two-level form factor” defined as the Fourier trans-
form of the two-point correlation function Y2(s). The form
factor of the Wigner-Dyson ensembles is well known [35,
36,37]. For the unitary and orthogonal symmetry class it
reads (in the large N limit):

β = 2 : b(τ̃ ) =

{

1 − |τ̃ | if |τ̃ | ≤ 1 ,
0 if |τ̃ | > 1 ,

(38)

β = 1 : b(τ̃ ) =

{

1 − 2|τ̃ | + |τ̃ | ln(2|τ̃ | + 1) if |τ̃ | ≤ 1 ,

−1 + |τ̃ | ln
(

2|τ̃ |+1
2|τ̃ |−1

)

if |τ̃ | > 1 .

(39)

Inserting the average correlation function (36) in (32) and
replacing the discrete sum by an integral, we finally obtain
the following scaling expression for the fidelity:

− 〈ln f(t)〉U ≈ N

tc
χ

(

t

N

)

(40)

with

χ(s) = s+
2

β
s2 + δχ(s) , (41)

δχ(s) = −2

∫ s

0

dτ̃ (s− τ̃ ) b2(τ̃ ) (42)

where s = t/N . Using the random matrix expressions (38),
(39), we find for β = 2:

δχ(s) =







−s2 + 1
3s

3 if s ≤ 1 ,

− 2
3 if s > 1 ,

(43)

and for β = 1:

δχ(s) =



















































1
18 (−3s− 24s2 + 17s3)

+ 1
12 (1 + 3s− 4s3) ln(2s+ 1)

}

if s ≤ 1 ,

3
4 ln(3)(s− 1) − 5

9

+ 1
3 (2 − 3s+ s2)

+ 1
12 (1 − 3s+ 4s3) ln(2s− 1)

+ 1
12 (1 + 3s− 4s3) ln(2s+ 1)























if s > 1 .

(44)

Eqs. (40-44) provide the key result of this section. From
the practical point of view the contribution of δχ(s) in
(41) is not very important, since (for β = 1):

δχ(s) ≈ −s2 +
2

3
s3 (if s≪ 1) , (45)

δχ(s) ≈
(

3

4
ln(3) − 1

)

s+
1

6
ln(2s) − 3

4
ln(3) +

1

3

≈ −0.17604s+
1

6
ln(2s) − 0.49063 (46)

(if s≫ 1) .

Therefore for small s the linear term and for large s the
quadratic term dominate the behavior of χ(s) in the ex-
pression (41). In the next section we compare this theo-
retical random matrix result to the numerical data of the
fidelity obtained for the quantum version of the tent map.

Before doing so, we want to discuss three particular
points. First, we have to evaluate the time scale tc that
characterizes the effective strength of the perturbation.
From Eqs. (25) and (27), we obtain in lowest order in ε:

1

tc
=

1

N

ng−1
∑

j,k=0

tr

(

δH(j)δH(k)
)

(47)

with δH(j) given by (26). This expression is similar in
structure to Eqs. (30) or (32) but with the important
difference that here the “time” index corresponds to the
number of elementary gates and not to the iteration num-
ber of the quantum map. Since the elementary gates affect
only one or two qubits (“spins”) the correlation decay be-
tween δH(j) and δH(k) will be quite weak and we can
obtain a good estimate of (47) by:

1

tc
= an2

g

1

N
tr(δH2) ≈ an2

g 5nqε
2 (48)

where a < 1 is a numerical constant taking into account
the exact correlation decay and the trace has been eval-
uated using Eq. (21). The numerical results of the next
Section indicate clearly that a ≈ 1/5 such that the overall
numerical factor is 1 and we have:

tc =
1

ε2nqn2
g

, ng =
9

2
n2

q −
11

2
nq + 4 . (49)

The second point to discuss concerns the fact that the
phase space is mixed and not completely chaotic. As it can
be seen from Fig. 2 the chaotic region fills approximately a
fraction of 0.65 of the full phase space. If the initial state is
a gaussian wave packet placed in the chaotic region then
its penetration inside the integrable islands induced by
quantum tunneling will take exponentially long time scale:
∝ exp(N). Therefore with a good approximation we may
say that in absence of imperfections the dynamics takes
place only inside the chaotic component. Let us introduce
now the Heisenberg time scale tH = 2nq which is deter-
mined by an average energy level-spacing for 2nq quantum
levels in the whole phase space. If the whole phase space
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is chaotic then in the above RMT approach N = tH. How-
ever, for the case of Fig. 2 the chaotic component covers
only a relative fraction σ = 0.65 of the whole phase space.
Due to that in the previous RMT expressions we should
put N ≈ σtH = 0.65 · 2nq to determine properly the num-
ber of chaotic states. As a consequence, the expression
(40) now reads (β = 1 for the tent map):

− 〈ln f(t)〉U ≈ σ tH
tc

χ

(

t

σ tH

)

≈ t

tc
+

2

σ

t2

tctH
. (50)

Here we have neglected the contribution of δχ(s).
It is interesting to note that the fidelity decay given by

(50) has certain similarities with the decrease of the prob-
ability to stay near the origin which has been studied in
mesoscopic and RMT systems (see e.g. [46,47,48,49,50]).
There, the time scale tc is related to the diffusive Thouless
time scale and the second term with the Heisenberg time
scale has negative sign.

