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ASYMPTOTICS FOR GENERAL CONNECTIONS AT

INFINITY

CARLOS SIMPSON

Abstract. For a standard path of connections going to a generic
point at infinity in the moduli space MDR of connections on a com-
pact Riemann surface, we show that the Laplace transform of the
family of monodromy matrices has an analytic continuation with
locally finite branching. In particular the convex subset represent-
ing the exponential growth rate of the monodromy is a polygon,
whose vertices are in a subset of points described explicitly in terms
of the spectral curve. Unfortunately we don’t get any information
about the size of the singularities of the Laplace transform, which
is why we can’t get asymptotic expansions for the monodromy.

1. Introduction

We study the asymptotic behavior of the monodromy of connections
near a general point at ∞ in the spaceMDR of connections on a compact
Riemann surface X. We will consider a path of connections of the form
(E,∇+ tθ) which approaches the boundary divisor transversally at the
point on the boundary ofMDR corresponding to a general Higgs bundle
(E, θ). By some meromorphic gauge transformations in §5 we reduce
to the case of a family of connections of the form d + B + tA. This is
very similar to what was treated in [34] except that here our matrix
B may have poles. We import the vast majority of our techniques
directly from there. The difficulty posed by the poles of B is the new
phenomenon which is treated here. We are not able to get results as
good as the precise asymptotic expansions of [34]. We just show in
Theorem 6.3 (p. 19) that if m(t) denotes the family of monodromy or
transport matrices for a given path, then the Laplace transform f(ζ) of
m has an analytic continuation with locally finite singularities over the
complex plane (see Definition 6.2, p. 19). The singularities are what
determine the asymptotic behavior ofm(t). The upside of this situation
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point, Resurgent function, Laplace transform, Growth rate, Planar tree, Higgs bun-
dle, Moduli space, Compactification, λ-connection, Gauge transformation, Mon-
odromy, Fundamental group, Representation, Iterated integral.
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2 C. SIMPSON

is that since we are aiming for less, we can considerably simplify certain
parts of the argument. What we don’t know is the behavior of f(ζ)
near the singularities: the main question left open is whether f has
polynomial growth at the singularities, and if so, to what extent the
generalized Laurent series can be calculated from the individual terms
in our integral expression for f .

We can get some information about where the singularities are. Fix
a general point (E, θ). Recall from [25] [26] [18] [29] that the spectral
curve V is the subset of points in T ∗(X) corresponding to eigenforms of
θ. We have a proper mapping π : V → X. In the case of a general point,
V is smooth and the mapping has only simple ramification points. Also
there is a tautological one-form

α ∈ H0(V, π∗Ω1
X) ⊂ H0(V,Ω1

V ).

Finally there is a line bundle L over V such that E ∼= π∗(L) and θ
corresponds to the action of α on the direct image bundle. This is
all just a geometric version of the diagonalization of θ considered as a
matrix over the function field of X.

Let R ⊂ X denote the subset of points over which the spectral curve
is ramified, that is the image of the set of branch points of π. It is the
set of turning points of our singular perturbation problem. Suppose p
and q are points in X joined by a path γ. A piecewise homotopy lifting
of γ to the spectral curve V consists of a collection of paths

γ̃ = {γ̃i}i=1,...,k

such that each γ̃i is a continuous path in V , and such that if we denote
by γi := π ◦ γ̃i the image paths in V , then γ1 starts at p, γk ends at
q, and for i = 1, . . . , k − 1, the endpoint of γi is equal to the starting
point of γi+1 and this is a point in R. Among these there is a much
more natural class of paths which are the continuous homotopy liftings,
namely those where the starting point of γ̃i is equal to the starting point
of γ̃i+1 (which is not necessarily the case for a general piecewise lifting).

Denote by Σ(γ) ⊂ C the set of integrals of the tautological form α
along piecewise homotopy liftings of γ, i.e. the set of complex numbers
of the form

σ =

∫

γ̃

α :=

k∑

i=1

∫

γ̃i

α.

Let Σcont(γ) be the subset of integrals along the continuous homotopy
liftings. The following is the statement of Theorem 6.3 augmented with
a little bit of information about where the singularities are.
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Theorem 1.1. Let p, q be two points on X, and let γ denote a path
from p to q. Let {(E,∇ + tθ)} denote a curve of connections cutting
the divisor PDR at a general point (E, θ) and let (V, α, L) denote the
spectral data for this Higgs bundle. Let m(t) be the function (with val-
ues in Hom(Ep, Eq)) whose value at t ∈ C is the transport matrix for
the connection ∇+ tθ from p to q along the path γ. Let f(ζ) denote the
Laplace transform of m. Then f has an analytic continuation with lo-
cally finite singularities over the complex plane. The set of singularities
which are ever encountered is a subset of the set Σ(γ) ⊂ C of integrals
of the tautological form along piecewise homotopy liftings defined above.

It would have been much nicer to be able to say that the set of
singularities is contained in Σcont(γ), however I don’t see that this is
necessarily the case. However, it might be that the singularities in
Σcont(γ) have a special form different from the others. This is an inter-
esting question for further research.

Ths first singularities which are encountered in the analytic continu-
ation of f determine the growth rate of m(t) in a way which we briefly
formalize. Suppose that m(t) is an entire function with exponentially
bounded growth. We say that m(t) is rapidly decreasing in a sector, if
for some (open) sector of complex numbers going to ∞, there is ε > 0
giving a bound of the form |m(t)| ≤ e−ε|t|. Define the hull of m by

hull (m) := {ζ ∈ C s.t. e−ζtm(t)not rapidly decreasing in any sector}.

It is clear from the definition that the set of ζ such that e−ζtm(t) is
rapidly decreasing in some sector, is open. Therefore hull (m) is closed.
It is also not too hard to see that it is convex (see §13). Note that the
hull is defined entirely in terms of the growth rate of the function m.

Corollary 1.2. In the situation of Theorem 1.1, the hull of m is a
finite convex polygon with at least two vertices, and all of its vertices
are contained in Σ(γ).

The above results fall into the realm of singular perturbation theory
for systems of ordinary differential equations, which goes back at least
to Liouville. A steady stream of progress in this theory has led to a
vast literature which we don’t attempt completely to cover here (and
which the reader can explore by using internet and database search
techniques, starting for example from the authors mentionned in the
bibliography).

Recall that following [4], Voros and Ecalle looked at these questions
from the viewpoint of “resurgent functions” [41] [43] [42] [20] [19] [21]
[7] [9] [14]. In the terminology of Ecalle’s article in [7], the singular
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perturbation problem we are considering here is an example of co-
equational resurgence. Our approach is very related to this viewpoint,
though self-contained. We use a notion of analytic continuation of the
Laplace transform 6.2 which is a sort of weak version of resurgence, like
that used in [14] and [9]. The elements of our expansion 6.1 are what
Ecalle calls the “elementary monomials” and the trees which appear
in §8 are related to (co)moulds (co)arborescents, see [7]. Conversion
properties related to the trees have been discussed in [22] (which is
on the subject of KAM theory [23]). The relationship with integrals
on a spectral curve was explicit in [13], [14]. The works [42], Ecalle’s
article in [7], and [14], raise a number of questions about how to prove
resurgence for certain classes of singular perturbation problems notably
some arising in quantum mechanics. A number of subsequent articles
treat these questions; I haven’t been able to include everything here
but some examples are [22], [15], [16], . . . (and apparently [45]). In
particular [16] discuss extensively the way in which the singularities
of the Laplace transform determine the asymptotic behavior of the
original function, specially in the case of the kinds of integrals which
appear as terms in the decomposition 6.1.

There are a number of other currents of thought about the prob-
lem of singular perturbations. It is undoubtedly important to pursue
the relationship with all of these. For example, the study initiated
in [6] and continuing with several articles in [7], as well as the more
modern [1] (also Prof. Kawai’s talk at this conference) indicates that
there is an intricate and fascinating geometry in the propagation of
the Stokes phenomenon. And on the other hand it would be good to
understand the relationship with the local study of turning points such
as in [8], [40]. The article [15] incorporates some aspects of all of these
approaches, and one can see [5] for a physical perspective. Also works
on Painlevé’s equations and isomonodromy such as [11] [27] [33] [44]
are probably relevant.

Even though he doesn’t appear in the references of [34], the ideas
of J.-P. Ramis indirectly had a profound influence on that work (and
hence on the present note). This can be traced to at least two inputs
as follows:
(1) I had previously followed G. Laumon’s course about ℓ-adic Fourier
transform, which was partly inspired by the corresponding notions in
complex function theory, a subject in which Ramis (and Ecalle, Voros,
. . . ) had a great influence; and
(2) at the time of writing [34] I was following N. Katz’s course about ex-
ponential sums, where again much of the inspiration came from Ramis’
work (which Katz mentionned very often) on irregular singularities.
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Thus I would like to take this opportunity to thank Jean-Pierre for
inspiring such a rich mathematical context.

I would also like to thank the several participants who made inter-
esting remarks and posed interesting questions. In particular F. Pham
pointed out that it would be a good idea to look at what the formula
for the location of the singularities actually said, leading to the state-
ment of Theorem 6.3 in its above form. I haven’t been able to treat
other suggestions (D. Sauzin, . . . ), such as looking at the differential
equation satisfied by f(ζ).

