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Abstract. We present K, L and M diffraction-limited images of NGC 1068, obtained with
NAOS+CONICA at VLT/YEPUN over a 3.5′′

× 3.5′′region around the central engine. Hot dust
(Tcol = 550-650 K) is found to be distributed in three main structurally different regions : (a) in the true nucleus,
seen as a quasi-spherical, however slightly NS elongated, core of extremely hot dust, resolved in K and L with
respective diameters of ≈ 5 pc and 8.5 pc ; (b) along the North-South direction, according to a spiral arm like
structure and a southern tongue ; (c) as a set of parallel elongated nodules (wave-like) on each side, albeit mainly
at north, of the jet, at a distance of 50 to 70 pc from the central engine. The IR images reveal several structures
also clearly observed on either radio maps, mid-IR or HST UV-visible maps, so that a very precise registration
of the respective emissions can be done for the first time from UV to 6 cm. These results do support the current
interpretion that source (a) corresponds to emission from dust near sublimation temperature delimiting the walls
of the cavity in the central obscuring torus. Structure (b) is thought to be a mixture of hot dust and active star
forming regions along a micro spiral structure that could trace the tidal mechanism bringing matter to the central
engine. Structure c) which was not known, exhibits too high a temperature for “classical” grains ; it is most
probably the signature of transiently heated very small dust grains (VSG) : nano-diamonds, which are resistant
and can form in strong UV field or in shocks, are very attractive candidates. The “waves” can be condensations
triggered by jet induced shocks, as predicted by recent models. First estimates, based on a simple VSG model and
on a detailed radiative transfer model, do agree with those interpretations, both qualitatively and quantitatively.

Key words. Galaxies : NGC 1068 – Galaxies : Seyfert – Galaxies : nuclei – Galaxies : dust – Galaxies : active –
Infrared : galaxies – Instrumentation: near- and mid-IR – Instrumentation: adaptive optics

1. Introduction

At a distance of 14.4 Mpc (70 pc per 1 ′′), NGC 1068 is
unique for studying at the scale of a few pc the complex
immediate environment of an Active Galactic Nucleus
(AGN). Indeed, thanks to muti-wavelength studies, it has
been possible in the last decade to identify several distinct
features : a structured radio jet issued from a compact
source, identified as the central engine (Gallimore et al.
1996), also seen in IR (Thatte et al. 1997) ; a structured
molecular/dusty environment around the central engine
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of NGC 1068 detected at infrared, millimetric and radio
wavelengths (Gallimore et al. 1996; Rouan et al. 1998;
Marco & Alloin 2000; Schinnerer et al. 2000; Gratadour
et al. 2003) ; a conical Narrow Line Region (NLR) seen
at UV-visible wavelengths and structured in high velocity
ionized clouds (Capetti et al. 1995). Studying connections
between those structures requires both a good resolution
and an excellent registration of the maps at the different
wavelengths. Between radio and [visible + near-IR] do-
mains, thermal infrared, can play a unique role. Recently,
subarcsecond imaging in the L and M bands has been
reported by Marco & Alloin (2000) and Marco & Brooks
(2003) at a resolution of ≈ 0.2 – 0.5′′. Here we report new
results at K, L and M where the spatial resolution
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and the sensitivity are pushed further thanks to
NACO (NAOS + CONICA) the new adaptive op-
tics (AO) system of the VLT, which offers, in addi-
tion to an excellent correction of the atmospheric
turbulence, the unique capability of thermal infrared
imaging at a scale of 0.1′′(Rousset et al. 2002; Lenzen et
al. 2002).

2. Observation and data reduction

The observations were performed using NACO at the
Nasmyth focus of YEPUN, during the nights 18-26 of
November 2003. The seeing was good (typically O.6 ′′)
and NAOS was servoed on the bright nucleus itself, pro-
viding a diffraction-limited correction, as proven for in-
stance by the three rings seen on the PSF in the M band.
The AutoJitter mode was used, i.e. that at each exposure,
the telescope moves according to a random pattern in a
6 ′′

×6 ′′box. The pixel scale on CONICA is respectively
0.027 ′′in the M and L bands and 0.013 ′′in the K band.
On source total integration time was of 640, 800 and 448
sec at K, L and M. A PSF reference star, chosen to give
equivalent servoing conditions of the AO system, was
observed just before and after NGC 1068. Calibration files
(flat field at dusk, dark exposures) were acquired as ESO
VLT standard data. The FWHM of the PSF, estimated
from reference stars was respectively 0.061′′, 0.105′′and
0.127′′at K, L and M. Applied reduction procedures are
fully described in Gratadour et al. (2003, in prep.). All
images presented here are undeconvolved. The dy-
namic on the final images ranges from 770 at L to 3100 at
M.