Finally, the third point concerns the fact that the above
results are based on the assumption that the quantum evo-
lution given by the exact quantum algorithm can be de-
scribed by RMT. In particular, we assume that in the dy-
namical evolution the ergodicity is established very rapidly
after a few map iterations. This is correct for the choice
T = 2π/N which corresponds to the dynamics in one clas-
sical cell. We note that it is also possible to have many
classical cells by the alternative choice T = 2πL/N with
L ≫ 1 but fixed in the semiclassical limit N → ∞. For
K above the global chaos border, the classical dynam-
ics is governed by a diffusive dynamics which covers all
cells after the Thouless time scale tTh ≈ N2/D ∼ L2/K2

where D is the diffusion constant given by Eq. (5). In this
case the theoretical treatment has to be modified since the
matrix U will not be a member of the circular ensemble.
However, choosing a static perturbation sufficiently com-
plicated such that it can be modeled by a random matrix,
one can show that the relations (40)-(42) relating the fi-
delity to the two-level form factor are still valid. The two-
point energy level correlation function for diffusive metals
has been calculated in the frame work of diagrammatic
perturbation theory by Altshuler and Shklovskii [55] (see
also the review [47]). The two-level form factor is now
given by b2(τ̃ ) = b2,RM(τ̃ )+b2,diff.(τ̃ ) where b2,RM denotes
the random matrix expressions (38) or (39) and b2,diff.(τ̃ )
is the correction due to diffusive dynamics which is given
for a cubic sample by

b2,diff.(τ̃ ) = − 2

β

∞
∑

n1,...,nd=0

n2
1
+...n2

d
>0

τ̃ e−π2g(n2
1+...n2

d) τ̃ . (51)

Here d is the spatial dimension and g the dimensionless
conductance with g ∼ tH/tTh and tTh being the diffusive
Thouless time. In the limit τ̃ ≪ g−1 (corresponding to:
t ≪ tTh since τ̃ = t/N with N ∼ tH) the sum can be
approximated by an integral:

b2,diff.(τ̃ ) ≈ − 2

β

τ̃1−d/2

(4πg)d/2
. (52)

Inserting this in (42), we obtain the following diffusive
correction to the scaling function (41):

δχdiff.(s) =
4

β

1

(2 − d/2)(3 − d/2)

s3−d/2

(4πg)d/2
. (53)

We note that this contribution dominates the nonlinear
RMT correction to χ(s) in (41) for d = 1, 2, 3 if β = 2 and
for d = 3 if β = 1. The fidelity itself is slightly reduced by
the diffusive correction according to :

f(t) = fRM(t) exp

(

−B t3−d/2 t
d/2
Th

tc t2H

)

(54)

where B is a positive numerical constant of order one. We
mention that this interesting signature of the Altshuler-
Shklovskii corrections for diffusive quantum systems in the
fidelity decay is in principle accessible to efficient quantum
computation. For our case with β = 1 and d = 1 this cor-
rection is small. However for general quantum algorithms
with diffusive behavior it may be important. The fact that
this correction reduces the fidelity agrees with the obser-
vation that the reduction of the volume of the chaotic
component (σ) also leads to faster fidelity decay accord-
ing to Eq. (50).

6 Quantum computation with static

imperfections: numerical results

1

0.01

0.0001

10-6

1 10 100 1000 10000

(a)

(c)

(b)

(d)
�ln(f
)

� t

t� t2
Fig. 4. The fidelity decay for static imperfections [curves
(a), (b), (c) with same values for nq and ε as in Fig. 3] and
random errors [curve (d) with nq = 10 and ε = 1.59 · 10−4] as
a function of t in a double logarithmic representation. The full
lines correspond to power laws: − ln(f) ∼ t and: − ln(f) ∼ t2.
The value of ε for (d) is chosen such that the average reduction
of fidelity for one elementary quantum gate is the same as for
(c). The vertical dashed line provides the approximate position
0.5σtH where the curves (a), (b), (c) change from linear to
quadratic behavior.
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We now consider the precise model of static imper-
fections given by Eq. (21). We have numerically calcu-
lated the fidelity f(t) for the tent map with K = 1.7 for
nq ∈ {6, 8, 10, 12, 14, 16, 18} and 5 · 10−7 ≤ ε ≤ 10−4.
For most cases we have determined the fidelity decay up
to time scales t ≤ tmax with f(tmax) = 0.5 (except for
nq = 18 and the smallest values of ε) since we are mostly
interested in the regime (1 − f) ≪ 1 for which the an-
alytical theory of the previous section is valid. We have
also considered values ε > 10−4 but here the value tmax

is typically so small that the number of available data
points is not useful for the scaling analysis given below.
In most cases we have concentrated on one particular re-
alization of the random coefficients δi and Ji. But we also
have made checks with up to 200 particular realizations.
As initial state |ψ(t = 0)> we have chosen a coherent
state |ϕ(p0, θ0)> [see next section, Eqs. (60), (61)] which
is quite well localized around a classical point (p0, θ0) in

phase space with a relative width ∼ 1/
√
N ∼ 2−nq/2 in

both directions.

First, we chose a state close to the hyperbolic fix point
θ = π/2, p = 0, well inside the chaotic region of phase
space. As can be seen in Fig. 2 after t = 15 iterations the
state fills up a big fraction of the chaotic region and after
t ≈ 30 the state is practically ergodic. It covers then a
fraction σ ≈ 0.65 of phase space.

