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Cellular automata and Lyapunov exponents
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Institut de Mathématiques de Luminy
UPR 9016 - 163, avenue de Luminy Case 907

13288 Marseille Cedex 9 France

Abstract

The first definition of Lyapunov exponents (depending on a prob-
ability measure) for a one-dimensional cellular automaton were intro-
duced by Shereshevsky in 1991. The existence of an almost everywhere
constant value for each of the two exponents (left and right), requires
particular conditions for the measure. Shereshevsky establishes an
inequality involving these two constants and the metric entropies of
both the shift and the cellular automaton. In this article we first prove
that the two Shereshevsky’s exponents exist for a more suitable class
of measures, then, keeping the same conditions, we define new expo-
nents, called average Lyapunov exponents smaller or equal to the first
ones. We obtain two inequalities: the first one is analogous to the
Shereshevsky’s but concerns the average exponents; the second is the
Shereshevsky inequality but with more suitable assumptions. These
results are illustrated by two non-trivial examples, both proving that
average exponents provide a better bound for the entropy, and one
showing that the inequalities are strict in general.

1 Introduction

A one-dimensional cellular automaton (CA) denote by F is a discrete mathe-
matical idealization of a space-time physical system. The space, called config-
uration space, consist of a discrete, regular, doubly infinite one-dimensional
lattice with the property that each site can take a finite number of different
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values. A configuration is defined when every sites are fixed. The discrete
time is represented by the action of a cellular automaton F on this space.
This action consist to change the value of a site considering only a finite num-
ber of values situated in the neighborhood of this site on the previous time
step. We say that we apply a local rule. The definition and the name cel-
lular automaton were first given by Von Neumanmn and Ulam for modeling
biological self reproduction.
For differential systems, the Lyapunov exponents are essentially local prop-
erties and it is natural to introduce a corresponding definition in the discrete
frame of a cellular automaton, defined by a local rule.
A perturbation in the configuration space is intuitively a change of values
on some site. In [21], Wolfram call perturbation a change of a finite number
of site and study with computer the propagation of these changes. He call
Lyapunov exponents the speed of these propagations and suspect that there
exists relations between the spatial and temporal entropies and these expo-
nents (see [21] pages 261; 514). The question of these relations appears as one
of the 20 general questions raised by Wolfram about cellular automata (see
[21] page 172). In [18] Shereshevsky gave a mathematical definition of the
Lyapunov exponents for a cellular automaton. A left or right perturbation
of a configuration become the set of all the configurations which differ from
the first one at the right or left side of the central site. The Shereshevsky
definition of the Lyapunov exponents require to take the maximum speed
of propagation on all the shifted configurations. Shereshevsky define the
left and right Lyapunov exponents maps (λ+, λ−) (see subsection 3.1) which
characterize the speed of propagation of these perturbations with respect to a
cellular automaton and shift-invariant measure. Requiring the F -ergodicity
for the measure he obtains that the maps have almost everywhere the same
value and note the two constants λ+

µ and λ−
µ . Then if µ is also shift invariant,

denoting by hµ(F ), (resp. hµ(σ)) the metric entropy of F (resp. the metric
entropy of the shift σ), Shereshevsky establishes an inequality presumed by
Wolfram and similar to the Pesin one ( [15] or [16]) in the differentiable case:

hµ(F ) ≤ hµ(σ)(λ+
µ + λ−

µ ) (1)

where hµ(F ) and hµ(σ) are respectively the metric entropy of the cellular
automaton F and the metric entropy of the shift σ.

The main reason for continuing the work of Shereshevsky is that we know
very few examples of cellular automaton with F -ergodic measure in general.
The only exception are the expansive ones.
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Another reason is that when a cellular automaton has equicontinuous points
in the topological support of the measure, the measure can not be F -ergodic.
The Proposition 3.1 asserts that these exponents λ+

µ and λ−
µ also exist in

the case of a shift-ergodic measure which is only F -invariant. With these
last conditions the uniform measure which is shift-ergodic is also invariant
for every onto cellular automata. More generally (see [6]) if X is a mixing
subshift of finite type and F a cellular automaton such that F (X) = X then
the Parry measure on X verify the new conditions.

From Proposition 3.1, the new measure conditions implies that the exponents
λ+

µ and λ−
µ only depend on the topological support S(µ) of µ. To be precise

they quantify the maximum speed of the propagation of perturbation on the
set S(µ).
We show by examples that for cellular automata with equicontinuous points
in S(µ) the exponents λ+

µ and λ−
µ are strictly positives under the new as-

sumptions (see example 1), although the metric entropie is equal to 0 (see
Proposition 5.2).

Next we define new Lyapunov exponents (I+
µ , I−

µ ) called average Lyapunov
exponents defined respected to an F -invariant and shift-ergodic measure.
From Proposition 3.2, we assume that the new exponents are smaller or
equal to the first ones.
They are equal to 0 when exist equicontinuous points (see Proposition 5.2

and example 1).
Proving that the sum of these two exponents has a sense (see Proposition

5.1) we state the main result named Theorem 5.1 which gives the inequal-
ity:

hµ(F ) ≤ hµ(σ)(I+
µ + I−

µ ). (2)

In example 2 we show that the average Lyapunov exponents can be strictly
smaller than the Shereshevsky one, even if there is not equicontinuous point.
Finally in Proposition 5.3 we establish a topological inequality :
If we denote by µu the uniform measure on AZ and by htop(F ) the topological
entropy of an onto cellular automaton F : AZ → AZ we obtain

htop(F ) ≤ log #A(λ+
µu

+ λ−
µu

).