2. The compactified moduli space of connections

LetX be a smooth projective curve over the complex numbers C. Fix
r and suppose E is a vector bundle of rank r over X. A connection (by
which we mean an algebraic one) onE is a C-linear morphism of sheaves
∇ : E → E⊗OΩ1

X satisfying the Leibniz rule ∇(ae) = (da)e+a∇(e). If
p and q are points joined by a path γ : [0, 1] → X, γ(0) = P , γ(1) = Q
then local solutions of ∇(e) = 0 continue along γ, giving a transport
matrix mγ(E,∇) : EP → EQ. The transport matrix, our main object
of study, is the fundamental solution of a linear system of ODE’s. If E
is a trivial bundle (which will always be the case at least on a Zariski
open subset of X containing γ) then there is a formula for the transport
matrix as a sum of iterated integrals [10] [24]. A modified version of
this formula is basic to the argument below, although we mostly refer
to [34] for the details of that part of the argument.

Recall that we have a moduli space MDR of rank r vector bundles
with integrable connection on X [36], which has a compactification
MDR ⊂ MDR constructed as follows. A Higgs bundle is a pair (E, θ)
where θ : E → E ⊗O Ω1

X is an OX -linear bundle map (rather than a
connection) [25] [26] [35], which is semistable of degree 0 if E has degree
zero and if any sub-Higgs bundle has degree ≤ 0. In fact for any λ ∈ A1

C

we can look at the notion of vector bundle with λ-connection [17]—
related in an obvious way to the notion of singular perturbation—which
is a pair (E,∇) of a bundle plus a connection-like operator satisfying
Leibniz’ rule with a factor of λ in front of the first term. For λ = 0
this is just a Higgs bundle and for any λ 6= 0 the operator λ−1∇ is a
connection.

With these definitions, there is a moduli space [37] [39] [36] MHod →
A1 for vector bundles with λ-connection, λ ∈ A1. The fiber over λ = 0
is the moduli space MDol for semistable Higgs bundles of degree zero,
whereas for any λ 6= 0 the fiber is isomorphic to MDR.
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The Higgs-bundle moduli space has a subvariety Mnil
Dol parametrizing

the Higgs bundles (E, θ) such that θ is nilpotent as an Ω1
X -valued endo-

morphism of E. Let M∗
Dol denote the complement of Mnil

Dol in MDol and
let M∗

Hod denote the complement of Mnil
Dol in MHod. Then the algebraic

group Gm acts on MHod preserving all of the above subvarieties, and
the compactification is obtained as the quotient [37] [39]

MDR := M∗
Hod/Gm.

The complement of MDol in MHod (which is also the complement of
M∗

Dol inM
∗
Hod) is isomorphic toMDR×Gm and this gives the embedding

MDR →֒ MDR. The complementary divisor is given by

PDR = M∗
Dol/Gm.

In conclusion, this means that the points at ∞ in MDR correspond to
equivalence classes of semistable, degree 0, non-nilpotent Higgs bundles
(E, θ) under the equivalence relation

(E, θ) ∼= (E, uθ)

for any u ∈ Gm.
Recall that the moduli space MDol is an irreducible algebraic variety

[36], so PDR is also irreducible. The general point therefore corresponds
to a “general” Higgs bundle (E, θ) (in what follows we often forget to
add the adjectives “semistable, degree 0”). For a general point, the
spectral curve of θ (described in more detail in the section after next) is
an irreducible curve with ramified map to X, such that the ramification
points are all of the simplest type.

We should note that Arinkin [2] [3] has defined a finer compactifica-
tion by modifying the notion of λ-connection, and this is taken up by
Inaba, Iwasaki and Saito [27].

3. Curves going to infinity

The moduli spaces considered above are coarse only. In an etale
neighborhood of the generic point, though, they are fine and smooth.
At a general point of the divisor PDR, both MDR and PDR are smooth.
Thus we can look for a curve cutting PDR transversally at a general
point. Such a curve may be obtained by taking the projection of a
curve in MHod cutting MDol at a general point. In turn, this amounts
to giving a family (Ec,∇c) where ∇c is a λ(c)-connection, parametrized
by c ∈ C for some curve C. In an etale neighborhood of the point λ = 0,
the function λ(c) should be etale. Note also that (E0,∇0) should be a
general semistable Higgs bundle of degree zero.
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The easiest way to obtain such a curve is as follows: let (E, θ) be a
general Higgs bundle, stable of degree zero. The bundle E is stable as
a vector bundle (since stability is an open condition and it certainly
holds on the subset of Higgs bundles with θ = 0, so it holds at general
points). In particular E supports a connection ∇ and we can set

∇λ := λ∇ + θ

for λ ∈ A1. Here the parameter is λ itself. The subset Gm ⊂ A1

corresponds to points which are mapped into MDR, and indeed the
vector bundle with connection corresponding to the above λ-connection
is

(E,∇ + tθ) , t = λ−1.

The map actually extends to a map from A1 into MDR for the other co-
ordinate chart A1 providing a neighborhood at ∞ in P1. In conclusion,
the family of connections {(E,∇ + tθ)} corresponds to a morphism

P1 →MDR

sending t ∈ A1 into MDR, sending the point t = ∞ to a general point
in the divisor PDR, and the curve is transverse to the divisor at that
point. This type of curve was called a pencil of connections by Losev
and Manin [30].

We will look only at curves of the above form. It should be possible
to obtain similar results for other curves cutting PDR transversally at
a general point, but that is left as a problem for future study.

We will investigate the asymptotic behavior of the monodromy rep-
resentations of the connections (E,∇ + tθ) as t → ∞. Recall that the
Betti moduli space MB is the moduli space for representations of π1(X)
up to conjugation, and we have an analytic isomorphism Man

DR
∼= Man

B

sending a connection to its monodromy representation. We will look
at the asymptotics of the resulting analytic curve A1 →MB.

In order to set things up it will be useful to fix a basepoint p ∈ X
and a trivialization τ : Ep ∼= Cr. Then for any γ ∈ π1(X, x) we obtain
the monodromy matrix

ρ(E,∇ + tθ, τ, γ) ∈ GL(r,C).

Of course the monodromy matrices don’t directly give functions on the
moduli space MB of representations, because they depend on the choice
of trivialization τ . However, one has the Procesi coordinates (see Culler
and Shalen [12] and Procesi [32]) which are certain polynomials in the
monodromy matrices (for several γ at once) which are invariant un-
der change of trivialization and give an embedding of the Betti moduli
space MB into an affine space. We will look at the asymptotic behavior
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of the monodromy matrices, but the resulting asymptotic information
will also hold for any polynomials (see Corollary 14.2), and in particu-
lar for the Procesi coordinates. This will give asymptotic information
about the image curve in MB.

Notationally it is easier to start right out considering the transport
matrices between points p and q. In any case, the functions we shall
consider, be they the matrix coefficients of the monodromy ρ or some
other polynomials in these or the transport matrices, will be entire
functions m(t) on the complex line t ∈ C. We will be looking to
characterize their asymptotic properties.

The method we will use is the same as the method already used in
[34] to treat exactly this question, for a more special class of curves
going to infinity in MDR. In that book was treated the case of families
of connections (E,∇ + tθ) where

E = Or
X , ∇ = d+B, θ = A

with A and B being r × r matrices of one-forms on X such that A is
diagonal and B contains only zeros on the diagonal. In [34], a fairly
precise description of the asymptotic behavior of the monodromy was
obtained. It was also indicated how one should be able to reduce to
this case in general; we shall explain that below. The only problem is
that in the course of this reduction, one obtains the special situation
but with B being a matrix of one-forms which has some poles on X.
In this case the exact method used in [34] breaks down.

The purpose of the present paper is to try to remedy this situation
as far as possible. We change very slightly the method (essentially by
taking the more canonical gradient flows of the functions ℜgij rather
than the flows defined in Chapter 3 of [34], and also stopping the flows
before arriving at the poles of B). However, we don’t obtain the full
results of [34], namely we can show an analytic continuation result for
the Laplace transform of m(t) (this Laplace transform is explained in
more detail below), however we don’t get good bounds or information
about the singularities of the Laplace transform other than that they
are locally finite sets of points. In particular we obtain information
about the growth rate of m(t) but not asymptotic expansions.

Even in order to obtain the analytic continuation, a much more de-
tailed examination of the dynamics generated by the general method
of [34] is necessary. This is the main body of the present paper (see
Theorem 12.5). For the remainder of the technique we mostly refer to
[34].

Thus while we treat a much more general type of curve going to
infinity than was treated in [34], we obtain a weaker set of results for
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these curves. This leaves open the difficult question of what kinds
of singularities the Laplace transforms have, and thus what type of
asymptotic expansion we can get for m(t).

4. Genericity results for the spectral data

Before beginning to look more closely at the monodromy representa-
tions, we will consider some properties of general points (E, θ) on PDR,
best expressed in terms of the spectral curve [25] [26] [18] [29] [13] [33].

Suppose (E, θ) is a Higgs bundle. Suppose P ∈ X and v ∈ TPX;
then we obtain the fiber EP which is a vector space of rank r, with
an endomorphism θP (v) ∈ End(EP ). We say that P is singular if
θP (v) has an eigenvalue (i.e. zero of the characteristic polynomial) of
multiplicity ≥ 2. It is more natural to look at the eigenforms of θ
obtained by dividing out the vector v. The eigenforms are elements of
the cotangent space T ∗

PX = (Ω1
X)P .