0.0001

0.01

1

100

10000

0.01 1 100

   6
   8
  10
  12
  14
  16
  18

nq =nq =nq =nq =nq =
nq =nq =

t=tH
�ln(f)
t =t H

Fig. 5. Scaling representation of the fidelity f for one particu-
lar realization of static imperfections. The upper scaling curve
shows: − ln(f)tc/tH as a function of t/tH with the two theoret-
ical time scales tc = (ε2nqn

2

g)
−1 and tH = 2nq . The full line in

the upper curve corresponds to the theoretical random matrix
result (40), (41) for β = 1. The lower scaling curve (shifted
down by a factor 0.01) correspond to − ln(f)t̃c/t̃H versus t/t̃H
with the times scales t̃c and t̃H obtained from the fit (55) (us-
ing appropriate weight-factors; see text) for each value of nq

and ε. Here the full line corresponds to the analytical scaling
curve: y = x+ x2 (with y = − ln(f)t̃c/t̃H and x = t/t̃H). Data
points are shown for ε = 5 · 10−7 (and 6 ≤ nq ≤ 18); points
for other values of ε with 5 · 10−7 ≤ ε ≤ 10−4 fall on the same
scaling curve and are not shown.

We have already seen in Fig. 3 of section 4 that the
fidelity decay for static imperfections is faster than the
exponential behavior for random errors. In order to an-
alyze this in more detail we show in a double logarith-
mic representation in Fig. 4: − ln(f(t)) as a function of
t for the three cases already shown in Fig. 3 (nq = 10
and ε = 3 · 10−5, 6 · 10−6, 5 · 10−7). For comparison, we
also provide one case for random errors (nq = 10 and
ε = 1.59 · 10−4).

For the static imperfections, we can clearly identify
a transition from linear to quadratic behavior at a time
scale 0.5σtH ≈ 0.325tH corresponding to the theoretical
expression (50). However, the quadratic regime is best
visible for the smallest values of ε due to the restriction
− ln(f) ≤ ln(2). For the case of random errors there is no
such transition and the linear behavior applies for all time
scales.

To analyze this transition in a quantitative way we
determine for each value of nq and ε two time scales t̃c
and t̃H by the numerical fit

y(t) =
t

t̃c
+

t2

t̃ct̃H
, y(t) = − ln(f(t)) . (55)

In order to prevent this fit to be artificially dominated by
the large values of t (i.e. the quadratic regime) we mini-
mize:

d(a0, a1) =
∑

t

w(t)
[

y(t) − a0t− a1t
2
]2

(56)

with an appropriate weight factor w(t) ∼ 1/(t y2(t)). The
factor 1/y2 ensures that the vertical distance to be mini-
mized is measured in the logarithmic representation for y.
The other factor 1/t takes into account that the horizon-
tal density of data points in the logarithmic representa-
tion increases with t. The fit procedure (56) corresponds
therefore to a fit in log-log representation such that also
the small time scales (and values of y) are taken properly
into account.

According to the theoretical expression (50) one ex-
pects that:

t̃c = tc =
1

ε2nqn2
g

, t̃H = 0.5 σ tH ≈ 0.325 tH (57)

with tH = 2nq and ng = n2
q − 11

2 nq + 4. This theoretical
prediction is verified in Figs. 5-8.

In Fig. 5, we show two types of scaling curves for
the fidelity. The first (upper) curve shows: − ln(f)tc/tH
versus t/tH with the time scales tc and tH given above.
We observe that the numerical data coincide very well
for nq ≥ 10 with the analytical random matrix result
(40),(41) for β = 1. The data for nq = 6, 8 show a moder-
ate deviation for t > tH. We note that for this first scaling
curve the dependence of the scaling parameters tc and tH
on ε and nq is entirely determined by their theoretical ex-
pressions. This is different for the second (lower) scaling
curve where: − ln(f)t̃c/t̃H versus t/t̃H is shown. Here the
scaling parameters t̃c and t̃H have been obtained by the fit



10 K.M.Frahm, R.Fleckinger and D.L.Shepelyansky: Quantum chaos and random matrix theory for fidelity decay

(55) for each value of nq and ε. Therefore all data coincide
well with analytical scaling expression (55).

It is important to note that both scaling curves cover
10 orders of magnitude and provide a strong confirma-
tion of the crossover from linear to quadratic behavior
predicted by the RMT approach. We mention as a side
remark that we have also performed a similar scaling anal-
ysis for the case of random errors. Here the scaling curve
is purely linear in accordance with Fig. 3. However, this
gives a stronger confirmation of the linear behavior than
in Fig. 3 since there the data for small ε and large nq

corresponding to the regime (1 − f) ≪ 1 are quite badly
visible in contrast to the scaling curve.

In Figs. 6 and 7, the time scales t̃c and t̃H obtained
from the fit (55) are shown versus tc and tH. We observe
that the first theoretical expectation t̃c = tc is very well
verified for the majority of data points. The small devia-
tion for the remaining points appear for small nq and the
largest values of ε where the fit procedure is less reliable.
The second identity t̃H = 0.325 tH is in general also quite
well verified. However, the deviations are slightly larger
especially for larger values of ε. Furthermore, for nq > 14
the regime t ≫ tH is numerically not accessible and the
fit procedure amounts to extrapolate t̃H from data points
t ∼ tH or even t < tH for nq = 16, 18.