We underline that when it is useful we only put one synthetic expression λ±
µ ,

Λ±
n , I±

n , etc.
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2 Preliminary

2.1 Symbolic systems and cellular automata

Let A be a finite set or alphabet. Denote by A∗ the set of all concatenations
of letters in A. These concatenations are called words. The length of a word
u ∈ A∗ is denoted by |u|. The set of bi-infinite sequences x = (xi)i∈Z is
denoted by AZ. A point x ∈ AZ is called a configuration. For i ≤ j in Z

we denote by x(i, j) the word xi . . . xj and by x(p,∞) the infinite sequence
(vi)i∈N such that for all i ∈ N one has vi = xp+i−1. We endow AZ with the
product topology. The shift σ: AZ → AZ is defined by : σ(x) = (xi+1)i∈Z.
For each integer t and each word u, we call cylinder the set [u]t = {x ∈
AZ : xt = u1 . . . ; xt+|u| = u|u|}. For this topology AZ is a compact metric
space. A metric compatible with this topology can be defined by the distance
d(x, y) = 2−i where i = min{|j| such that x(j) 6= y(j)}. The dynamical
system (AZ, σ) is called the full shift. A subshift X is a closed shift-invariant
subset X of AZ endowed with the shift σ. It is possible to identify (X, σ)
with the set X. A language L is an arbitrary subset of A∗. Let Ln be the
set of words of length n of L. The language associated to the subshift X
is L(X) = {u ∈ A∗| ∃x ∈ X, x(i, i + |u|w − 1) = u}. It is well known
that (X, σ) is completely described by L(X). If α = {A1, . . . , An} and
β = {B1, . . . , Bm} are two partitions denote by α∨β the partition {Ai∩Bj i =
1 . . . n, j = 1, . . . , m}.
Consider a probability measure µ on the Borel sigma-algebra B of AZ. If
µ is σ-invariant then the topological support of µ is a subshift denoted by
S(µ). We denote by M(F) the set of all F -invariant probability measures
and by #A the cardinal of the set A. The uniform probability measure on
AZ is the measure such that µ([u]t) = (#A)−k for all integers t and words
u ∈ Ak. The metric entropy hµ(T ) of a transformation T is an isomorphism
invariant between two µ-preserving transformations; its definition can be
found in [20] and many other ergodic theory books. A cellular automaton
(CA) is a continuous self-map F on AZ commuting with the shift. The
Curtis-Hedlund-Lyndon theorem [7] states that for every cellular automaton
F there exist an integer r and a block map f from A2r+1 to A such that:
F (x)i = f(xi−r, . . . , xi, . . . , xi+r). The integer r is called the radius of the
cellular automaton. If the block map of a cellular automaton is such that
F (x)i = f(xi, . . . , . . . , xi+r), the cellular automaton is called one-sided and
can be extended a map on a two-sided shift AZ or a map on a one-sided shift
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AN. If X is a subshift of AZ and one has F (X) ⊂ X, the restriction of F to
X determines a dynamical system (X, F ); it is called a cellular automaton
on X.

3 Lyapunov exponents with shift-ergodic and

F -invariant measure

3.1 The information propagation map

Consider a cellular automaton(X, F ) where X is a subshift of AZ. Set
W+

s (x) = {y ∈ X| ∀i ≥ s; yi = xi} and W−
s (x) = {y ∈ X|; i ≤ s yi = xi}.

We claim that W+
s (x) is the set of perturbations made by infinite blocks of

points of X located in the negative coordinates of x. For any integer n and
x in X one has

Λ̃+
n (x) = min{s ≥ 0 : ∀1 ≤ i ≤ n, F i(W+

0 (x)) ⊂ W+
s (F i(x))},

Λ̃−
n (x) = min{s ≥ 0 : ∀1 ≤ i ≤ n, F i(W−

0 (x)) ⊂ W−
−s(F

i(x))}.

Then we define the two shift-invariant maps Λ±
n (x) = maxi∈Z Λ̃±

n (σi(x)).

Remark 1 Clearly Λ̃+
n and Λ̃−

n are two continuous functions bounded by rn.
We have changed a little bit the definition of Shereshevsky (see [18] pages 3)
in order to clarify some proofs but this change does not affect the limits of

the sequences (Λ±
n

n
)n∈N.

3.2 One proof of the existence of λ+
µ and λ−

µ when µ is

σ-ergodic.

In this section we prove that the limits of (Λ±
n

n
)n∈N exist almost everywhere

when µ is σ-ergodic and F (S(µ) ⊂ S(µ)(more suitable conditions) without
using the subadditive ergodic theorem. But with this new condition the
maximum Lyapunov exponents are rather topological than measure-theoretic
quantities because they only depend on the topological support S(µ).

Proposition 3.1 If µ is shift-ergodic and F (S(µ)) ⊂ S(µ), for µ-almost

all x in X ⊃ S(µ) the limits limn→∞
Λ+

n (x)
n

and limn→∞
Λ−

n (x)
n

exist and take
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constant values λ+
µ and λ−

µ . Moreover for almost all x one has

λ±
µ = lim

n→∞

Λ±
n (x)

n
= lim

n→∞
max

y∈S(µ)

Λ±
n (y)

n
= max

y∈S(µ)
lim sup

n→∞

Λ±
n (y)

n
.