3. Results and Discussion

3.1. Registration of radio IR and UV-visible images

We show on Fig. 1, images at L and M, in a field 3.46′′×
3.46′′. The images are diplayed with a power-law scale, so
that details of the morphology at all flux levels can
be seen. Since several noticeable features are found also
on radio, mid-IR and UV-visible images, a very precise
registration of all maps can be done. The most conspicu-
ous structure on all images is the bright central extremely
compact source, already known at those wavelengths as
well as at 10 µm. The bright IR source is most likely
the counterpart of the 5 GHz radio source S1 that
is unambiguously identified with the central engine be-
cause of its spectrum and of the distribution of the maser
sources around it (Gallimore et al. 2001). The mid-IR
images (Bock et al. 2000) also show a bright central core
which obviously marks the location of the same source.
The contours of the radio and the mid-IR emis-
sions can thus be superimposed precisely on our
IR image, as shown on Fig. 2a-b. A much fainter fea-
ture, only present on the M image, is an elongated patch
2.1′′NNE from the core, while another one, seen both at
L and M, is a tongue at 0.69′′NE, with a characteristic

Fig. 1. Top and middle : L and M band false-color im-
ages around the core of NGC 1068. The field is limited to
3.46′′× 3.46′′. The flux scale, indicated on the color bar, is
displayed on a power-law scale (I0.8) because of the high
dynamic range of the images. The PSF is shown as an in-
set. Bottom : cut of the core at K, along NS (solid brown
line) and EW (dash yellow line) axis ; cut of the PSF along
NS (solid blue line) and EW (dash green line) axis.



D. Rouan et al.: Jet induced structures in NGC 1068 3

Fig. 2. On our logscale M band image are superimposed
contours, from top to bottom, of : radio 5 GHz (Gallimore
et al. 1996) ; 12.5 µm (Bock et al. 2000) ; O iii line
emission (Capetti et al. 1995). Various insets of magnified
regions are also shown.

shape of a crab claw. Those two features are clearly seen
on the images in the UV-visible domain (Capetti et al.
1995), so that it is possible to locate unambigu-

ously – within ≈ 0.05 ′′– the IR core on the visible
image. Our cross-identification (Fig. 2c) shows that the
true nucleus is in fact at the apex of the UV cone, i.e.
coincident with the center of polarization vectors in the
near-IR and mid-IR (Lumsden et al. 1999) : this is the
location adopted by Alloin et al. (2001) and more re-
cently by Galliano et al. (2003) who made a very
precise astrometric registration of the UV, radio
and K maps. Two important correlations are also
seen on Fig. 2 : a) the radio jet is bordered in L and
M by two extended tongues parallel to the jet (the north-
ern being more conspicuous), with enhancements that are
tightly correlated ; b) the 12 µm map does correlate ex-
tremely well with the brightest features of the M and L
maps : the NS extension, the NE tongue at the end of the
extension and the NE “crab claw”.

3.2. The size of the central cavity

The most favoured interpretation (Thatte et al. 1997) is
that the core corresponds to the emission from the (UV
heated) very hot dust – close to sublimation temperature
(1000-1500 K) – delimiting the wall of the central cavity
around the accretion disk. This interpretation was recently
fully confirmed by CFHT diffraction-limited spectroscopy
at a spectral resolution of 220 (Gratadour et al. 2003 :
GRCLF03), that allowed to derive a color temperature of
950 K and a deredenned one of 1200 K, i.e. close to subli-
mation temperature of silicates. The new fact brougth by
our observations is that the emission is clearly resolved at
K and at L, as revealed by cuts across the core displayed
on Fig. 1-c. The emission is especially well resolved in
the north-south direction, where the measured FWHM is
.067′′at K and .122′′at L, i.e. 4.7 pc and 8.5 pc respec-
tively. The FWHM at L is larger than at K because it
comes from somewhat cooler, more extended dust. When
comparing those results to our model (GRCLF03) – which
fairly describes the continuum spectrum in the K band at
a scale of 0.15′′–, the core size at K and L, the NS exten-
sion, as well as the observed flux ratio are reproduced to
within 10 %. The fact that the cavity is resolved is thus a

very strong support of the unified AGN scheme.