We say that a singular point P is generic if there is exactly one
eigenform of multiplicity ≥ 2; if it has multiplicity exactly 2; and if the
two eigenforms α± of θ which come together at P , may be expressed
in a neighborhood with coordinate z as

α± = cdz ± az1/2dz + . . . .

The condition that all singular points are generic is a Zariski open
condition on the moduli space of Higgs bundles.

Suppose P is a generic singular point. The eigenforms give a set of r−
1 distinct elements of T ∗

PX, consisting of the values of the multiplicity-
one eigenvalues of θ at P , plus the leading term cdz for the pair α±.
Call this set EFP . We say that P is non-parallel if EFP , viewed as a
subset of the real two-dimensional space T ∗

PX, doesn’t have any colinear
triples, nor any quadruples of points defining two parallel lines.

In terms of a coordinate z at P we can write the elements of EFP as

αi(P ) = aidz

with ai being distinct complex numbers, and say a1 = c in the previous
formulation. Then P is non-parallel if and only if the set of ai ∈ C ∼= R2

doesn’t have any colinear triples or parallel quadruples. In turn this
is equivalent to saying that the angular coordinates of the complex
numbers ai − aj are distinct.

Lemma 4.1. The set of Higgs bundles (E, θ) such that the singulari-
ties are generic and satisfy the non-parallel condition, is a dense real
Zariski-open subset of the moduli space.
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Proof. The condition of being non-parallel is a real Zariski open con-
dition. In particular, the condition that all singular points be generic
and non-colinear, holds in the complement of a closed real algebraic
subset of the moduli space. Therefore, if there is one such point then
the set of such points is a dense real Zariski open subset.

To show that there is one point (E, θ) such that all of the singular
points are generic and non-parallel, we can restrict to the case where
E = O⊕r is a trivial bundle. In this case, θ corresponds to a matrix
of holomorphic one-forms on X. We will consider a matrix of the
form A + λB with A diagonal having entries αi, and B is off-diagonal
with λ small. The singular points are perturbations of the points where
αi(P ) = αj(P ). A simple calculation with a 2×2 matrix shows that the
singularities are generic in this case. In order to obtain the non-colinear
condition, it suffices to have that for a point P where αi(P ) = αj(P ),
the subset of r − 1 valuse of all the αk(P ) is non-parallel.

For a general choice of the αk, this is the case. Suppose we are
at a point P where α1(P ) = α2(P ) for example. Then moving the
remaining αk for k ≥ 3 shows that the remaining points are general
with respect to the first one. A set of r − 1 points such that the last
r− 2 are general with respect to the first one (whatever it is), satisfies
the non-parallel condition. �

Lemma 4.2. If (E, θ) is generic in the sense of the previous lemma,
then the spectral curve V is actually an irreducible smooth curve sitting
in the cotangent bundle T ∗X. There is a line bundle L on V such that
E ∼= π∗(L) and θ is given by multiplication by the tautological one-form
over V .

Proof. The genericity condition on the way the eigenforms come to-
gether at any point where the multiplicity is ≥ 2, guarantees that at
any point where the projection π : V → X is not locally etale, the
curve V is a smooth ramified covering of order 2 in the usual standard
form. This shows that V is smooth. It is irreducible, because this is so
for at least some points (for example the deformations used in the pre-
vious proof) and Zariski’s connectedness implies that in a connected
family of smooth projective curves if one is irreducible then all are.
For connectedness of the family we use the irreducibility of the moduli
space of Higgs bundles cf [36]. The last statement is standard in theory
of spectral curves [25] [26] [18] [29]. �

Remark: Once p and q are fixed, then for general θ the endpoints
p, q will not be contained in the set R of turning points.
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5. Pullback to a ramified covering and gauge

transformations

Fix a general Higgs bundle (E, θ) on X. By taking a Galois comple-
tion of the spectral curve of θ and Galois-completing a further two-fold
ramified covering if necessary, we can obtain a ramified Galois covering

ϕ : Y → X

such that the pullback Higgs field ϕ∗ has a full set of eigen-one-forms
defined on Y ; and such that the ramification powers over singular points
of θ are divisible by 4.

We have one-forms α1, . . . , αr and line sub-bundles

L1, . . . , Lr ⊂ ϕ∗E

such that at a general point of Y we have

ψ : ϕ∗E ∼= L1 ⊕ . . .⊕ Lr

with ϕ∗θ represented by the diagonal matrix with entries αi. Note that
ϕ∗θ preserves Li (acting there by multiplication by αi) globally on Y .
However, the isomorphism ψ will only be meromorphic, and also the
Li are of degree < 0. Choose modifications L′

i of Li (see Lemma 5.1
below, also the modifications are made only over singular points) such
that L′

i is of degree zero, and set

E ′ := L′
1 ⊕ . . .⊕ L′

r.

Let θ′ denote the diagonal Higgs field with entries αi on E ′. Let ∇′ be
a diagonal flat connection on E ′. We have a meromorphic map

ψ : E → E ′,

and

ψ ◦ ϕ∗θ ◦ ψ−1 = θ′.

Suppose now that ∇ was a connection on E, giving a connection
ϕ∗∇ on ϕ∗E. We can write

ψ ◦ ϕ∗∇ ◦ ψ−1 = ∇′ + β

with β a meromorphic section of End(E ′) ⊗O Ω1
Y .

A transport matrix of (E,∇ + tθ) may be recovered as a transport
matrix for the pullback bundle on Y . Indeed if γ is a path in X going
from p to q then it lifts to a path going from a lift p′ of p to a lift q′ of q.
Thus it suffices to look at the problem of the asymptotics for transport
matrices for the pullback family

{(ϕ∗E,ϕ∗∇ + tϕ∗θ)}.
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We may assume that p and q are not singular points of θ, so p′ and q′

will not be singular points of ϕ∗θ. Then the transport matrices for this
family are conjugate (by a conjugation which is constant in t) to the
transport matrices for the family

{(E ′,∇′ + β + tθ′)}.

Lemma 5.1. In the above situation, the modifications L′
i of Li may be

chosen so that the diagonal entries of β are holomorphic. Furthermore
the poles of the remaining entries of β are restricted to the points lying
over singular points in X for the original Higgs field θ (the “turning
points”).

Proof. Note first that, by definition, away from the singular points of
θ the eigen-one-forms are distinct so the eigenvectors form a basis for
E, in other words the direct sum decomposition ψ is an isomorphism
at these points. Thus ψ only has poles over the singular points of θ
(hence the same for β).

We will describe a choice of L′
i locally at a singular point.

Look now in a neighborhood of a point P ′ ∈ Y , lying over a singular
point P ∈ X. Let z′ denote a local coordinate at P ′ on Y , with z a
local coordinate at P on X and with

z = (z′)m.

Our assumption on Y was that m is divisible by 4. In fact we may as
well assume that m = 4 since raising to a further power doesn’t modify
the argument. Thus we can write

z′ = z1/4.

There are two eigenforms of θ which come together at P . Suppose that
their lifts are α1 and α2. Then near P ′ we can write

ϕ∗E = U ⊕ L3 ⊕ . . .⊕ Lr

where U is the rank two subbundle of ϕ∗E corresponding to eigenvalues
α1 and α2. The direct sum decomposition is holomorphic at P ′ because
the other eigenvalues of θ were distinct at P and different from the two
singular ones (of course after the pullback all of the eigenforms have a
value of zero at P ′ but the decomposition still holds nonetheless).

Now we use a little bit more detailed information about spectral
curves for Higgs bundles: the general (E, θ) is obtained as the direct
image of a line bundle on the spectral curve (Lemma 4.2). This means
that locally near P there is a two-fold branched covering with coordi-
nate u = z1/2 such that the rank 2 subbundle of E corresponding to the
singular values looks like the direct image of the trivial bundle on the
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covering, and the 2×2 piece of θ looks like the action of multiplication
by udz = 2u2du. The direct image, considered as a module over the
series in z, is just the series in u. One can obtain a basis by looking at
the odd and even powers of u: the basis vectors are e1 = 1 and e2 = u.
In these terms we have

θe1 = e2dz; θe2 = ze1dz.

Thus the 2 × 2 singular part of θ has matrix
(

0 z
1 0

)
dz.

Pulling back now to the covering Y which is locally 4-fold, we have a
basis for U in which

ϕ∗θ|U =

(
0 (z′)7

(z′)3 0

)
dz′.

On the other hand, since up until now our decomposition is holomor-
phic, the pullback connection ϕ∗∇ may be written (in terms of our
basis for U plus trivializations of the Li for i ≥ 3) as d+B′ where B′ is
a holomorphic matrix of one-forms. Since the basis can be pulled back
from downstairs, we can even say that B′ consists of one-forms pulled
back from X.

To choose the modifications L′
i (for i = 1, 2) locally at P ′ we have to

find a meromorphic change of basis for the bundle U , which diagonalizes
ϕ∗θ|U . The eigenforms of the matrix are ±(z′)5dz′ and we can choose
eigenvectors

e± :=

(
z′

±(z′)−1

)
.

Note by calculation that

(ϕ∗θ|U)e± = (±(z′)5dz′)e±.

Choose the line bundles L′
1 and L′

2 to be spanned by the meromorphic
sections e+ and e− of U . These are indeed eigen-subbundles for ϕ∗θ. We
just have to calculate the connection ϕ∗∇ on the bundle U ′ = L′

1 ⊕L′
2.

