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Abstract

We give a new version of the Shannon-McMillan-Breiman theorem
in the case of a bijective action. For a finite partition α of a compact
set X and a measurable action T on X, we denote by CT

n,m,α(x) the
element of the partition α ∨ T 1α ∨ . . . ∨ Tmα ∨ T−1α ∨ . . . ∨ T−nα

which contains a point x. We prove that for µ-almost all x,

lim
n+m→∞

(

−1

n + m

)

log µ(CT
n,m,α(x)) = hµ(T, α),

where µ is a T -ergodic probability measure and hµ(T, α) is the metric
entropy of T with respect to the partition α.

1 Introduction

The Shannon-McMillan-Breiman theorem [2], [3] is used in many problems
related to the metric entropy map of an ergodic measure. We extend this
well-known result to the case of a bijective dynamical system. Our proof
follows the line of Petersen’s proof [3]. We illustrate this new result with
an example that gives an inequality between shifts and cellular automata
entropies and some analog of the Lyapunov exponents. Our bilateral version
of the Shannon-McMillan-Breiman theorem is expected to be useful in other
areas of dynamical systems.
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2 Background material

Let X be a compact space, µ a probability measure on X and T a measurable
map from X to X. We denote by α a finite partition of X and by CT

n,α(x)
the element of the partition α∨ T−1α∨ . . .∨ T−nα which contains the point
x. For all point x the information map I is defined by

I(α)(x) = − log µ(CT
α (x)) =

∑

A∈α

− log µ(A)χA(x),

where CT
α (x) is the element of α which contains x and χA is the characteristic

function defined by

χA(x) =

{

1 if x ∈ A,

0 otherwise.

The information map satisfies

I(α ∨ β) = I(α) + I(β|α), (1)

I(Tα|Tβ) = I(α|β) ◦ T−1. (2)

These two properties are easily proved from the definition of I and the fact
that T is a surjective map. We refer to [3, p. 238], [4, Chap.8] for a detailed
proof of (1Background materialequation.1) and (2Background materialequation.1).

A simple formulation of the metric entropy with respect to the partition
α is given by

hµ(T, α) = lim
n→∞

∫

X

I(α| ∨n
k=1 T kα)(x) dµ(x),

where

I(α|β)(x) = −
∑

A∈α,B∈β

χA∩B(x) log

(

µ(A ∩ B)

µ(B)

)

is the conditional information map representing the quantity of information
given by the partition α knowing the partition β about the point x.

We recall the Shannon-McMillan-Breiman theorem [2] [3].

Theorem 1 (Shannon-McMillan-Breiman’s theorem) If µ is a T -ergodic

measure, then for µ-almost all x in a compact X we have

lim
n→∞

−1

n
log µ(CT

n,α(x)) = hµ(T, α).
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3 A bilateral version of Shannon-McMillan-

Breiman’s theorem

In order to prove the main result (Theorem 2) we need to expose two technical
lemmas. The proof of Lemma 2 and Theorem 2 requires a bilateral version
of the Birkhoff pointwise ergodic theorem: for a T -ergodic measure µ one
has

lim
n+m→∞

1

n + m + 1

n
∑

k=−m

f ◦ T k(x) =

∫

X

f(x)dµ(x)

for almost all x with a map f in L1. This result is easily deduced from the
Birkhoff pointwise ergodic theorem (see [4, Chap.10]) by breaking up the
infinite sum in two proportional parts.

Lemma 1 For all integers m and n we have

n−1
∑

k=−m

I(α| ∨n−k
j=1 T−jα) ◦ T k = I(∨m

j=−nT
jα) − I(T−nα).

Proof. Note that I(∨m
j=−nT jα) = I(∨m+n

j=0 Tm−jα). Using (1Background
materialequation.1) we have

I(∨m+n
j=0 Tm−jα) = I(∨m+n

j=1 Tm−jα) + I(T mα| ∨m+n
j=1 Tm−jα)

and from (2Background materialequation.1) we get

I(Tmα| ∨m+n
j=1 Tm−jα) = I(α| ∨m+n

j=1 T−jα) ◦ T−m.

Hence,

I(∨m
j=−nT jα) = I(∨m+n

j=1 Tm−jα) + I(α| ∨m+n
j=1 T−jα) ◦ T−m.

The same operations on I(∨m+n
j=1 Tm−jα) yields

I(∨m+n
j=1 Tm−jα) = I(∨m+n

j=2 Tm−jα) + I(α| ∨m+n
j=2 T 1−jα) ◦ T−m+1

= I(∨m+n−1
j=1 Tm−1−jα) + I(α ∨m+n−1

j=1 T−jα) ◦ T−m+1.

Hence,

I(∨m
j=−nT

jα) = I(∨m+n−1
j=1 Tm−1−jα)

+ I(α ∨m+n−1
j=1 T−jα) ◦ T−m+1 + I(α| ∨m+n

j=1 T−jα) ◦ T−m.
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Iterating similarly t − 1 times on I(∨m+n−1
j=1 Tm−1−jα) leads to

I(∨m
j=−nT jα) = I(∨m+n−t

j=1 Tm−t−jα) +

t
∑

k=0

I(α| ∨m+n−k
j=1 T−jα) ◦ T−m+k.

Taking t = m + n − 1 gives

I(∨m
j=−nT

jα) = +I(T−nα) +

m+n−1
∑

k=0

I(α| ∨m+n−k
j=1 T−jα) ◦ T−m+k

which completes the proof.

Lemma 2 If µ is a T ergodic measure then for almost all x in X,

lim
m+n→∞

1

m + n + 1

n−1
∑

k=−m

lim
s→∞

I(α| ∨s
j=1 T−jα) ◦ T k(x) =

lim
m+n→∞

1

m + n + 1

n−1
∑

k=−m

I(α| ∨n−k
j=1 T−jα) ◦ T k(x).