3.3. Micro-spiral like structure

Two structures close to the AGN are well defined, espe-
cially at M. The same structure as depicted by Rouan et
al. (1998) of a spiral arm beginning sligthly NE from the
core and bending clockwise, up to a point at ≈ 0.45′′(30pc)
NNW from the center, is observed at all wavelengths.
Similarly, a tongue to the south (at a P.A. of 86◦) is clearly
observed, with the difference that it does not show a spiral-
like structure ; it may be obscured by dust from the puta-
tive tilted dusty torus (GRCLF03). In both cases, the M/L
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flux ratio of 1.8 implies a rather high color temperature,
larger than 600K. This ratio is correctly reproduced by
thermal emission of grains at 475 K with Qabs ∝ λ−1.5.
At this distance (20 pc) from the AGN, the estimated
temperature of classical grains with this emissivity is in-
deed around 475 K, assuming a direct heating by the hard
radiation from the accretion disk. In any cases, even an
extremely dense stellar cluster cannot heat dust so effi-
ciently. The observed spiral structure is thus more likely
dust heated by the central source. It could well traces the
innermost stage of nested spirals systems : this type of
structure was proposed to produce the required braking
torque that brings matter to the center to ultimately feed
the “monster” (Shlosman et al. 1989).

4. Hot Very Small Grains in wave-like structures
around the jet

This is probably the most striking result we obtained :
to the north of the radio jet (see Fig. 2a), four parallel
elongated nodules of ≈ 0.2′′long each, forming a kind of
wave pattern, are observed mainly at M and L, but also
at a much fainter level at K. This is especially clear on the
inset of Fig. 1-a. The first of those structures is in fact the
end of the spiral arm described in the previous section.
The three others are fairly parallel to it and distributed
along a direction which has the same P.A. as the jet, as
if they were delineating the cocoon of the jet. Indeed, the
mid-IR images from Bock et al. show an elongated tongue
that superimposes very well on the set of ”waves” we ob-
serve. However, no clues of a sub-structuration were seen
on the 12.5 µm deconvolved image. The K image, despite
the low S/N, indicates that those structures are intrinsi-
cally very narrow and probably unresolved in the direction
of the jet. It is unlikely that they correspond to classi-
cal clouds of gas and/or dust that would be aligned by
chance, unless we just see their illuminated front. If the
pseudo-periodicity corresponds actually to some phys-
ical phenomenon, then the wavelength would be typically
of 10 pc. We rather favour the interpretation that
this scale is typical of instabilities in the ISM, which
developped because of the compression by the jet cocoon.
Hydrodynamical models of this interaction indeed predict
a nested cylindrical structure with dense clumps on each
side of the jet corridor (Steffen et al. 1997, Fig. 2b). The
photometry in L and M reveals unexpectedly high temper-
atures : for instance, a color temperature of 550 K is de-
rived for the third, well delineated, nodule. At a projected
distance of 70 pc, the energy density that is expected at
the level of the nodule, assuming that there is no screening
of the UV, is ≈ 105 eV. Even under such a large irradi-
ation, the temperature of a classical grain would only be
330 K. Redenned free-free emission could be a possible
mechanism in a region where the gas is essentially ion-
ized, since the flux density is about twice at M than at
L. However, the corresponding radio or mid-IR emission
would be respectively much higher and much lower than
observed. Moreover, Bock et al. (2000) have shown that

the radio jet cannot be the only heating source, unless
the conversion of the shock energy into IR emission is ex-
tremely efficient. To reach high temperatures, heat-
ing by soft X-rays is a more plausible mechanism
that must be explored. Another appealing hypoth-
esis that we favour, is that transiently heated very
small grains (VSG) are responsible for this emis-
sion. Indeed, this component of the interstellar dust has
been invoked years ago (Sellgren 1984) and the prediction
that it can contribute very significantly in the near to mid-
IR range when the UV field is very strong, is not recent
(Désert et al. 1990). Recently, this mechanism was pro-
posed to explain the very red colors observed in ULIRGs
(Davies et al. 2002). Nanodiamonds are in fact very good
candidates for those VSG in the case of an AGN : (a) they
can form very efficiently in a strong UV field or in shocks
(Jones & d’Hendecourt 2000) ; (b) they are not easily de-
stroyed and (c) they can reproduce very well the observed
color temperature. Using Jones and d’Hendecourt (2000)
heat capacity, we built a model of transient heating, and
computed that, for instance, a 0.5 nm diamond absorbing
a 6 eV photon and emitting in the IR while cooling, repro-
duces the observed L/M ratio of nodule #3 ; a mixture of
nanodiamonds from 0.5 to 2 nm receiving photons from
1 to 7.5 eV reproduces the ratio of L, M and N (Bock
et al., 2000) fluxes to within 8 %. More refined fits will
soon be presented (Gratadour et al., in prep.). We predict
that several characteristic lines of nanodiamonds should
be detectable in this range.
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