Which is the same as the modification of U given by the meromorphic
basis z′e1, (z

′)−1e2.
Note first that the matrix B′ of one-forms pulled back from X con-

sists of one-forms which have zeros at least like (z′)3dz′. Thus B′ trans-
ported to U ′ is still a matrix of holomorphic one-forms so it doesn’t
affect our lemma. In particular we just have to consider the transport
to U ′ of the connection dU constant with respect to the basis (e1, e2)
on the bundle U .



14 C. SIMPSON

Calculate

dU(a+e+ + a−e−) = dU

(
(a+ + a−)z′

(a+ − a−)(z′)−1

)

=

(
(da+ + da−)z′

(da+ − da−)(z′)−1

)
+

(
(a+ + a−)(d log z′)z′

−(a+ − a−)(d log z′)(z′)−1

)

and with the notation dU ′ for the constant connection on the bundle
U ′ with respect to its basis e±, this is equal to

= dU ′(a+e+ + a−e−) + a+(d log z′)e− + a−(d log z′)e+.

We conclude that the connection matrix β is, up to a holomorphic
piece, just the 2 × 2 matrix

(
0 (z′)−1

(z′)−1 0

)
dz′.

In particular the diagonal terms of β are holomorphic, as desired for
the lemma.

These local modifications piece together to give global modifications
L′
i of the Li. We have to show that the L′

i are of degree zero.
In general, given a meromorphic connection on a bundle which is a

direct sum of line bundles, we can extract its “diagonal” part, which
in terms of a local framing compatible with the direct sum is just
the connection given by the diagonal entries of the original connection
matrix. Denote this operation by ( )diag. Note that for any diagonal
connection ∇′ and meromorphic endomorphism-valued one-form β, the
diagonal connection is given by (∇′ + β)diag = ∇′ + βdiag where βdiag is
the matrix of diagonal entries of β.

Setting E ′ :=
⊕

L′
i we have a meromorphic map ψ : E → E ′. We

obtain a meromorphic connection ψ◦ϕ∗∇◦ψ−1 on E ′, and by the above
choice of L′

i the associated diagonal connection is holomorphic at the
singularities. On the other hand, ψ ◦ ϕ∗∇ ◦ ψ−1 is holomorphic away
from the singularities, so its diagonal part is holomorphic there too.
Therefore the global diagonal connection (ψ◦ϕ∗∇◦ψ−1)diag on

⊕
L′
i is

holomorphic. This proves that the L′
i are of degree zero. In particular,

our choice of modification is allowable for the argument given at the
start of the present section. This proves the lemma. �

Remarks:
(i) The above proof gives further information: the only terms with
poles in the matrix β are the off-diagonal terms corresponding to the
two eigenvalues which came together originally downstairs in X; and
these terms have exactly logarithmic (i.e. first-order) poles with residue
1. This information might be useful in trying to improve the current
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results in order to obtain precise expansions at the singularities of the
Laplace transform of the monodromy.
(ii) This gauge transformation is probably not new, but I don’t cur-
rently have a good reference. It looks related to [28], [44] and [33], and
indeed may go back to [13] [41].
(iii) The fact that we had to go to a covering whose ramification power
is divisible by 4 rather than just 2 (as would be sufficient for diago-
nalizing θ) is somewhat mysterious; it probably indicates that we (or
some of us at least) don’t fully understand what is going on here.

Let βdiag denote the matrix of diagonal entries of β. Let Z = Ỹ
be the universal covering. Over Z we can use the diagonal connection
∇′ + βdiag to trivialize

E ′|Z ∼= Or
Z .

With respect to this trivialization , our family now has the form of a
family of connections

{(Or
Z , d+B + tA)}

where A (corresponding to the pullback of θ′ to Z) is the diagonal
matrix whose entries are the pullbacks of the αi; and where B is a
matrix whose diagonal entries are zero, and whose off-diagonal entries
are meromorphic with poles at the points lying over singular points for
θ.

We can now apply the method developped in [34] to this family of
connections. Note that it is important to know that the diagonal entries
of A come from forms on the compact Riemann surface Y ; on the other
hand the fact that B is only defined over the universal covering Z is
not a problem. The next two sections will constitute a brief discussion
of how the method of [34] works; however the reader is refered back
there for the full details.

6. Laplace transform of the monodromy operators

We now look at a family of connections of the form d + B + tA
on the trivial bundle Or on the universal covering Z of the ramified
cover Y , where A is a diagonal matrix with one-forms αi along the
diagonal, and B is a matrix of meromorphic one-forms with zeros on
the diagonal. We assume that the poles of B are at points P ∈ R
coming from the original singular points of the Higgs field θ on X. We
make no assumption about the order of poles, in spite of the additional
information given by Remark (i) after the proof of Lemma 5.1 above.

Assume that p and q are two points in Z, not on the singular points.
Choose a path γ from p to q not passing through the singular points.
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We obtain the transport matrix m(t) for continuing solutions of the
ordinary differential equation (d+B + tA)f = 0 from p to q along the
path γ. Note that m(t) is a holomorphic r × r-matrix-valued function
defined for all t ∈ C.

Denote by Z∗ (resp. Zǫ) the complement of the inverse image of R
(resp. the complement of the union of open discs of radius ǫ around
points in the inverse image of R). The poles of B force us to work
in Z∗ rather than Z, and in the course of the argument an ǫ will be
chosen so that we really work in Zǫ. Actually it turns out that the
fact of staying inside these regions will be guaranteed by our choice of
vector fields, so we don’t need to worry about any modification of the
procedure of [34] because of this difference.

Recall that after a gauge transformation and an expansion as a sum
of iterated integrals, we obtain a formula for the transport matrix.
One way of thinking of this formula is to look at the transport for the
connection d + sB + tA and expand in a Taylor series in s about the
point s = 0, then evaluate at s = 1. The terms in the expansion are the
higher derivatives in s, at s = 0, which are functions of t. A concrete
derivation of the formula is given in [34]. It says

m(t) =
∑

I

∫

ηI

bIe
tgI

where:
—the sum is taken over multi-indices of the form I = (i0, i1, . . . , ik)
where we note k = |I|;
—for a multi-index I we denote by Z∗

I the product of k = |I| factors
Z × . . .× Z;
—in Z∗

I we have a cycle

ηI := {(γ(t1), . . . , γ(tk))}

for 0 ≤ t1 ≤ . . . ≤ tk ≤ 1 where γ is viewed as a path parametrized by
t ∈ [0, 1];
—the cycle ηI should be thought of as representing a class in a relative
homology group of Z∗

I relative to the simplex formed by points where
Z∗
I = zi+1 or at the ends z1 = p or zk = q;

—the matrix B leads to a (now meromorphic) matrix-valued k-form bI
on Z∗

I defined as follows: if the entries of B are denoted bij(z)dz then

bI = bikik−1
(zk)dzk ∧ . . . ∧ bi1i0(z1)dz1eiki0

where eiki0 denotes the elementary matrix with zeros everywhere ex-
cept for a 1 in the iki0 place;
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—and finally gI is a holomorphic function Z∗
I → C defined by integrat-

ing the one-forms αi as follows:

gI(z1, . . . , zk) =

∫ z1

p

αi0 + . . .+

∫ q

zk

αik .

The terms in the above expression correspond to what Ecalle calls
the elementary monomials som, see his article in [7].

The fact that bI is meromorphic rather than holomorphic is the only
difference between our present situation and the situation of [34]. Note
that because our path γ misses the singular points and thus the poles
of B, the cycle ηI is supported away from the poles of bI . We will be
applying essentially the same technique of moving the cycle of integra-
tion η, but we need to do additional work to make sure it stays away
from the poles of bI .

It is useful to have the formula

gI(z1, . . . , zk) = gi0i1(z1) + . . .+ gik−1ik(zk) +

∫ q

p

αik ,

where

gij(z) :=

∫ z

p

αi − αj.

Our formula for m gives a preliminary bound of the form

|m(t)| ≤ Cea|t|.

Indeed, along the path γ the one-forms bij are bounded, so

|bI | ≤ Ck

on ηI ; also we have a bound |gI(z)| ≤ a for z ∈ ηI , uniform in I; and
finally the cycle of integration ηI has size (k!)−1. Putting these together
gives the bound for m(t) (and, incidentally, shows why the formula for
m converged in the first place).

Recall now that the Laplace transform of a function m(t) which sat-
isfies a bound such as the above, is by definition the integral

f(ζ) :=

∫ ∞

0

m(t)e−ζtdt

where ζ ∈ C with |ζ | > a and the path of integration is taken in a
suitably chosen direction so that the integrand is rapidly decreasing at
infinity. In our case since m(t) is a matrix, f(ζ) is also a matrix. We
can recover m(t) by the inverse transform

m(t) =
1

2πi

∮
f(ζ)eζtdζ
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with the integral being taken over a loop going around once counter-
clockwise in the region |ζ | > a.

The singularities of f(ζ) are directly related to the asymptotic behav-
ior of m(t). This is a classical subject which we discuss a little bit more
in §14. One can note for example that by the inverse transform, there
exist functions m(t) satisfying the preliminary bound |m(t)| ≤ Cea|t|
but such that the Laplace transforms f(ζ) have arbitrarily bad singu-
larities in the region |ζ | ≤ a. Thus getting any nontrivial restrictions
on the singularities of f amounts to a restriction on which types of
functions m(t) can occur.