Proof. For notational convenience, we introduce

f = lim
s→∞

I(α| ∨s
j=1 T−jα) and FN = sup

s≥N

|I(α| ∨s
j=1 T−jα) − f |.

It is well known that the sequence (I(α| ∨s
j=1 T−jα))s∈N converge almost

everywhere and in L1. The proof of this convergence (see [4, Chap.8] and [3,
p.262]) requires the increasing martingale theorem.

We need to show that

lim
m+n→∞

1

m + n + 1

n−1
∑

k=−m

∣

∣I(α| ∨n−k
j=1 T−jα) ◦ T k − f ◦ T k

∣

∣ = 0.

Note that

1

m + n + 1

n−1
∑

k=−m

|I(α| ∨n−k
j=1 T−jα) ◦ T k − f ◦ T k| ≤

1

m + n + 1

n−1
∑

k=n−N

|I(α| ∨n−k
j=1 T−jα) ◦ T k − f ◦ T k|

+
1

m + n + 1

n−N−1
∑

k=−m

|FN | ◦ T k.
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If we fix N and let n+m tend to infinity then the first term in the right-hand
side of the above inequality goes to zero. Since the map FN belongs to L1

(see [3]), the bilateral version of Birkhoff’s ergodic theorem applies and we
can assert that

lim
m+n→∞

1

m + n + 1

n−N−1
∑

k=−m

|FN | ◦ T k =

∫

X

FN dµ.

Since limN→∞ FN = 0, the dominated convergence theorem implies that
∫

X
FN dµ tends to zero which completes the proof.

Theorem 2 For a bijective map T from X to X and a T -ergodic measure

µ, we have for µ-almost all x

lim
n+m→∞

−1

n + m
log µ(CT

n,m,α(x)) = hµ(T, α),

where CT
n,m,α(x) represents the element of the partition α ∨ Tα . . . ∨ T mα ∨

T−1α ∨ . . . ∨ T−nα containing the point x.

Proof. Since the sequence
(

I(α| ∨s
j=1 T−jα)

)

s∈N
converges to a L1 map

and by using the dominated convergence theorem, it follows that

hµ(T, α) = lim
s→∞

∫

X

I(α| ∨s
j=1 T−jα)(x) dµ(x) =

∫

X

lim
s→∞

I(α| ∨s
j=1 T−jα)(x) dµ(x)

for µ-almost all x. The bilateral version of Birkhoff’s ergodic theorem implies
that for almost all x

hµ(T, α) = lim
m+n→∞

1

m + n + 1

n−1
∑

k=−m

lim
s→∞

I(α| ∨s
j=1 T−jα) ◦ T k(x).

From Lemma 2 it follows that

hµ(T, α) = lim
m+n→∞

1

m + n + 1

n−1
∑

k=−m

I(α| ∨n−k
j=1 T−jα) ◦ T k(x).

Using Lemma 1 for almost all x we obtain

hµ(T, α) = lim
m+n→∞

1

m + n + 1

(

I(∨m
j=−nT

jα)(x) − I(T−nα)(x)
)

.
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Since (I(T−nα))n∈N is bounded for µ-almost all point x, the sequence I(T−nα)
n+m+1

tends almost surely to zero. Hence,

hµ(T, α) = lim
m+n→∞

1

m + n + 1
I(∨m

j=−nT jα)(x)

= − lim
m+n→∞

1

m + n
log µ(CT

n,m,α(x)).

4 An illustration

In this example we do not give a definition of the particular discrets dy-
namical systems called cellular automata; the reader can find a survey in [1]
and the complete proof of this illustration in [5]. The bilateral version of
the Shannon-McMillan-Breiman theorem is needed to establish an inequal-
ity between the entropy of a cellular automaton F denoted by hµ(F, α), the
entropy hµ(σ) of a particular bijective cellular automaton σ called the shift,
and some discret analog of the Lyapunov exponents. Here the measure µ is
F -invariant and σ-ergodic.

The standart Shannon-McMillan-Breiman theorem [4, Chap.10] says that
in the case of an invariant measure µ.

hµ(F, α) =

∫

lim
n→∞

−1

n
log µ

(

CF
n,α(x)

)

.

In [5] one proves that there exists some integer and bounded maps fn and gn

such that, for all point x, one has

CF
n,α(x) ⊃ Cσ

fn(x),gn(x),α(x)

with limn→∞ fn(x) + gn(x) = +∞ for µ-almost all point x for a certain class
of cellular automata. For those that do not belong to this class, the entropy
is equal to zero (see [5]). With these properties we obtain

hµ(F, α) ≤

∫

lim
n→∞

−1

n
log µ

(

Cσ
fn(x),gn(x),α(x)

)

dµ(x)

and

hµ(F, α) ≤

∫

lim inf
n→∞

−1

fn(x) + gn(x) + 1
log µ

(

Cσ
fn(x),gn(x),α(x)

)

×
gn(x) + fn(x) + 1

n
dµ(x).
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The bilateral version of the Shannon-McMillan-Breiman theorem implies that

hµ(F, α) ≤ hµ(σ, α)

∫

lim inf
n→∞

fn(x) + gn(x) + 1

n
.

Using the Fatou lemma, we have

hµ(F, α) ≤ hµ(σ, α) × (λ+
µ + λ−

µ ),

where

λ+
µ = lim inf

∫

fn(x)

n
dµ(x) and λ−

µ = lim inf

∫

gn(x)

n
dµ(x)

are called the left and right average Lyapunov exponents.
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