Proof : We give only the proof for λ+
µ . For any F -invariant subshift Y ,

denote by Λ̂+
n (Y ) = maxx∈Y Λ̃+

n (x).

From [18] we have Λ̃+
n+m(x) ≤ Λ̃+

n (x) + Λ̃+
m(σΛ̃+

n (x) ◦ F n(x)) which implies

that (Λ̂+
n (Y ))n∈N is a subadditive sequence. To finish the proof we need to

show that for almost all x we have Λ+
n (x) = Λ̂+

n (S(µ)) which implies that for

almost all x, the sequence (Λ+(x)
n

) has a limit.

We show that there exists a set G of full measure such that for any integer
n, the map Λ+

n is constant on G and the value of this constant is Λ̂+
n (S(µ)).

Let L(S(µ)) be the language associated to S(µ) and let u ∈ L(S(µ)) be a
word of length 2rn + r. Clearly the map Λ̃+

n is constant on the cylinder [u]0.
Put

Vn = {u ∈ L2rn+r(S(µ)) such that Λ̃+
n ([u]0) = Λ̂+

n (S(µ))},

and Gn = {x ∈ S(µ) | ∃i ∈ N such that x(i, i + 2rn + r) ∈ Vn}.

It is easily seen that for any x ∈ Gn, Λ+
n (x) = Λ̂+

n (S(µ)). For any n ∈ N

the set Gn is σ-invariant. It contains a cylinder [u]0 such that u ∈ Vn, so
µ(Gn) ≥ µ([u]0) > 0 and as µ is σ-ergodic, µ(Gn) = 1. Then µ(∩∞

n=1Gn) = 1
and the map Λ+

n takes the value Λ̂+
n (S(µ)) on a set of full measure. 2

3.3 Average Lyapunov exponents

In this section we introduce the average exponents I+
µ and I−

µ which represent
an average rate of propagation along the shift orbit for almost all points of
X. We are going to show that these two exponents are less than or equal to
their homologue λ+

µ and λ−
µ .

For any integer n, any point x, the map I−
n gives the minimum integer m such

that all the perturbations in the right side of xm never move until the central
coordinate while the n first iterations ; the exponent I+

n has a symmetric
definition. Formally,

I−
n (x) = min{s ∈ N | ∀ 1 ≤ i ≤ n, |F i(W−

s (x)) ⊂ W−
0 (F i(x))},

I+
n (x) = min{s ∈ N | ∀ 1 ≤ i ≤ n, |F i(W+

−s(x)) ⊂ W+
0 (F i(x))}.
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Remark 2 Clearly I+
n and I−

n are two continuous functions bounded by rn.

Set I+
n;µ =

∫

X
I+
n (x)dµ(x) and I−

n;µ =
∫

X
I−
n (x)dµ(x). The Birkhoff’s theorem

implies that for almost all x one has I+
n;µ = limn→∞

∑m
i=−m

1
2m+1

I+
n (σi(x))

and I−
n;µ = limn→∞

∑m

i=−m
1

2m+1
I−
n (σi(x)).

Definition 3.1 Call average Lyapunov exponents the limits

I+
µ = lim inf

n→∞

I+
n;µ

n
and I−

µ = lim inf
n→∞

I−
n;µ

n
.

Proposition 3.2 If µ is σ-ergodic and F (S(µ)) ⊂ S(µ), then I+
µ ≤ λ+

µ and
I−
µ ≤ λ−

µ .

Proof : By definition of I+
n (x), there exists i ≤ n such that F i(W+

−I+
n (x)+1

(x))

6⊂ W+
0 (F i(x)). Hence for all x we have Λ̃+

n (σ−I+
n (x)+1(x)) ≥ I+

n (x) − 1, then
Λ+

n (x) ≥ I+
n (x) − 1.

We can write that
∫

S(µ)
I+
n (x)dµ(x) ≤

∫

S(µ)
(Λ+

n (x) + 1) dµ(x) which implies

that

lim inf
n→∞

I+
n;µ

n
≤ lim inf

n→∞

∫

S(µ)

Λ+
n (x) + 1

n
dµ(x).

Then using the dominated convergence theorem we get

I+
µ ≤

∫

S(µ)

lim
n→∞

Λ+
n (x)

n
dµ(x) = λ+

µ .

The proof is the same for I−
µ and λ−

µ . 2

Question: We do not know examples of sequences (
I+
n;µ

n
)n∈N and (

I−n;µ

n
)n∈N

which do not converge. Do they exist?

4 Equicontinuity and Shannon-McMillan-

Breiman theorem

Definition 4.1 A cellular automaton has equicontinuous points (or Lya-
punov stable points) if and only if there exists a point x in X such that
for all ǫ > 0, there exists δ > 0, such that for all y in X with d(x, y) < δ
then d(F n(x), F n(y)) < ǫ for any n.
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Definition 4.2 Let F be a cellular automaton with radius r. A word B ∈
A2k+1 is called blocking word if for all x in X such that x(−k, k) = B, there
exists an infinite word sequence vn, |vn| = 2i+1 ≥ r, such that F n(x)(−i, i) =
vn for all n ∈ Z

∗.

Remark 3 If B is a blocking word and if a point x verifies x(−k, k) = B,
then the sequence F n(x)(−∞,−i) does not depend on x(k, +∞) because
2i + 1 ≥ r. A blocking word completely disconnects the evolution of the
coordinates to its left and to its right. This imply that a point with infinitively
many occurrences of a blocking word is an equicontinuous point.