In our case, the expansion formula for m(t) leads to a similar formula
for the Laplace tranform, which we state as a lemma. Define the image
support of a collection η = {ηI} by the collection of functions g = {gI}
to be the closure of the union of the images of the component pieces:

g(η) :=
⋃

I

gI(|ηI |) ⊂ C,

where |ηI | ⊂ ZI is the usual support of the chain ηI .

Lemma 6.1. With the functions gI , the forms bI , and the chains ηI
intervening above, for any ζ in the complement of the region g(η) the
formula

f(ζ) =
∑

I

∫

ηI

bI
gI − ζ

converges, and gives an analytic continuation of the Laplace transform
in the (unique) unbounded connected component of the complement of
g(η).

Proof. The convergence comes from the same bounds on bI and the size
of ηI which allowed us to bound m. The fact that this formula gives
the Laplace transform is an exercise in complex path integrals. �

The terms in this expansion correspond to Ecalle’s elementary mono-
mials “soc” in [7].

A first approach would be to try to move the path γ so as to move the
union of images g(η) and analytically continue f to a larger region. This
works quite well for rank 2, where one can get an analytic continuation
to a large region meeting the singularities [13]. In higher rank, the
3 × 3 example at the end of [34] shows that this approach cannot be
optimal. In fact, we should instead move each cycle of integration
ηI individually. Unfortunately this has to be done with great care in
order to maintain control of the sizes of the individual terms so that
the infinite sum over I still converges.
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Now we get to the main definition. It is a weak version of resurgence,
see [14], [9].

Definition 6.2. A function such as f(ζ) defined on |ζ | > a is said
to have an analytic continuation with locally finite branching if for
every M > 0 there is a finite set of points SM ⊂ C such that if σ is
any piecewise linear path in C − SM starting at a point where |ζ | > a
and such that the length of σ is ≤ M , then f(ζ) can be analytically
continued along σ.

And the statement of the main theorem.

Theorem 6.3. Suppose m(t) is the transport matrix from p to q for a
family of connections on the trivial bundle Or

Z of the form {d+B+tA}.
Suppose that A is diagonal with one-forms αi, coming from the pullback
of a general Higgs field θ over the original curve X, and suppose that
B is a meromorphic matrix of one-forms with poles only at points lying
over the singular points of θ. Let f(ζ) denote the Laplace transform of
m(t). Then f has an analytic continuation with locally finite branching.

Most of the remainder of these notes is devoted to explaining the
proof.

7. Analytic continuation of the Laplace transform

We now recall the basic method of [34] for moving the cycles ηI to
obtain an analytic continuation of f(ζ). We refer there for most details
and concentrate here just on stating what the end result is. Still we
need a minimal amount of notation. Before starting we should refer
to [16] (and the references therein) for an extensive discussion of this
process for each individual integral in the sum, including numerical
results on how the singularities of the analytic continuations determine
the asymptotics of the pre-transformed integrals.

We work with pro-chains which are formal sums of the form η =∑
I ηI of chains on the Z∗

I . We have a boundary operator denoted ∂+A
where ∂ is the usual boundary operator on each ηI individually, and A
(different from the matrix of one-forms considered above) is a signed
sum of face maps corresponding to the inclusions Z∗

I′ → Z∗
I obtained

when some zi = zi+1. Our original pro-chain of integration in the
integral expansion satisfies (∂ + A)η = 0. We can write the expansion
formula of Lemma 6.1 as an integral over the pro-chain η =

∑
I ηI ,

f(ζ) =

∫

η

b

g − ζ
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where b is the collection of forms bI on Z∗
I and g is collection of functions

gI . Such a formula is of course subject to the condition that the infinite
sum of integrals converges.

In a formal way (i.e. element-by-element in the infinite sums implicit
in the above notation), if we add to η a boundary term of the form
(∂ + A)κ then the integral doesn’t change:

∫

η+(∂+A)κ

b

g − ζ
=

∫

η

b

g − ζ
.

This again is subject to the condition that the infinite sums on both
sides converge absolutely and in fact that the individual terms in the
rearrangement (i.e. separating ∂ and A) converge absolutely. When-
ever we use this, we will be refering (perhaps without mentionning it
further) to the work on convergence which was done in [34].

Our analytic continuation procedure rests upon consideration of the
locations of the images by the function g, of the pro-chains of integra-
tion. Recall the notation

g(η) :=
⋃

I

gI(|ηI |)

where |ηI | is the usual support of the chain ηI .
If f is defined by the right-hand integral over η in a neighborhood of

a point ζ0, meaning that the image g(η) misses an open neighborhood
of ζ0, and if the image g(η + (∂ +A)κ) misses an entire segment going
from ζ0 to ζ1, then the integral over η + (∂ + A)κ defines an analytic
continuation of f along the segment. The procedure can be repeated
with η replaced by η + (∂ + A)κ.

At this point we let our notation slide a little bit, and denote by
η any pro-chain which would be obtained from the original chain of
integration by a sequence of modifications of the kind we are presently
considering, such that the integral over η serves to define an analytic
continuation of f(ζ) to a neighborhood of a point ζ0 ∈ C. The original
pro-chain η of Lemma 6.1 is the initial case. Our assumption on η says
among other things that the image g(η) doesn’t meet a disc around ζ0.
Fix a line segment S going from ζ0 to another point ζ1; we would like
to continue f in a neighborhood of S. By making a rotation in the
complex plane (which can be seen as a rotation of the original Higgs
field) we may without loss of generality assume that the segment S is
parallel to the real axis and the real part of z1 is smaller than the real
part of ζ0. Let u be a cut-off function for a neighborhood of S and
write

η = η′ + η′′, η′ = g∗(u) · η.
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We will apply the method of [34] to move the piece η′ (this piece cor-
responds to what was called η in Chapter 4 of [34]).

The first step is to choose flows. This corresponds to Chapter 3 of
[34]. In our case, we will use flows along vector fields Wij which are C∞

multiples of the gradient vector fields of the real parts ℜgij. To link
up with the terminology of [34], these vector fields determine flowing
functions fij(z, t) (for z ∈ Z and t ∈ R+ taking values in Z) by the
equations

∂

∂t
fij(z, t) = Wij(fij(z, t)), fij(z, 0) = z.

Note that this choice is considerably simpler than that of [34]. The
choice of vector fields will be discussed in detail below, and will in
particular be subject to the following constraints.

Condition 7.1. (i) the vector fields Wij are lifts to Z of vector fields
defined on the compact surface Y ;
(ii) the differential dℜgij applied to Wij at any point, is a real number
≤ 0;
(iii) there exists ǫ such that the flows preserve Zǫ i.e. the vector fields
Wij are identically zero in the discs of radius ǫ around the singular
points; and
(iv) the Wii are identically zero.

The flows given by our vector fields lead to a number of operators F ,
K and H defined as in Chapters 4 and 5 of [34]. These give pro-chains

Fτ =
∑

r,s

F (−KA)rH(AK)sη′,

Fψ =
∑

r

F (−KA)rK(∂ + A)η′,

FKϕ =
∑

r

FK(AK)rη′.

The reader can get a fairly good idea of these definitions from our
discussion of the points on |Fτ | in §8 below.

Lemma 7.2. With these notations, and assuming that the vector fields
satisfy the constraints marked above, we can write

η + (∂ + A)FKϕ = η′′ + Fτ − Fψ.

On the right, the images g(η′′) and g(Fψ) miss a neighborhood of the
segment S. Assuming we can show that the image g(Fτ) also misses a
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neighborhood of the segment S, then

f(ζ) =

∫

η+(∂+A)FKϕ

b

g − ζ

gives an analytic continuation of f from ζ0 to ζ1 along the segment S.

Proof. The operator K corresponds to applying the flows defined by
Wij in the various coordinates. This has the effect of decreasing the
real part ℜg. The fact that in our case we use flows along vector fields
which are positive real multiples of −gradℜgij (this is the second of the
constraints onWij) implies that the flows strictly respect the imaginary
part of g. This differs from the case of [34] and means we can avoid
discussion of “angular sectors” such as on pages 52-53 there. Thus, in
our case, when we apply a flow to a point, the new point has the same
value of ℑg, and the real part ℜg is decreased.

The operator F is related to the use of buffers; we refer to [34] for that
discussion and heretofore ignore it. The operator A is the boundary
operator discussed above; and the operator H is just the result of doing
the flows K after unit time. In particular, A doesn’t affect the value of
g. And H decreases ℜg while fixing ℑg just as K did (this point will
perhaps become clearer with the explicit description of points in the
supports of Fτ and FKϕ in the next section).

The proof of the first formula is the same as in [34] Lemma 4.4, and
we refer there for it.

To show that the supports of g(η′′) and g(Fψ) miss a neighborhood
of S, it is useful to be a little bit more precise about the neighborhoods
which are involved. Let N1 be the support of u, which is a neigborhood
of S (we assume it is convex), and let N2 be the support of du which is
an oval going around S but not touching it. LetN3 be the neighborhood
of S where u is identically 1. Let D be a disc around ζ0, such that g(η)
misses D, and which we may assume has radius bigger than the width
of N1. Then

g(η′) ⊂ N1 − (N1 ∩D),

g(η′′) ⊂ C − (N3 ∪D),

and (∂A)η′ = −(∂A)η′′ with

g((∂A)η′) ⊂ N2 − (N2 ∩D).