We also note that the data points for nq = 6, 8 (lower
panel of Fig. 7) lie above the theoretical line in accordance
with the first scaling curve in Fig. 5.

We have also determined the time scale tf at which
f(tf ) = 0.9. The theoretical expression (50) suggests :

tf =
2tc ln(10

9 )

1 +
√

1 + 8
σ

tc

tH
ln(10

9 )
≈ 0.2107 · tc

1 +
√

1 + 1.2967 tc

tH

.

(58)
For tc ≪ tH this implies tf ≈ tc ln(10

9 ) while for tc ≫ tH
we have tf ∼ √

tc tH =
√
tc 2nq/2. In Fig. 8, we show tf ob-

tained from the numerical data for ε = 10−5, 5 · 10−7 and
all values of nq. The data points for nq ≥ 10 coincide very
well with (58) while the points for nq = 6, 8 lie slightly
above the theoretical line. For comparison, we also show
the time scale tf obtained from the simplified exponential
behavior f(t) = exp(−t/tc). Generally, tf is believed to
decrease with increasing nq and fixed ε. However, this is

not the case if tc > tH, i.e. for ε < 2−nq/2/(ng
√
nq). For

very small values of ε there is certain regime where tf first
slightly increases with nq and then decreases.

In all presented numerical studies we considered the
static couplings between qubits ordered on a line. To check
that the results are not sensitive to this specific configura-
tion we also considered the case when qubits are located
on a square lattice as it was discussed in [19]. The ob-
tained results (that we do not show here) confirms the
RMT scaling (50).

The case of the quantum evolution inside the inte-
grable component of the tent map is analyzed in Figs. 9-
11. Here, the initial state is located at θ = 5.35 and p = 0
which is in middle between the center fix point (θ = 3π/2,
p = 0) and the boundary of the stable island (θ ≈ 6.0,
p = 0). We have determined for this case the time scales

103

105

107

103 105 107

103

105

107

103 105 107

(a)
(b)
(c)~t

~t

t

t
Fig. 6. The time scale t̃c obtained from the fit: − ln(f) =
t/t̃c + t2/(t̃ct̃H) versus the theoretical expression tc =
(ε2nqn

2

g)−1 in a double logarithmic representation. The full
line corresponds to t̃c = tc. The data points of top panel corre-
spond to the same realization of static imperfections as in Fig.
5 with 6 ≤ nq ≤ 18 and 5 ·10−7 ≤ ε ≤ 10−4. The bottom panel
shows again the data points for 6 ≤ nq ≤ 18 and ε = 5 · 10−7

(a) and ε = 10−5 (b) for the same realization. The data points
(c) are obtained from 〈t̃−1

c 〉−1 where 〈· · ·〉 denotes the average
over 200 realizations of static imperfections for each value of
nq = 6, 8, 10, 12, 14 and ε = 5 ·10−7 (statistical error bars are
smaller than symbol size).

t̃c and t̃H from the fit (55) and performed the same scaling
analysis in Fig. 9 for the fidelity decay as in in Fig. 5 for
the initial condition in the chaotic component. The scaling
curves with the theoretical expressions (57) for tc and tH
give a significant deviation from the RMT result (upper
group of curves in Fig. 9). To understand the reason of
this dispersion we also show the scaling curves with the
fitted time scales t̃c and t̃H. This procedure gives a good
scaling of numerical data (lower group of curves in Fig. 9).
Obviously, the fit (55) still works quite well as such but the
obtained fit parameters are eventually different from the
initial condition in the chaotic component and the RMT.
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Fig. 7. The time scale t̃H obtained from the fit: − ln(f) =
t/t̃c + t2/(t̃ct̃H) versus the Heisenberg time tH = 2nq in a
double logarithmic representation. The full line corresponds
to t̃H = 0.5σtH. The data points in the top panel correspond
to the same realization of static imperfections as in Fig. 5
with 6 ≤ nq ≤ 18 and 5 · 10−7 ≤ ε ≤ 10−4. The bottom
panel shows again the data points for 6 ≤ nq ≤ 18 and
ε = 5 · 10−7 [data points (a)] and ε = 10−5 [data points
(b)] for the same realization. The data points (c) are ob-
tained from 〈t̃−1

c 〉〈(t̃ct̃H)−1〉−1 where 〈· · ·〉 denotes the average
over 200 realizations of static imperfections for each value of
nq = 6, 8, 10, 12, 14 and ε = 5 ·10−7 (statistical error bars are
smaller than symbol size).