The relation between equicontinuity points and blocking words was estab-
lished in [12] (see also [4]).

Proposition 4.1 [12][4] A cellular automaton F with radius r acting on a
transitive subshift X has equicontinuous points if and only if it has a blocking
word.

Let α be a finite partition of X, let T be a measurable action on X and µ
be a T -invariant measure. Denote by P T

n,α(x) the element of the partition
α ∨ T−1α ∨ . . . ∨ T−nα which contains x and hµ(T, α) the metric entropy of
T with respect to the partition α.

Theorem 4.1 (Shannon-McMillan-Breiman) If µ is T -invariant, for almost
all x limn→∞

−1
n

log µ(P T
n,α(x)) exists and one has

∫

X

lim
n→∞

−1

n
log µ(P T

n,α(x))dµ(x) = hµ(T, α).

If µ is a T -ergodic measure, then for almost all x

lim
n→∞

−1

n
log µ(P T

n,α(x)) = hµ(T, α).

We give a new version of the Shannon-McMillan-Breiman theorem, in the
case of a one to one and onto action T , this new Proposition will be used in
the proof of the main result.

Proposition 4.2 Let T be a one to one and onto action and µ an ergodic
measure. If we denote by P T

n,m,α(x) the element of the partition α ∨ Tα . . .∨
Tmα ∨ T−1α . . . ∨ T−nα which contains x, we have

lim
n+m→∞

−1

n + m
log µ(P T

n,m,αp
(x)) = hµ(T, αp). (3)
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We only give a sketch of the proof, the complete proof appears in [19].
Sketch of the proof: (see [14] in which the similar proof for Theorem 4.1
appears)
Let i(α)(x) = − log µ(P T

α (x)) and i(α/β) = −
∑

A∈α log µ(A/β)(x)χA(x).
We use the next definition for the metric entropy

hµ(α, T ) = lim
n→∞

∫

X

i(α/ ∨n
k=1 T kα)(x)dµ(x).

Using the “two sided” version of the Birkhoff theorem limn+m→∞

∑n
k=−m f ◦

T k(x) =
∫

X
f(x)dµ(x) with f = limn→∞ i(α/ ∨n

k=1 T−kα) and showing that

P T
n,m,αp

(x) = i(∨m
k=−nT kα)(x) =

∑n−1
k=−m i(α/∨n−k

j=1 T−jα) ◦ T k + i(Tm−1α) we
obtain

lim
n+m→∞

i(∨m
k=−nT kα)(x) = lim

n→∞

∫

X

i(α/ ∨n
k=1 T kα)(x)dµ(x). 2

5 Main results

The proof of our principal result, Theorem 5.1 relies on two propositions and
two lemmas. Proposition 5.1 establishes that one can treat independently the
perturbations coming from the right and the perturbations coming from the
left: this allows to sum the two exponents. Lemma 5.1 permits to split the
general proof into two cases, Lemma 5.2 solves the first case and Proposition
5.2 solves the second.

Proposition 5.1 For any triple of positive integers (n, p, i) with i ≤ n and
p ≥ r and for every x in X, one has

F i
(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

⊂ Cp
−p

(

F i(x)
)

.

This means that if the point y has the same coordinate as x from −p −
I+
n (σp(x)) to p + I−

n (σp(x)), then for each i ≤ n the coordinates of F i(y) are
equal of those of F i(x) from −p to p.
Proof : Fix two positives integers n and p. Choose a point x ∈ X and

put s+ = I+
n (σ−p(x)) and s− = I−

n (σp(x)). For each point y ∈ Cp+s−

−p−s+(x),

set y1 and y2 such that y1(−p − s+,∞) = x(−p − s+,∞), y1(−∞, p + s−) =
y(−∞, p+s−), y2(−∞, p+s−) = x(−∞, p+s−) and y2(−p−s+,∞) = y(−p−
s+,∞). By definition of I+

n and I−
n , for all i ≤ n one has F i(y1)(−p,∞) =

9



F i(x)(−p,∞) and F i(y2)(−∞, p) = F i(x)(−∞, p). The proof consists in
showing by induction that for every positive integer i ≤ n one has

F i(y)(−p, p) = F i(x)(−p, p). (4)

Recall that f : A2r+1 → A is the local map of F ; for every integer k we also
denote by f the map from A2r+1+k to Ak define by

f(u0 . . . u2r+k+1) = f(u0 . . . u2r)f(u1 . . . u2r+1) . . . f(uk−1 . . . u2r+k).

Let us prove the first step of the recurrence. If p ≥ r then by F (y)(−p, p) =
F (x)(−p, p). As y1(−p− r, r) = y(−p− r, r) and y2(−r, p+ r) = y(−r, p+ r)
one has

F (y)(−p, p) = f(y(−p − r, p + r)) = f(y(−p − r, r))f(y(−r, p + r))

= f(y1(−p − r, r))f(y2(−r, p + r))

using the definition of y1 and y2 we obtain

F (y)(−p, p) = F (x)(−p, 0)F (x)(0, p) = F (x)(−p, p).

Let i be a positive integer such that i ≤ n − 1. We show that if (4) is true
for each k ≤ i it remains true for k = i + 1.
First we need the two equalities

F i(y1)(−p−r, r) = F i(y)(−p−r, r) and F i(y2)(−r, p+r) = F i(y)(−r, p+r). (5)

We give the proof of the first one, the second is analogous.