In particular the support of g(η′′) misses the neighborhood N3 of S.
Also, given that the boundary term (∂ + A)η′ is supported in the U -
shaped region N2, the effect of our operators on ℜg and ℑg described
above implies that g(Fψ) is supported away from N3. This completes
the proof of the second statement of the lemma.
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For the last statement, assume that we have chosen things such that
the support of g(Fτ) also misses S. This is certainly what we hope,
because of the inclusion of the operator H applying all the flows for
unit time. The only possible problem would be if we get too close to
singular points; that is the technical difficulty which is to be treated in
the remainder of the paper. For now, we assume that this is done.

Formally speaking, the first equation of the lemma means that
∫

η

b

g − ζ
=

∫

η′′+Fτ−Fψ

b

g − ζ
.

By our starting assumption f(ζ) is defined by the integral on the left,
in a neighborhood of ζ0. On the other hand, the integral on the right
defines an analytic continuation along the segment S.

An important part of justifying the argument of the preceding para-
graph (and indeed, of showing that the integral on the right is con-
vergent) is to bound the sizes and numbers of all the chains appearing
here. This was done in [34].

The only difference in our present case is the poles in the integrand
b. However, thanks to the third constraint on the vector fields Wij,
everything takes place in Zǫ

I := Zǫ × . . . × Zǫ, and on Zǫ there is a
uniform bound on the size of bij . Also, everything takes place inside
a relatively compact subset of Z, see §9. Thus the integrand in the
multivariable integral is bounded by

sup
Zǫ

I

|b| ≤ Ck

for k = |I|. With this information the remainder of the argument of
[34] works identically the same way (it is too lengthy to recall here).
This justifies the formal argument of two paragraphs ago and completes
the proof of the lemma. �

Remark: It is clear from the end of the proof that the bounds depend
on ǫ, which in turn will depend on how close we want to get to a
singularity. This is the root of why we don’t get any good information
about the order of growth of the Laplace transform at its singularities.

8. Description of cells using trees

As was used in [34], the chains defined above can be expressed as
sums of cells. We are most interested in the chain Fτ although what
we say also applies to the other ones such as FKϕ. These chains are
unions of cells which have the form of a family of cubes parametrized
by points in one of the original cells η′I . We call these things just cubes.
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In the cubes which occur the points are parametrized by “trees” fur-
nished with lots of additional information. 1 We make this precise as
follows: a furnished tree is:
—a binary planar tree T sandwiched between a top horizontal line and
a bottom horizontal line;
—with leftmost and rightmost vertical strands whose edges are called
the side edges;
—for each top vertex of the tree (i.e. where an edge meets the top hor-
izontal line) we should specify a point z ∈ Z∗ (the point corresponding
to the left resp. right side edge is p resp. q);
—for each region in the complement of the tree between the top and
bottom horizontal lines and between the side edges we should specify
an index, so that each (non-side) edge of the tree is provided with left
and right indices which will be denoted ie and je below; and
—each edge e is assigned a “length” s(e) ∈ [0, 1].

Suppose T is a furnished tree. By looking at the indices assigned
to the regions meeting the top and bottom horizontal lines we obtain
multi-indices Itop and Ibot, so the collection of points (z1, . . . , zk) at-
tached to the top vertices gives a point ztop ∈ Z∗

Itop .
We can now explain how a furnished tree leads to a point zbot ∈

ZIbot(T ). This depends on a choice of vector fields Wij for each pair of
indices i, j, which we now assume as having been made. A flowing map
Φ : T → Z is a map from the topological realization of the tree, into
Z, satisfying the following properties:
(i) if v is a top vertex which is assigned a point z in the information
contained in T , then Φ(v) = z;
(ii) the side edges are mapped by constant maps to the points p or q
respectively; and
(iii) if e is an edge with left and right indices ie and je and with initial
vertex v and terminal vertex v′, then Φ(e) is the flow curve for flowing
along the vector field Wieje from Φ(v) to Φ(v′), where the flow is done
for time s = s(e). This determines Φ(v′) as a function of Φ(v) and the
information in the tree. Thus by recursion we determine the Φ(v) for
all vertices, as well as the paths Φ(e) for the edges e (the map Φ on
the edges is only well determined up to reparametrization because we

1The occurence of trees here is certainly related to and probably the same as
Ecalle’s notions of (co)mould (co)arborescent cf [21]. In another direction, John
Conway pointed out at the time of [34] that cubes parametrized by trees in this
way glue together into Stasheff polytopes. I didn’t know what those were at the
time, but retrospectively this still remains mysterious since we are dealing with
representations of the fundamental group and it isn’t clear what that has to do
with homotopy-associativity. This is certainly a good subject for further thought.
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don’t fix a parametrization of the edges; the length s is abstract, since
it is convenient to picture even edges assigned s = 0 as being actual
edges).

For a given choice of vector fields Wij and of information attached
to the tree T , the flowing map exists and is unique. This determines a
point given by the values z at the bottom vertices,

zbot(W,T ) ∈ ZIbot.

Now go back to the situation of the previous section. Starting from
a chain η′ we obtained a chain Fτ .

Lemma 8.1. The points in the support of Fτ are described as the
zbot(W,T ), where W = {Wij} is the collection of vector fields used to
define the flows K and H, and where T is a furnished tree such that
ztop(T ) is in the support of η′ and satisfying the following auxiliary
condition:
(*) there exists (up to reparametrization of the planar embedding) a
horizontal line which cuts the tree along a sequence of edges, such that
all of these edges are assigned the fixed length value s = 1.

Proof. See [34], pages 54-55. The auxiliary condition comes from the
term H in the formula for τ . �

Remark: For the chain FKϕ the same statement holds except that
the furnished trees T might not necessarily satisfy the auxiliary condi-
tion.

We finish this section by pointing out the relationship between g(ztop)
and g(zbot). This is the key point in our discussion, because ztop is the
input point coming from the chain η′ and zbot is the output point which
goes into the resulting chain Fτ . We want to prove that the real part
of g(zbot) can be moved down past the end of the segment S.

Lemma 8.2. If T is a furnished tree and W a choice of vector fields,
then

g(zbot(T )) = g(ztop(T )) +
∑

e

∫

Φ(e)

dgieje,

In particular if W saitsfies Condition 7.1 then

g(zbot(T )) − g(ztop(T )) ∈ R≤0.

Proof. If e is an edge of T and s′ ∈ [0, s(e)] then we can define the
tree T ′ obtained by pruning T at (e, s′). This is obtained by cutting
off everything below e and sending the bottom vertex of e to the line
at the bottom. The indices associated to regions in the complement
follow accordingly. Finally we set s(e) := s′ in the new tree T ′.
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Suppose for the same edge e we also pick s′′ ∈ [s′, s(e)]. Then we
obtain a different pruning denoted T ′′ (which has almost all the same
information except for the length of the edge e). Let v′ (resp. v′′)
denote the bottom vertices corresponding to e in the trees T ′ (resp.
T ′′). Let Φ′ (resp. Φ′′) denote the flowing map for T ′ (resp. T ′′).
These coincide and coincide with Φ on the parts of the trees that are
in common (the unpruned parts). We have

g(zbot(T ′′)) = g(zbot(T ′)) +

∫ Φ′′(v′′)

Φ′(v′)

dgieje.

Note that the segment of Φ(e) going from Φ′(v′) to Φ′′(v′′) is a flow
curve for the vector field Wieje , and it flows for time s′′ − s′.

If we prune at an edge e with s′ = s(e) then it amounts to cutting
off the tree at the lower vertex of e. If furthermore all of the length
vectors assigned to edges below e are 0, then g(zbot(T ′)) = g(zbot(T )).

By recurrence we obtain the first statement in the lemma.
Recall that one of the constraints was the condition that the vector

fields Wieje be negative multiples of the gradient vector fields for the
real functions ℜgieje. With this condition we get that the integral of
dgieje along a flow curve for Wieje is a negative real number, so this
gives at each stage of the recurrence

g(zbot(T ′′)) − g(zbot(T ′)) ∈ R≤0.

Putting these together gives the second statement of the lemma. �

There is also another way to prune a tree: if e is an edge such
that ie = je then we can cut off e and all of the edges below it, and
consolidate the two edges above and to the side of e into one edge.
The only difficulty here is that the consolidated edge might have total
length > 1 but this doesn’t affect the remainder of our argument (since
at this point we can ignore questions about the sizes of the cells). Let
T ′ denote the pruned tree obtained in this way. We again have

g(zbot(T )) − g(zbot(T ′)) ∈ R≤0.

In general we will be trying to show for the trees which arise in Fτ ,
that the real part of g(zbot(T )) is small enough. If we can show it for T ′

then it follows also for T . In this way we can reduce for the remainder
of the argument, to the case where ie 6= je for all edges of T . This
is the content of the following lemma. For its statement, recall the
neighborhood S ⊂ N1 appearing in the proof of Lemma 7.2.

Lemma 8.3. Let |S| = ζ0 − ζ1 denote the length of the segment along
which we want to continue f . In order to show that the image g(Fτ)
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misses a neighborhood, say N1, of the segment S it suffices to choose our
vector fields W (satisfying Condition 7.1) so that if T is any furnished
tree satisfying:
(i) the auxiliary condition (*) of Lemma 8.1;
(ii) that ie 6= je for all edges e of T ; and
(iii) that ztop(T ) is in the support of η′;
then g(zbot(T )) lies outside of our neighborhood N1 of S.