The dependence of t̃c on the theoretical value of tc is
presented in Fig. 10. It shows that the theoretical expres-
sion works with a good accuracy in the interval of 6 orders
of magnitude. This is not really a surprise since according
to (27) t−1

c measures the overall strength of the pertur-
bation. However, for t̃H shown in Fig. 11 the situation is
much more complicated. The variation of t̃H vs. tH = 2nq

shows unusual steps and it is unclear what is the real
dependence in the limit of large nq. Further studies are
required for complete understanding of the static imper-
fection effects in this regime. This fact compromises the
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(a)
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nq

tf " = 5 � 10�7
" = 10�5

Fig. 8. The time scale tf determined by f(tf ) = 0.9 (in a log-
arithmic representation) as a function of the number of qubits
nq. The data points correspond to the numerical simulation
for the same realization of static imperfections as in Fig. 5
with ε = 5 · 10−7 (a) and ε = 10−5 (b). The two full lines
correspond to tf given by (58) assuming the theoretical ex-
pression Eq. (50) for the fidelity. The two dashed curves corre-
spond to tf = tc ln( 10

9
) for the simplified exponential behavior

f(t) = exp(−t/tc).

possibility to determine the asymptotic dependence of tf
on ε and nq for the case of integrable or quasi-integrable
dynamics. In addition, the data of Fig. 8 show that it is not
easy to determine the asymptotic behavior of tf in absence
of clear scaling laws. Due to these two remarks we think
that the scaling dependence for tf time scale, proposed in
[13,33] for the case of static imperfections, represents in
fact only an intermediate behavior and cannot be extrap-
olated to the limit of large nq. Indeed, the quantum evo-
lutions studied in [13,33] correspond to quasi-integrable
regimes and additional tests are required to check the va-
lidity of the RMT scaling (50) for the quantum algorithms
studied there.

Finally, it is interesting to compare directly the fi-
delity decay induced by static imperfections for the quan-
tum evolution in chaotic and integrable components (see
Fig.12). The numerical data show that f(t) decreases faster
in the case of integrable evolution. As it was discussed in
[30] the presence of chaos reduces the fidelity decay rate.
This is in the agreement with the results of Fig. 7 and
Fig. 11 according to which t̃H is much smaller for the in-
tegrable regime as for the regime of quantum chaos. How-
ever, the possibility of using this fact to improve the accu-
racy of quantum computations remains an open question.

The numerical data presented in this section definitely
confirm the RMT universal law for fidelity decay for the
case when the evolution takes place in the regime of quan-
tum chaos. This means that this law works for quantum
algorithms simulating a complex dynamics. The situation
for the evolution in the integrable component is more com-
plicated. The data show that the theoretical expression for
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Fig. 9. Scaling curve for fidelity as in the case of Fig. 5 but
for the quantum evolution inside integrable component. Here,
the initial state is a minimal coherent wave packet taken inside
the regular part of phase space at θ = 5.35 and p = 0; the same
realization of static imperfections as in Fig. 5 is used.
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Fig. 10. The time scale t̃c as in Fig. 6 versus tc = (ε2nqn

2
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−1,

data are obtained from Fig. 9 for the case of regular dynamics.
Shown are data points for ε = 5 · 10−7 (a) and ε = 10−5 (b)
with 6 ≤ nq ≤ 18 in a double logarithmic representation. The
full line corresponds to t̃c = tc.

tc is still valid but the dependence of the time scale t̃H on
nq requires further investigations.

It is interesting to note that the relation (50) should
also work for the problem of Loschmidt echo in systems
with quantum chaos [27,28,29,30,31]. In this case for small
perturbations tc is still given by Eq. (27) or, that is equiva-
lent, the inverse decrease rate is given by the Fermi golden
rule [28]. Then the scale tH is determined by the inverse
density of states or for quantum maps by the number of
states via relation tH = N . As a result for small per-
turbations the decay of Loschmidt echo for such quan-
tum dynamics is still given by the universal decay relation
Eq. (50).
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Fig. 11. The time scale t̃H as in Fig. 7 versus tH = 2nq ,
data are obtained from Fig. 9 for the case of regular dynamics.
Shown are data points for ε = 5 · 10−7 (a) and ε = 10−5 (b)
with 6 ≤ nq ≤ 18 in a double logarithmic representation. The
full line corresponds to t̃H = 0.5σtH.
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Fig. 12. fidelity decay for initial minimal coherent state in
chaotic (full curve) and integrable (dashed curve) component
for nq = 16, ε = 5 · 10−7.

7 Husimi function

Here we discuss how an arbitrary quantum state |ψ> can
be represented in the classical phase space in the process of
quantum computation. For this it is convenient to use the
coarse-grained Wigner function (or the Husimi function)
[38,39]:

ρH(p0, θ0) = |<ϕ(p0, θ0) |ψ>|2 (59)

where the smoothing is done with the coherent state

|ϕ(p0, θ0)> = A
∑

p

e−(p−p0)
2/4a2−iθ0p |p> . (60)

Here, A is the normalization constant and a is the width
of the coherent state in the p-representation. The coherent
state corresponds to a gaussian wave packet that is local-
ized in the classical phase space around a point (θ0, p0)
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with widths ∆p = a and ∆θ = 1/(2a). We choose a =
√

N/12 such that the widths relative to the size of the
phase space are comparable:

∆p

N
=

1√
12N

≈ 0.2887√
N

,
∆θ

2π
=

√
3

2π
√
N

≈ 0.2757√
N

.

(61)
The naive evaluation of the Husimi function (59) with-
out any optimization requires O(NNpNθ) operations (on
a classical computer) where Np and Nθ are the numbers of
values for p0 and θ0 for which (59) is evaluated. In view of

Eq. (61) it is sufficient to choose Np = Nθ =
√
N resulting

in O(N2) operations which is very expensive as compared
to O(N log(N)2) operations needed by the simulation of
the quantum map on a classical computer as described in
Sec. 3.