We prove the equality F i(y1)(−p− r, r) = F i(y)(−p− r, r) using a secondary
recurrence that establishes that for any positive integer k ≤ i one has

F k(y1)(−p − r(i + 1 − k), r) = F k(y)(−p − r(i + 1 − k), r). (6)

As y1(−p−(r+1)i, p+s−) = y(−p−(r+1)i, p+s−), from the definition of s−

one has F (y1)(−p − ri, p) = F (y)(−p − ri, p) and since p ≥ r we obtain the
first step of this new recurrence. We suppose (6) is true for each k ≤ i − 1,
i.e., F k(y1)(−p − r(i + 1 − k), r) = F k(y)(−p − r(i + 1 − k), r); then

F k+1(y1)(−p − r(i − k), r) = f(F k(y1)(−p − r(i + 1 − k), 2r))
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= f(F k(y1)(−p − r(i + 1 − k), r)f(F k(y1)(−r, 2r)).

and since (6) is true for each k ≤ i − 1 we have

F k+1(y1)(−p− r(i− k), r) = f(F k(y)(−p− r(i+1− k), r))f(F k(y1)(−r, 2r))

= F k+1(y(−p − r(i − k), 0))f(F k(y1)(−r, 2r)).

To finish the proof of the step k + 1 of this secondary recurrence, i.e.,
F k+1(y1)(−p − r(i − k), r) = F k+1k(y)(−p − r(i − k), r), we need to ver-
ify that f(F k(y1)(−r, 2r)) = f(F k(y)(−r, 2r)) = F k+1(y)(0, r). From the
definition of y1 we can assert that F k(y1)(−r, 2r) = F k(x)(−r, 2r) and if
we use the hypothesis of the main recurrence (6), namely, F k+1(y)(−p, p) =
F k+1(x)(−p, p) (since k ≤ i − 1), we conclude that

f(F k(y1)(−r, 2r)) = f(F k(x)(−r, 2r)) = F k+1(x)(0, r)

= F k+1(y)(0, r).

We are now in position to show that F i+1(y)(−p, p) = F i+1(x)(−p, p), which
completes the proof of the main recurrence. Starting from the equality

F i+1(y)(−p, p) = f(F i(y)(−p− r, p + r)) = f(F i(y)(−p− r, r))f(F i(y)(−r, p + r))

and using the two equalities (5) we conclude that

F i+1(y)(−p, p)
= f(F i(y1)(−p − r, r))f(F i(y2)(−r, p + r))
= f(F i(x)(−p − r, r))f(F i(x)(−r, p + r))
= F i+1(x)(−p, 0)F i+1(x)(0, p)
= F i+1(x)(−p, p).

2

Lemma 5.1 Let µ be a shift-ergodic measure. If there exist an equicontinu-
ous point x in S(µ) then for every integer p ≥ r and for almost all point the
sequences (I+

n (σ−p(x)) + I−
n (σp(x)))n∈N are bounded.

If there is not equicontinuous point in S(µ) then for every p ≥ r and for
almost all points x, the sequences (I+

n (σ−p(x))+ I−
n (σp(x)))n∈N go to infinity.

11



Proof : If exist an equicontinuous point x in S(µ) then there exist an integer
k and a blocking word B = x(−k, k) (see Proposition 4.1). Let V (B) be the
set of all the point with infinitely many occurrences of B in the positive and
negative coordinates. From Remark 3 we claim that all the point of V (B)
are equicontinuous points. As µ is shift-ergodic and µ([B]0) > 0 then one has
µ(V (B)) = 1. Using Remark 3 we conclude that for each point y ∈ V (B) and
for each integer p the sequences (I+

n (σ−p(y)) + I−
n (σp(y)))n∈N are bounded.

We suppose now that there is not equicontinuous point in S(µ) and that
there exist a set E with strictly positive measure such that E contains only
points x with the properties ∃p(x) ∈ N |(I+

n (σ−p(x)) + I−
n (σp(x)))n∈N is a

bounded sequence.
Clearly E ∩ S(µ) 6= ∅. Let y ∈ E ∩ S(µ). There exist p ≥ r such that
M(+) = maxn∈N{I

+
n (σ−p(y))} and M(−) = maxn∈N{I

−
n (σp(y))} are well

defined. From Proposition 5.1 for all i ∈ N one has

F i
(

C
p+M(+)
−p−M(−)(y)

)

⊂ Cp
−p

(

F i(y)
)

.

which implies that the word B′ = y−M(−)−p, . . . yM(+)+p is a blocking word
for F . As µ is shift-ergodic and µ([B′]0) > 0 then there exist a point z ∈
S(µ) with infinitely many occurrences of B′ in the positive and negative
coordinates. This point z is an equicontinuous point (see Remark 3) which
contradict the hypothesis. 2

Lemma 5.2 If µ is a shift-ergodic and F -invariant measure such that F has
no equicontinuous point in S(µ), then hµ(F ) ≤ hµ(σ)(I+

µ + I−
µ ).

Proof : Fix x ∈ X and denote by αp the partition of X into cylinders Cp
−p

(x ∈ X); call P F
n,αp

(x) the element of the partition αp ∨F−1αp ∨ . . .∨F−nαp

that contains x. By Lemma 5.1, for any choice of positive integers p (p ≥ r),
n and i (i ≤ n), one has

F i
(

C
p+I−n (σp(x)

−p−I+
n (σ−p(x))

)
)

⊂ Cp
−p

(

F i(x)
)

.