Proof. Assume that we have chosen the vector fields to give the reduced
condition of this statement. Suppose z is a point on the support of Fτ .
Then there is a furnished tree T 1 as in Lemma 8.1 such that z =
zbot(T 1) and such that ztop(T 1) is on the support of η′. Let T := (T 1)′

be the pruning of T 1 described directly above. It still satisfies (i),
i.e. the condition (*) of Lemma 8.1, and by the pruning process it
automatically satisfies (ii). Also ztop(T ) = ztop(T 1) is on the support
of η′, so our condition gives that g(zbot(T )) lies outside of N1. On the
other hand,

g(zbot(T 1)) − g(zbot((T 1)′)) ∈ R≤0, g(zbot(T )) − g(ztop(T )) ∈ R≤0.

Thus g(z) = g(zbot(T 1)), then g(zbot(T )) = g(zbot((T 1)′)), and then
g(ztop(T )) lie in order on a line segment parallel to the real axis. Given
that g(ztop(T )) ∈ N1 but g(zbot(T )) 6∈ N1, and that N1 is a convex, we
obtain g(z) 6∈ N1 as desired. �

Remark: The condition of the lemma will not be possible, of course,
when the segment S passes through a turning point. Finding out the
conditions on S to make it possible will tell us where the turning points
are.

9. Remoteness of points

One of the important facets of the statements of theorems 6.3 and
1.1 is the local finiteness of the set of singularities. We describe here
briefly how this works. It reproduces the discussion of [34], but with
considerable simplification due to Condition 7.1 (iv) which says that
when i = j the flow fij(z, t) is constant.

It should be noted that the local finiteness notion 6.2 is fairly strong
in that one can wind arbitrarily many times around a given singularity
for an arbitrarily small cost in terms of length of the path. In our
mechanism, this is achieved by analytically continuing along a large
number of very small segments.

We can choose a metric dσ on Z∗ (and which is a singular but finite
metric on Z) with the property that for any distinct pair of indices
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i 6= j, if ξ : [0, 1] → Z is a path whose derivative is a negative real
multiple of gradℜgij then

∫

ξ

dσ ≤ ℜ(gij(ξ(0)) − gij(ξ(1))).

Now suppose z = (zi) ∈ ZI , and suppose T is a binary planar tree
embedded in Z, with one top vertex at p and whose bottom vertices
are the zi. Let

rT (z) :=

∫

T

dσ

be the total length of the tree with respect to our metric. Define the
remoteness r(z) to be the infimum of rT (z) over all such trees.

Lemma 9.1. Suppose T is a furnished tree, and use flows defined by
vector fields satisfying Condition 7.1 to define zbot(T ). Then

r(zbot(T )) ≤ r(ztop(T )) + g(ztop(T )) − g(zbot(T )).

Proof. If T 1 is any tree as in the definition of remoteness for ztop(T )
then we can add T to T 1 (the top vertices of T being the same as
the bottom vertices of T 1) to obtain a tree T 2 as in the definition of
remoteness for zbot(T ). The formula

rT 2(zbot(T )) ≤ rT 1(ztop(T )) + g(ztop(T )) − g(zbot(T ))

is immediate from Lemma 8.2 and the property of dσ; use Condition
7.1 (iv) to deal with edges of T having ie = je. �

Lemma 9.2. Let γ be a path from p to q, which leads to the original
pro-chain η appearing in Lemma 6.1. Suppose M0 is the length of γ
in the metric dσ. Then for any point z on the support of η we have
r(z) ≤M0.

Proof. For any point z on the support of η, we have zi = γ(ti) for
t1 ≤ . . . ≤ tk ≤ 1. The path γ can be considered as a tree (of total
length M0) starting at p with one spine and k edges of length 0 coming
off at the points zi. �

In our procedure for analytic continuation along a path of length
≤ M , we obtain chains whose support consists only of points with
r(z) ≤ M0 + 2M (see §13 below). In particular each zi is at distance
≤ M0 + 2M from p with respect to dσ. Thus everything we do takes
place in a relatively compact subset of Z (and concerns only a finite
number of singular points P ∈ Z).
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10. Calculations of gradient flows

We express the gradient of the real part of a holomorphic function,
as a vector field in a usual coordinate and in logarithmic coordinates.
This is of course elementary but we do the calculation just to get the
formula right. Suppose z is a coordinate in a coordinate patch on X.
The metric on X may be expressed by the real-valued positive function

h(z) :=
|dz|2

2
.

Write z = x+ iy. Note that dx and dy are perpendicular and have the
same length, so

h(z) = |dx|2.

The real tangent space has orthogonal basis

{
∂

∂x
,
∂

∂y
}

and the formula

1 = |
∂

∂x
· dx| = h1/2|

∂

∂x
|

yields

|
∂

∂x
| = h−1/2.

In particular an orthonormal basis for the real tangent space is given
by

{h1/2 ∂

∂x
, h1/2 ∂

∂y
}.

Thus we have the formula, for any function a:

grad a = h
∂a

∂x

∂

∂x
+ h

∂a

∂y

∂

∂y
.

Now suppose g = a + ib is a holomorphic function (with a, b real),
and pose f(z) := ∂g

∂z
so that dg = f(z)dz. Write f(z) = u + iv with

u, v real, and expand:

(u+ iv)(dx+ idy) =
∂a

∂x
dx+

∂a

∂y
dy + i

∂b

∂x
dx+ i

∂b

∂y
dy.

Comparing both sides we get

u =
∂a

∂x
, v = −

∂a

∂y
.

Note that a = ℜg is the real part of g, so finally we have the formula

gradℜg = h(z)

(
(ℜ
∂g

∂z
)
∂

∂x
− (ℑ

∂g

∂z
)
∂

∂y

)
.
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Suppose now that w is a local coordinate at a point P , and consider

g = amw
m.

Let z = −i logw so w = eiz, and writing z = x+ iy we have w = eix−y.
Then

g(z) = ame
imz;

∂g

∂z
= miame

imz.

If we write miam = er+is then

∂g

∂z
= er−my+i(s+mx),

so

gradℜg = h(z)er−my
(

cos(s+mx)
∂

∂x
, sin(s+mx)

∂

∂y

)
.

The asymptotes are the values x = B where cos(s + mx) = 0. At
these points, the gradient flow vector field is vertical (going either up
or down, depending on the sign of sin(s + mx)). If the flow goes up,
then it stays on the vertical line until y = ∞.

Note that the gradient of ℜg is perpendicular to the level curves of
ℜg, so it is parallel to the level curves of ℑg. Which is to say that the
level curves of ℑg are the flow lines. This gives an idea of the dynamics
of the flow. We have

ℑg = ℑ(im−1e(r−my)+i(s+mx)) = −m−1er−my sin(s+mx).

Thus a curve ℑg = C is given by

e−my =
−mC

er sin(s+mx)

or (noting that the sign of C must be chosen so that the right hand
side is positive)

y = m−1r log | sin(s+mx)| −m−1 log |mC|.

In particular the level curves are all vertical translates of the same
curve; this curve y = m−1r log | sin(s+mx)| has vertical asymptotes at
the points where sin(s+mx) = 0. Note however that at the asymptotes,
we get y → −∞; whereas our coordinate patch corresponds to a region
y > y0. Thus, every gradient flow except for the inbound (i.e. upward)
flows directly on the asymptotes, eventually turns around and exits
the coordinate patch. This of course corresponds to what the classical
picture looks like in terms of the original coordinate w.
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Also we can calculate the second derivative (which depends only on
x and not on which level curve we are on, since they are all vertical
translates). Consider for example points where sin(s+mx) > 0. There

dy

dx
=
r cos(s+mx)

sin(s+mx)

and
d2y

dx2
=

−rm

sin2(s+mx)

In particular note that we have a uniform bound everywhere:

d2y

dx2
≤ −γ,

here with γ = rm.
Suppose now more generally that g is a holomorphic function with

Taylor expansion

g = amw
m + am+1w

m+1 + . . . .

Then we will get

h(z)−1emy−rgradℜg =

(
cos(s+mx)

∂

∂x
, sin(s+mx)

∂

∂y

)
+O(e−y).

In particular, the direction of the gradient flow for g is determined, up
to an error term in O(e−y), by the vector (cos(s+mx), sin(s+mx)).

The asymptotes are no longer vertical curves, but they remain in
bands x ∈ Bij,a. Also we can choose A in the definition of steepness,
so that at non-steep parts of the level curves we still have a bound

d2y

dx2
≤ −γ.

11. Choice of the vector fields Wij

The only thing left to be determined in order to fix our procedure
for moving the cycle of integration is to choose the vector fields. Before
going further, fix a smooth metric h on Z, for example coming from
the pullback of a smooth metric on Y . Use this to calculate gradients.
Suppose ǫ is given. Let ρ denote a cutoff function which is identically
0 in the discs Dǫ/2(P ) (for all points P in the inverse image of R), and
is identically 1 outside the (closed) discs Dǫ(P ). Of course ǫ will be
small enough that the discs don’t intersect. Consider also a positive
real constant µ ∈ R>0. Then we put

Wij := µgradℜgij,
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and

W ′
ij := ρWij .

The vector fields W ′
ij satisfy Condition 7.1 (with ǫ/2 in place of ǫ).

We will use these vector fields for our choice of flows, and apply the
criterion of Lemma 8.3.