Fortunately, the evaluation of the Husimi function can
be done in a more efficient way. To motivate and explain
this let us first consider a modified Husimi function defined
by:

ρ
(p)
H (p0, θ0) = |<ϕ(p)(p0, θ0) |ψ>|2 (62)

with the modified coherent state:

|ϕ(p)(p0, θ0)> =
1

4
√
N

p0+
√

N−1
∑

p=p0

e−iθ0p |p> . (63)

Here we assume for the sake of simplicity that the number
of qubits nq is even such that

√
N = 2nq/2 is integer. We

furthermore require that p0 is an integer multiple of
√
N

and θ0 = 2π l/
√
N with l = 0, . . . ,

√
N − 1.

Comparing (60) with (63), we see that the gaussian
pre-factor has been replaced by a box-function of width√
N . This provides a very good localization for the mo-

mentum representation but implies that in angle repre-
sentation the amplitude around θ0 decreases only as a
power law according to the Fourier transform of the box-
function: sin(x)/x with x =

√
N(θ − θ0)/2. However, the

modified coherent state (63) still provides a quite well lo-
calized state around the point (θ0, p0). Its main advantage
is related to the fact that it can be put in the form:

|ϕ(p)(p0, θ0)> = Ũ−1
QFT |p0 + l> (64)

where θ0 = 2π l/
√
N and ŨQFT corresponds to the quan-

tum Fourier transform operator (see (13)) for the first half
of the qubits (α0, . . . , αnq/2−1). Eq. (64) implies that

ρ
(p)
H (p0, θ0) = |<p | ŨQFT |ψ>|2 (65)

with p = p0+l = p0+
√
Nθ0/(2π). Here the state ŨQFT |ψ>

can be evaluated efficiently on a quantum computer us-
ing

nq

4 (
nq

2 + 1) elementary quantum gates according to
(19) (with nq replaced by nq/2). Emulating the quan-
tum computer on a classical computer this still costs only
O(N log(N)2) elementary operations. The matrix elements

<p| ŨQFT |ψ> of this state with the momentum eigen-
states |p> provide directly via Eq. (65) the modified Husimi
function. Here the value of p = 0, . . . N −1 contains in its

first half of the binary digits the information for θ0 and in
its second half the information for p0. More explicitly, if

p =
∑nq−1

j=0 αj2
j, we have :

p0 =

nq−1
∑

j=nq/2

αj2
j , θ0 =

2π√
N

nq/2−1
∑

j=0

αj2
j . (66)

We note that it is also possible to introduce another
type of modified Husimi function (and modified coherent
state) by exchanging the roles of θ0 and p0 :

ρ
(θ)
H (p0, θ0) = |<p | Ũ−1

QFT UQFT |ψ>|2 . (67)

where p = Nθ0/(2π)+ p0/
√
N . As in Eq. (63), we require

that p0 is an integer multiple of
√
N and θ0 = 2π l/

√
N

with l = 0, . . . ,
√
N − 1. The operator UQFT corresponds

to quantum Fourier transform for all qubits and trans-
forms a state from p- to θ-representation. ŨQFT corre-
sponds as above to quantum Fourier transform for the first
half of the qubits. We mention that the coherent states as-
sociated to (67) have a power-law localization amplitude
for p and a box-function localization amplitude for θ.

We have seen that both types of modified Husimi
functions can be evaluated on a classical computer with
O(N log(N)2) operations. Based on the idea of the QFT
which is closely related to the FFT if simulated on a clas-
sical computer, we have also implemented an efficient clas-
sical algorithm for the original Husimi function (59) with
the gaussian coherent states. For each value of p0, we only
consider the restricted sum such that |p− p0| ≤ 4

√
N and

evaluate the matrix elements <ϕ(p0, θ0) |ψ> for all values
of θ0 simultaneously using FFT. This provides also an al-
gorithm with complexity O(N log(N)2) but with a consid-
erably larger numerical pre-factor. However, this method
does not allow for a “pure” quantum computation as it is
possible for the two types of modified Husimi functions.

In order to compare the different Husimi functions, we
consider a test-state defined by a circular superposition of
coherent states as:

|ψcircle> = Ã
∑

(p0,θ0)∈©
|ϕ(p0, θ0)> . (68)

Here Ã is a normalization constant and the sum runs over
a discrete set of points (θ0, p0) on a circle with center
(π,N/2) and relative diameter 0.7 (as compared to the
size of the phase space).

In Fig. 13, we show the density plots for the three
types of Husimi functions for this test-state with nq =
10, 12, 14. In all cases the circle picture of the density is
quite well reproduced and one clearly sees that the circle
has a finite width according to the widths of the coher-
ent states due to the quantum uncertainty principle (see
Eq. (61)). For the modified Husimi function (62) (column
(b)), one clearly observes the effect of the power-law de-
crease for the θ-amplitude leading to a smearing out of
maxima in the θ-direction. The same holds for the second
modified Husimi function (67) (column (c)) concerning
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ba c

Fig. 13. Density plots of the three different types of Husimi
functions for the circle-state (68) with nq = 10, 12, 14
(rows from top to bottom). The horizontal axis corresponds
to θ0 ∈ [0, 2π[ and the vertical axis to p0 ∈ [0, N [. The density
is minimal for blue/black and maximal for red/white. Column
(a) corresponds to the Husimi function (59) with gaussian am-
plitude, column (b) to the momentum modified Husimi func-
tion (62) and column (c) to the phase modified Husimi function
(67).

the p-direction. This effect is strongest for small values of
nq and becomes smaller with increasing nq. The effect of
smearing out is not visible for the original Husimi function
(59) (column (a)) with gaussian amplitudes for θ and p.