The last inclusion implies that each F−iαp has an element that contains the

cylinder C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x), so P F
n,αp

(x) ⊃ C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x), and consequently

−
1

n
log µ(P F

n,αp
(x)) ≤ −

1

n
log µ

(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

. (7)

12



Applying the Shannon-McMillan-Breiman theorem to F one shows that
hµ(F, αp) =

∫

X
limn→∞− 1

n
log µ(P F

n,αp
(x)). Then by (7)

hµ(F, αp) ≤

∫

X

lim inf
n→∞

−
1

n
log µ

(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

dµ(x) and

hµ(F,αp) ≤

∫

X

lim inf
n→∞

−
log µ

(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

I+
n (σ−p(x)) + I−n (σp(x))

×
I+
n (σ−p(x)) + I−n (σp(x))

n
dµ(x). (8)

By Lemma 5.1 if there is no equicontinuous point in S(µ) then for all integer
p and almost every point x the sequence (I+

n (σ−p(x)) + I−
n (σp(x)))n∈N goes

to infinity. Considering that µ is shift-ergodic and σ is a one-to-one and onto
map we can apply to σ the version (3) of the Shannon-McMillan-Breiman
theorem, which gives

lim
n→∞

−
log µ

(

C
p+I−n (σp(x)))

−p−I+
n (σ−p(x))

(x)
)

I+
n (σ−p(x)) + I−

n (σp(x))
= hµ(σ, αp) = hµ(σ)

for almost all x and every positive integer p. Combining the last equality
with (8) yields

hµ(F, αp) ≤ hµ(σ) ×

∫

X

lim inf
n→∞

I+
n (σ−p(x)) + I−

n (σp(x))

n
dµ(x).

Using the Fatou lemma, we get

hµ(F, αp) ≤ hµ(σ) × lim inf
n→∞

∫

X

I+
n (σ−p(x)) + I−

n (σp(x))

n
dµ(x).

Since αp is an increasing sequence with the property
∨∞

0 αi = B and µ is
σ-invariant we obtain

lim
p→∞

hµ(F, αp) = hµ(F ) ≤ hµ(σ) × lim inf
n→∞

∫

X

I+
n (x) + I−

n (x)

n
dµ(x).

This last inequality completes the proof, so hµ(F ) ≤ hµ(σ) × (I+
µ + I−

µ ). 2

The next proposition establishes that if there exists a blocking word u such
that µ([u]0) > 0 then the metric entropy hµ(F ) is equal to 0.

13



Proposition 5.2 If a cellular automaton F has equicontinuous points be-
longing to S(µ) then the average Lyapunov exponents I+

µ and I−
µ and the

metric entropy hµ(F ) are 0.

Proof : By our hypothesis and Lemma 5.1, for each integer p ≥ r the
sequences (I+

n (σ−p(x)) + I−
n (σp(x)))n∈N are bounded for almost all x. This

implies that for any positive integer p and for almost all x,

lim inf
n→∞

−
log µ

(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

I+
n (σ−p(x)) + I−

n (σp(x))

is bounded. Then for all p and for almost all x, we get

lim inf
n→∞

− log µ
(

C
p+I−n (σp(x))

−p−I+
n (σ−p(x))

(x)
)

I+
n (σ−p(x)) + I−

n (σp(x))
×

I+
n (σ−p(x)) + I−

n (σp(x))

n
= 0.

From (8) in the proof of Lemma 5.2, the sum over X of the last equality is
an upper bound of the metric entropy hµ(F ) which implies that this entropy

is equal to 0. On the other hand the sequence ( I+
n (x)
n

)n∈N is bounded by r and
converges to 0 for almost all x, then applying the dominated convergence
theorem one gets

I+
µ = lim

n→∞

∫

X

I+
n (x)

n
dµ(x) ≤

∫

X

lim
n→∞

I+
n (x)

n
dµ(x) = 0.

The proof is identical for I−
µ . 2

Remark 4 One can prove that hµ(F ) = 0 if there exist equicontinuous points
in S(µ) using Katok’s definition of metric entropy.

Combining Lemma 5.2 and Proposition 5.2 we obtain the next theorem :

Theorem 5.1 If µ is a σ-ergodic and F -invariant measure then

hµ(F ) ≤ hµ(σ)(I+
µ + I−

µ ).

Remark 5 For one-sided cellular automata one defines a unique average
Lyapunov exponent Iµ whose definition is identical to that of I+

µ in this
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Subsection. Then the proof of the inequality hµ(F ) ≤ hµ(σ)Iµ does not
require the use of Proposition 5.1.

Since λ+
µ ≥ I+

µ and λ−
µ ≥ I−

µ (Lemma 3.2) one has

Corollary 5.1 If µ is a σ-ergodic and F -invariant measure then

hµ(F ) ≤ hµ(σ)(λ+
µ + λ−

µ ).

A topological inequality

Here we recall some definitions relative to the topological entropy that we de-
note by htop(F ). Let (X, F ) be a dynamical system. For any integer n the dis-
tance dn is defined by ∀x, y ∈ X2 one has dn(x, y) = max{d(F i(x), F i(y)) 0 ≤
i ≤ n}. An (n, ǫ)-covering set is a cover of X by balls of diameter ǫ for the
dn metric. Let D(n, ǫ) be the minimum cardinal of an (n, ǫ) covering set.

hTop(F ) = lim
ǫ→∞

lim
n→∞

1

n
log(D(n, ǫ)).