In order, to study the evolution of the Husimi func-
tion for chaotic and regular regimes in the quantum tent
map, we choose as initial condition the circle-state (68).
The semi-classical density of this state intersects quite well
with both regular and chaotic parts of the mixed phase
space (see Figs. 1,2).

In Fig. 14 we show the density-plots of the Husimi
functions (defined by Eq. (59) of the state obtained from
the circle-state after 100 iterations of the quantum map for
the cases nq = 10, 12, 14 (column (a)). We also show the
state that is obtained by applying further 100 iterations
of the inverse quantum map which should theoretically
provide the original circle-state (column (c)). In Fig. 14
we also show a density-plot for the classical map (3) (with
p to be taken modulo 2π/T ). Here we have determined
the classical trajectories of 100N random initial points on
the circle. Then the density-plot has been calculated from
a histogram with a finite box-size corresponding to the
finite resolution of the quantum case with nq = 14.

ba c d

Fig. 14. Density plot of the Husimi function (59) from the
the circle-state (68) after 100 iterations with the quantum map
with K = kT = 1.7 and T = 2π/N = 2π/2nq (columns (a)
and (b)) and after 100 iterations in the future and 100 itera-
tions with the inverse map in the past (columns (c) and (d)).
The first three rows correspond to nq = 10, 12, 14 (from top
to bottom) and the last row corresponds a classical density
plot obtained from a histogram-sampling with a box-size cor-
responding to the resolution for nq = 14 and with an average
number of 100 classical trajectories per box. Columns (a) and
(c) correspond to the exact quantum or classical maps only
limited by the relative machine precision 10−16. Columns (b)
and (d) correspond to the quantum computation with random
errors in quantum gates (ε = 0.01) or perturbed the classical
map perturbed by noise with ε = 0.01 (see text).

One clearly sees in column (a) that the chaotic part of
the phase space is filled up ergodically while the piece of
the circle intersecting the regular part of the phase space
remains a connected line. Actually, this line rotates with a
constant angular velocity around the center fix-point due
to the local linear behavior of V ′(θ) close to the fix-point.

Concerning the states obtained after the back-iteration
in time, which are shown in column (c), one observes that
the inverse quantum map reproduces exactly the initial
state while for the classical map only the pieces of the cir-
cle belonging to the regular part of the phase space are
reproduced. This is due to the finite machine precision
(of 10−16) together with the exponential instability in the
chaotic part of the phase space. We have verified that for
only 25 iterations, the circle is well reproduced in every
part of the phase space. At 50 iterations the classical com-
puter round-off errors already have significant effects but
are not sufficient to create a uniform distribution in the
chaotic region as it is the case with 100 iterations shown in
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Fig. 14, last row of column (c). This effect is completely
absent in the quantum simulation. The information for
the phase space distribution is encoded in the quantum
state in such a way that it is not sensible to the round-off
errors of the classical computer simulating the quantum
algorithm for the tent map.

To investigate this point in more detail, we have also
performed a quantum simulation where all quantum gates
are perturbed by random errors (see Sec. 3). The effects
of this noisy perturbation can be seen in Fig. 14 in the
columns (b) (100 forward iterations of the circle-state) and
(d) (100 forward and 100 backward iterations) where we
have chosen ε = 0.01. Concerning the quantum map, the
noise reduces some-how the general quality of the pictures
but it does not distinguish between chaotic and regular re-
gions of the phase space. In particular in column (d), the
circular density is quite well reproduced with some ad-
ditional overall noise. Concerning the classical map, the
circle-pieces in the regular region still remain closed lines
but they acquire a finite width which increases in a diffu-
sive way with the number of iterations. The circle-pieces
in the chaotic region become very quickly mixed. Further-
more, it is not possible to reproduce the initial circle in
the chaotic region due to the exponential instability (last
row of column (d)). We have verified that this effect is al-
ready true for only 15 forward and 15 backward iterations
if ε = 0.01 (for the classical map the noise is introduced in
the equation for momentum with an amplitude ε = 0.01,
Fig. 14 bottom d).

We have also studied the effects of static imperfec-
tions on the Husimi function evolution in the tent map.
In Fig. 15, we show the results of static imperfections with
ε = 10−5 and nq = 10, 12, 14. The initial state is again
the circle-state and column (a) corresponds to the state
after 100 forward iterations and column (b) to the state af-
ter 100 forward and 100 backward iterations. The effect is
quite similar to in the quantum computation with random
errors (columns (b) and (d) of Fig. 14). The general quality
of the pictures is reduced and there is no distinction be-
tween regular and chaotic part of the phase space. Again,
in column (b) the circular density is quite well reproduced
with some additional overall noise. We should note that
the static imperfections of strength ε = 10−5 give pertur-
bations in the Husimi function which are comparable with
those in the case of random errors at ε = 0.01. This shows
that the static imperfections perturb the quantum com-
putations in a stronger way comparing to random errors.

Finally, we show in Fig. 16 the modified Husimi func-
tions (62) after 100 iterations applied to the initial circle-
state again for the three cases nq = 10, 12, 14. Column (a)
shows the exact simulation, (b) the case of random errors
(ε = 0.01) and (c) the quantum map with static imper-
fections (ε = 10−5). We note that the smearing-out effect
discussed at the beginning of this Section (see Fig. 13)
is well visible for the case of the exact simulation, while
it is not visible at all for the cases with random errors
or static imperfections. Therefore, the utilization of the
modified Husimi function seems to be quite well justified
in these cases.

ba

Fig. 15. Density plot of the Husimi function (59) from the
the circle-state (68) after 100 iterations with the quantum map
(same values as in Fig. 14) perturbed by static errors (see text)
with ε = 10−5 (column (a)) and after 100 iterations in the
future and 100 iterations with the inverse perturbed map in
the past (column (b)). The different rows correspond to nq =
10, 12, 14 (from top to bottom).

8 Conclusion

The results obtained in this paper give a universal de-
scription of fidelity decay in quantum algorithms simulat-
ing complex dynamics on a realistic quantum computer
with static imperfections. This decay is given by Eq. 50
which determines the time scale tf of reliable quantum
computation with fidelity f > 0.9. According to Eq. 50

tf ≈ tc/10 = 1/(10ε2nqn
2
g) ; Ng ≈ 1/(10ε2nqng) (69)

for tH > tc so that ε > εch = 2−nq/2/(ng
√
nq). Here,

Ng = tfng is the total number of gates which can be
performed with fidelity f > 0.9. In this regime the static
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ba c

Fig. 16. Density plot of the modified Husimi function (62)
from the the circle-state (68) after 100 iterations with the quan-
tum map (same values as in Fig. 3). Column (a) corresponds
to the exact quantum map, column (b) to the map with ran-
dom errors in quantum gates with ε = 0.01 and column (c)
to the quantum map simulated with static imperfections with
ε = 10−5. The different rows correspond to nq = 10, 12, 14
(from top to bottom).

errors act in a way similar to random noise errors even
if their effect is stronger due to coherent accumulation of
static errors inside a certain interval of the algorithm (one
map iteration for the tent map). Indeed, for random errors
in quantum gates the relation (22) gives

tf ≈ tr/10 ≈ 5/(ε2ng) ; Ng ≈ 5/ε2. (70)

We note that (70) is in agreement with the result obtained
for random errors in a very different quantum algorithm
[33] and hence it is generic. Even if the dependence of Ng

on ε in Eqs. (69), (70) is the same, the dependence on
nq is rather different. This difference should play an im-
portant role for the quantum error correction codes which
allow to perform the fault-tolerant quantum computation
for the random error rate pr ∼ ǫ2 < 10−4 (see e.g. [2,
3,51,52,53]). The fact that for random errors Ng is in-
dependent of nq while for static imperfections Ng drops
strongly with nq should significantly decrease the thresh-
old for fault-tolerant quantum computation in presence of
static imperfections.

For tc < tH or ε < εch = 2−nq/2/(ng
√
nq) the time

scale tf is given by the relation

tf ≈ 0.2
√
tctH ≈ 2nq/2/(5εng

√
nq) ; Ng ≈ 2nq/2/(5ε

√
nq).
(71)

In this regime the effect of static imperfections is abso-
lutely different from random noise errors. This regime may
be dominant for up to 10 - 15 qubits. However, in the limit
of large nq ≫ 10 it appears only in the limit of very small
static imperfections and should not be very important for
quantum computers with few tens of qubits. The transi-
tion from the regime (69) to regime (71) takes place for

ε > εch = 2−nq/2/(ng
√
nq) . (72)

From the physical point of view this border can be in-
terpreted as the quantum chaos border above which the
static imperfections start to mix the energy levels of ideal
quantum algorithm. The fact that this border drops expo-
nentially with the number of qubits nq has been discussed
in [54] for a quantum algorithm for complex dynamics.
Above εch the effect of static imperfections becomes some-
what similar to random errors.

The results (69) and (71) for the time scales of reliable
quantum computation are based on the RMT approach
and are universal for algorithms which simulate a com-
plex dynamics, e.g. an evolution in the regime of quan-
tum chaos. However, it is important to keep in mind that
there are other types of algorithms where the evolution is
rather regular, e.g. the Grover algorithm or integrable dy-
namics. In such cases the asymptotic dependence of tH on
nq should be studied in more detail. It is not excluded that
in such cases tH grows with nq very slowly (see Fig. 11)
or even may be independent of nq. In such situations the
static imperfections will generate a very significant reduc-
tion of the time scale of reliable quantum computation.
In a sense our RMT result (50) gives the weakest form
of fidelity decay in a realistic quantum computer with nq

qubits since the reduction of the chaotic component σ ac-
celerates this decay.

The universal regime for fidelity decay in quantum
computations established in this paper can also find other
applications. For example it can appear in the decay of
spin echo in interacting spin systems.
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Upon completion of this manuscript a preprint of T.
Gorin, T. Prosen, and T. H. Seligman (nlin. CD/0311022)
came to our attention where the relation between fidelity
decay and two-level form factor has been established for
an abstract Hamiltonian model with continuous time evo-
lution and a perturbation given by an invariant random
matrix. However, the regime studied in this work corre-
sponds to the limit tH ≪ tc with the dominant gaussian
decay.
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