Let µu be the uniform measure of AZ. We will give a upper bound of htop(F )
according to the exponents λ+

µu
and λ−

µu
. Remark that for all cellular au-

tomaton F , the uniform measure satisfies the two conditions of Proposition
3.1, so λ+

µu
and λ−

µu
always exist.

Proposition 5.3 For any onto cellular automaton F : AZ → AZ one has
htop(F ) ≤ (λ+

µu
+ λ−

µu
) log #A.

Proof : From Proposition 5.1 and proof of Proposition 3.2 (Λ±
n (x) + 1 ≥

I±
n (x)), it follows that for any choice of positive integers p (p ≥ r), n and i

(i ≤ n), one has

F i
(

C
p+Λ+

n (x)+1

−p−Λ−
n (x)−1

(x)
)

⊂ Cp
−p(F

i(x)).

Denote by Ω(n, p)) the set of all the cylinders
(

C
p+Λ+

n (x)+1

−p−Λ−
n (x)−1

(x) (x ∈ AZ)
)

and by Λ̂±
n the maximum of all the Λ±

n (x). The last inequality implies that
Ω(n, p)) is a (n, 2−p) covering set which show that for all integers n and p,
we get D(n, 2−p) ≤ #Ω(n, p). As

#Ω(n, p) = #{Cp+Λ̂−
n +1

−p−Λ̂+
n−1

(xj) | xj ∈ AZ} = (#A)(2p+3+Λ̂+
n +Λ̂−

n ),
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we can assert that

hTop(F ) = lim
p→∞

lim
n→∞

1

n
log D(n, 2−p)

≤ lim sup
p→∞

lim
n→∞

2p + 3 + Λ̂+
n + Λ̂−

n

n
× log #A.

Using Proposition 3.1 we obtain hTop(F ) ≤ (λ+
µu

+ λ−
µu

) log #A. 2

6 Examples

The two following examples show that I+
µ and I−

µ can be strictly less than
λ+

µ and λ−
µ . The example 6.2 shows that the inequality of Theorem 5.1 is

in general strict. In both examples we use the uniform measure which is
shift-ergodic and F -invariant when F is onto from AZ to itself.

6.1 Coven’s cellular automata

In [5], Coven computes exactly the positive topological entropy of a particular
class of onto cellular automata with complex behavior. In [3] Blanchard and
Maass show that all these CA have equicontinuous points.
A Coven aperiodic CA is defined by its block map f : {0, 1}r+1 → {0, 1}:
f(x0, x1, . . . , xr) = (x0+1) mod 2 if x1 . . . xr = b1 . . . br, f(x0, x1, . . . , xr) = x0

otherwise. The word B = b1 . . . br must be aperiodic, which means that for
any integer r > 1 there is no integer p (0 < p < r) such that bi+p = bi for
i = 1, . . . r − p. In [5] Coven proves that the topological entropy of this type
of CA is log(2). Here we consider the Coven CA with radius r = 2 and
aperiodic word B = 10. This particular example has the typical behavior of
all the other Coven’s automata. Let µ be the uniform measure on {0, 1}Z.
From [3] we know that 000 is a blocking word for F . If µ is the uniform
measure I+

µ + I−
µ = 0 by Proposition 5.2 and hµ(F ) = 0. On the contrary

the sum of the maximum Lyapunov exponents is strictly positive. First it is
clear that λ+

µ = 0, because the block map f does not depends on negative
coordinates of x.
Let y be the fixed point with yi = 1 for all i and let z be a point with all the
coordinates equals to 1 except z0. The word 01 never appears in y so F (y) =
y. Considering that F (z)(−4,−2) = 110 we deduce that F 2(−6,−4) = 110
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and by a trivial induction F n(z)(−2n − 2,−2n) = 110. Considering that y
belong to S(µ) = AZ and applying Proposition 3.1 we see that λ−

µ ≥ λ−(y) ≥
2. The value of λ−

µ must be less than or equal to the radius of the (CA)
which is equal to 2 so λ−

µ = 2. It is well known that the topological entropy
of the two-shift is equal to log 2. From Theorem 5.1 we get hµ(σ)(λ+

µ +λ−
µ ) =

2 log 2 > hµ(F ) = 0. Remark that in this case the values of λ+
µ and λ−

µ do not
allow to prove that hµ(F ) = 0. From [3] htop(F ) = 2 log(2) = hµ(σ)(λ+

µ +λ−
µ )

so in this case the inequality of Corollary 5.1 becomes an equality.

6.2 A sensitive cellular automaton

Definition 6.1 Let X a compact space and T be a transformation of X.
The map T is said to be sensitive if there exists a real ǫ > 0 such that for
any x ∈ X, any real δ > 0, there exists a positive integer n and a point y
such that d(x, y) < δ and d(T n(x), T n(y)) ≥ ǫ.

Kůrka [12] shows that a cellular automaton is sensitive if and only if it has no
equicontinuous points. By Proposition 4.1 sensitive cellular automata have
no blocking words, so for all x ∈ X one has limn→∞(I+

n (x) + I−
n (x)) = ∞.

The aim of studying the sensitive cellular automaton F defined below is
twofold. First, in spite of its rather simple behavior, it gives a good idea of
the reason why average Lyapunov exponents give a better upper bound of
the metric entropy hµ(F ). Secondly, this example shows that inequality (2)
is sometimes strict.

Set X1 = {0, 1}Z, X2 = {0, 1, 2}Z and X = X1 × X2. Denote by µ1 the
uniform measure on X1, by µ2 the uniform measure on X2 and µ the product
measure µ1 ×µ2 on X. Clearly µ is the uniform measure on X, so µ is shift-
ergodic. The cellular automaton F is the product of F1 acting on X1 and F2

acting on X2. Denote by σ the shift on X. The automaton F1 is only the
shift on X1. For each x ∈ X1 one has Λ̃F1−

n (x) = n. As µ1 is shift-ergodic on
X1 and F1-invariant we can assert that I−

µ1
= λ−

µ1
= 1.

We define a cellular automaton F2 on X2 with radius r by its local map f2:

f2(x−r, . . . x0, . . . xr) = x0 + xr if 2 /∈ {x0, x1, . . . , xr}

and f2(xr, . . . x0, . . . xr) = x0 if 2 ∈ {x0, x1, . . . , xr}.

Using a criterion given in [9], one can easily show that F2 is onto, which
implies that the product automaton F is also onto. As the uniform measure is
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invariant for an onto cellular automaton the exponents (I+
µ , I−

µ ) and (λ+
µ , λ−

µ )
are defined for F and µ. Remark that for each couple of integers k and i
the value of F k(x)i does not depend on the coordinates at the left of xi, so
for F one has I+

µ = λ+
µ = 0. The letter 2 is clearly a blocking word for F2.

Every point x ∈ X2 with infinitely many occurrences of 2 in the negative and
positive coordinates is an equicontinuous point for (F2, X2). The restriction
of F2 to the subshift {0, 1}Z is the r times iterated shift. It follows that
for µ2-almost all x one has Λ−F2

n (x) = rn, and by Proposition 3.1 λ−
µ2

= r.
The measure µ2 which is shift-ergodic on X2 is also F2-invariant because
F2 is an onto map from X2 to X2. As F2 has equicontinuous points from
Proposition 5.2 we have I−

µ2
= 0. From Proposition 5.2 and considering that

S(µ2) = X2 we can compute the value of λ−
µ2

if we find a point x such that

lim supn→∞
1
n
Λ−

n (x) be maximum. Denote by I−F
n the map I−

n associated
with the automaton F and I−F1

n , I−F2
n those associated respectively with F1

and F2. Similarly Λ−F
n , Λ−F1

n and Λ−F2
n are the maps Λ−

n associated with F ,
F1 and F2. As F is the product of F1 by F2 we have

I−F
n (x) = max{I−F1

n (x1), I
−F2
n (x2)} and Λ−F

n (x) = max{Λ−F1
n (x1),Λ

−F2
n (x2)}.

Remembering that I−F
n,µ =

∫

X
I−F
n (x)dµ1(x1)dµ2(x2) then

I−F
n,µ =

∫

X

max{I−F1

n (x1), I
−F2

n (x2)}dµ1(x1)dµ2(x2).

If we consider F2 as a map on X we can say that for µ1µ2-almost all x ∈ X,
I−F2
n (x1) is bounded. It follows that lim inf 1

n

∫

X
I−F2
n (x)dµ1dµ2(x) = 0, hence

I−
µ = lim inf

1

n

∫

X

I−F1

n (x)dµ1dµ2(x) = I−
µ1

= 1.

If we consider successively F1 and F2 as maps on X, we can see that for
µ1µ2-almost all x ∈ X we have Λ−F1

n (x) = n and Λ−F2
n (x) = rn which implies

that

λ−
µ = lim inf

∫

X

max{Λ−F1

n , Λ−F2

n }dµ1dµ2 = lim inf

∫

X

Λ−F1

n dµ1dµ2 = I−
µ2

= r.

Denoting by σ2 the shift on X2, considering that hµ(F1) = log 2 and hµ(σ2) =
log 3 then hµ(σ) = log 2 + log 3. From Proposition 5.2 and taking in account
that F2 has equicontinuous points we get hµ2

(F2) = 0. Considering succes-
sively F1 and F2 as automata on their respective configuration spaces and on
X we can assert that

hµ(F ) = hµ(F1) + hµ(F2) = hµ1
(F1) + hµ2

(F2) = log 2.
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Finally applying inequalities (1) and (2) to F , we can conclude that for this
example the average Lyapunov exponents give better bounds for the entropy.
From Corollary 5.1 one has hµ(F ) = log 2 ≤ hµ(σ)(λ+

µ +λ−
µ ) = (log 2+log 3)r

and from Theorem 5.1 we get hµ(F ) = log 2 ≤ hµ(σ)(I+
µ + I−

µ ) = (log 2 +
log 3).
In this example µ is the uniform measure on X so from Corollary 5.1 the
real hµ(σ)(λ+

µ + λ−
µ ) = (log 2 + log 3)r is an upper bound of the topological

entropy of F . The topological entropy of F is the sum of the entropy of
F1 and F2 and is equal to (r + 1) log(2) which means that in this case the
topological inequality is strict.

Remark 6 It will be interesting to find no trivial examples for which inequal-
ity (2) becomes an equality and with a strict inequality (1). The Proposition
5.2 suggest that we know very little about sensitive cellular automata. The
condition hµ(σ)(I+

µ + I−
µ ) > 0 does not imply that hµ(F ) > 0.

I am indebted to François Blanchard for many stimulating conversations and
for his help for the writing. An important part of this work has been done in
the University of Chile in Santiago, Mathematics’s laboratory of the section
Civil Engineering. I want to thanks ”FONDAP en Matematicas Aplicadas,
proyecto Modelamiento Estocastico” and ECOS for the financial support and
Alejandro Maass for his numerous suggestions.
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