The point we want to make in the present section is that the flow
curves for the cut-off gradient vector field W ′

ij are the same as those of
the true gradient flow along Wij , up until any point where they enter
some Dǫ(P ). This will allow the notational simplification of looking at
Wij rather than W ′

ij in the next section.
Let ν > 0 be the radius used to define the oval neighborhood N1, i.e.

choose N1 equal to the set of points of distance < ν from S. Once ǫ is
given, choose µ large enough so that the following property holds:

Condition 11.1. If z(t) = fij(z0, t) is a flow curve for Wij (for distinct
indices i 6= j) which never enters into any Dǫ(P ) flowing for t ∈ [0, s]
with s ≥ 1, then

gij(fij(z0, s)) − gij(z0) < ζ1 − ζ0 − 2ν.

Recall that ζ0, ζ1 were the endpoints of the segment S with ζ1 − ζ0 a
negative real number.

It is possible to choose µ (we only need to do it over a relatively
compact subset of z0 ∈ Z by the remark at the end of §9, but in any
case everything involved is pulled back from the compact Y so the
choice of µ is uniform in z0).

The next lemma formalizes the following reduction: the trees which
show up in Lemma 8.3 have a horizontal line of edges assigned length
1. If the flow for at least one of these edges stays outside of all the
Dǫ(P ) then by Condition 11.1 the value of g is decreased sufficiently
to get us out of N1. Thus the only case which poses a problem is when
every downward branch of the tree ends up flowing into some Dǫ(P ).
In this case we prune the tree at the points where it enters these discs.

Lemma 11.2. Suppose ǫ is given, and µ chosen to satisfy Condition
11.1. Use the vector fields W ′

ij to define the flows. In order to show
that the image g(Fτ) misses our neighborhood N1 of the segment S, it
suffices to show that if T is any furnished tree satisfying the following
conditions:
(i) that ztop(T ) lies on the support of η′;
(ii) that ie 6= je for any edge of T ;
(iii) that for each bottom vertex v of T there is a singular point P (v)
such that Φ(v) ∈ Dǫ(P (v)); and



ASYMPTOTICS FOR CONNECTIONS 33

(iv) that all other points of Φ(T ) are outside the discs Dǫ(P ),
then g(zbot(T )) is not in the neighborhood N1 of S.

Proof. Suppose T is a furnished tree as in the reduction of Lemma 8.3.
Prune T at any point where the flowing map Φ enters into one of the
closed discs Dǫ(P ). If this prunes all branches of the tree, then by an
argument using 8.2 similar to the previous reductions, that puts us in
the case described here so we are done.

Thus we may assume that there is at least one branch which is not
pruned. By condition 8.3 (i) which is the same as Condition (*) of
Lemma 8.1, the branch going to the bottom has at least one edge
assigned length 1. This edge has ie 6= je. By Condition 11.1 we have
for this edge ∫

Φ(e)

dgieje < ζ1 − ζ0 − 2ν.

Therefore, by the formula of Lemma 8.2 we have

g(zbot(T )) − g(ztop(T )) < ζ1 − ζ0 − 2ν.

Given that g(ztop(T )) ∈ g(η′) ⊂ N1 but N1 is an oval with largest
diameter 2ν + ζ0 − ζ1, we get g(zbot(T )) 6∈ N1. �

Corollary 11.3. Define the chain Fτ using the vector fields W ′
ij.

Then, in order to show that g(Fτ) misses N1 it suffices to show that
for any furnished tree T satisfying the conditions (i)-(iv) of 11.2 with
respect to the flowing map Φ defined by the vector fields Wij (rather
than W ′

ij), we have g(zbot(T )) 6∈ N1.

Proof. The two flowing maps coincide, in view of condition (iv). �

In view of this corollary, we can in the next section ignore the cutoff
functions ρ and look directly at the gradient flows Wij .

12. Results on the dynamics of our flowing maps

We will consider a system of discs centered at our singular points P :

Dǫ(P ) ⊂ Dξ(P ) ⊂ Du(P ) ⊂ Dw(P ).

We will first fix u and w so that certain things are true in a coordinate
system for Dw(P ) (and say u = w/2). Then once u and w are fixed we
will let ǫ → 0. Finally ξ > ǫ will be a function of ǫ with ξ → 0 when
ǫ→ 0.

The innermost discs Dǫ(P ) are those which will enter into the re-
duction of Lemma 11.2. Recall that µ is chosen after ǫ. In view of
the Corollary 11.3, we henceforth look directly at the gradient flows
Wij = µgradℜgij .
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Our first lemma bounds the number of outgoing subtrees.

Lemma 12.1. If T is a furnished tree with one top edge e, and if
Φ : T → X is a flowing map such that the images of all bottom vertices
are contained in some Dǫ(Pi), and if Φ(e) exits from Du(P ) then T
contains a strand σ such that Φ(σ) exits from Dw(P ) also.

Our next lemma gives a normal form for any subtree which stays
entirely within Du(P ).

Lemma 12.2. If T is a furnished tree with one edge e at the top, and if
Φ is a flowing map from T into Du(P ) ⊂ X such that all of the bottom
vertices are mapped into Dǫ(P ), then the curve Φ(e) passes into Dξ(P ),
and flows along a vector field Wieje in an ingoing sector near an ingoing
curve Gieje.

The last of our preliminary lemmas bounds the number of subtrees
having the previous normal form.

Lemma 12.3. There is a number K (depending on u, w,A but inde-
pendent of ǫ, ξ and µ) such that if T is a furnished tree consisting of
one edge strand κ plus a number of sub-trees coming out of κ, and if
Φ is a flowing map from T into Du(P ) with the property that all the
sub-trees coming out of κ are covered by Lemma 12.2, then there are
≤ K of these sub-trees.

For the proofs of these lemmas, we will use a logarithmic coordinate
system for Dw(P ). If zD denotes the coordinate in the disc then we
introduce zL = −i log zD and write zL = x+ iy zD = eix−y.

The disc Dw(P ) is given by y > y0.
The vector fields Wij = µgradℜgij are approximately equal (up

to a term smaller by a factor of O(µe−y)) to the standard vector fields
W ′
ij = µgradℜg′ij where g′ij is the leading term in the Taylor expansion

for gij at P .
Because of this, we obtain the following facts. The asymptotic di-

rections (which are close to vertical lines) occur in bands of the form
x ∈ Bij,a where Bij,a ⊂ R are intervals which can be made as small
as we like by modifying y0. These intervals are disjoint, except for the
asymptotes of the pairs {Wik,Wjk} or {Wki,Wkj}, where i, j are the
two indices attached to P , and k is any index different from these two.
In those cases the pairs share the same values Bij,a and the same bands.
We say that a vector field Wij is attached to an interval B if B = Bij,a.
The only intervals with more than one vector field attached to them
are those described above.
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It is worth mentionning why we have this disjointness property. It is
because of the non-parallel condition on the eigenforms of θ at the sin-
gular points. The non-parallel condition implies that the bands, which
are the solutions of s + mx = 0 modulo π, are distinct, because the
values of s (which are the angular coordinates of the constants attached
to the leading terms of gij as explained in the preceding section) are
different exactly because of it. Notice that the exponents m are the
same for all of the values ij except the two attached to the singular
point; for those which are attached the value m′ is bigger. The non-
parallel condition gives disjointness for all of the bands except the ones
corresponding to the attached indices ij and ji. For those, note that if
we make a general rotation of everything, the asymptotic solutions of
s+m′x move differently than the solutions of s +mx, so those bands
are disjoint from all the other ones. The general rotation of everything
corresponds to a condition that the line segments in the complex plane
along which we analytically continue, might be constrained to not be
parallel to a certain finite number of directions. This doesn’t hurt our
ability to analytically-continue the function.

We can fix a number A > 0 with the following properties: outside of
an asymptotic band for Wij or Wji, the slope of the vector Wij satisfies

∣∣∣∣
dy

dx
(Wij)

∣∣∣∣ ≤ A.

Inside an asymptotic band B, only the vector fields Wij which are
attached to B can have slope bigger than A or less than −A.

Suppose now that (x(t), y(t)) is a flow along one of the vector fields
Wij. We say that the path is steep if

∣∣∣∣
dy

dx

∣∣∣∣ > A,

and we say that it is not steep otherwise. We say that the path is ingoing
if dy

dx
> 0 and outgoing otherwise. Note that with our logarithmic

coordinate system, outgoing is downward and ingoing is upward. The
coordinate patch (i.e. choice of y0) and the choice of A can be made so
that all of the paths satisfy the following property:
—once the path is steep and outgoing, it remains steep and outgoing
for the remainder of the time of definition, and ends up leaving the
region y > y0.
This is true even though the vector field is not exactly equal to the
standard model but only close to it.

On the other hand, the direction, i.e. the sign of dx
dt

remains the
same throughout the interval where the path is not steep. Call this sign
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(−1)m. In particular we can think of the path as being parametrized
by x. Define the slope to be the signed derivative (−1)mdy

dx
.

We have a bound, in the region where the path is not steep:

d2y

dx2
≤ −γ

with γ > 0 a positive constant. Note that the second derivative is also
the variation of the slope with respect to x when we go in the direction
of the path.

In particular, once the path is outgoing it remains outgoing for the
remainder of its period of definition. This is because of the second
derivative when it is not steep, and the fact that when it becomes
steep and outgoing then it stays that way.

We now note the additive relation for the vector fields at vertices of
a tree.

Lemma 12.4. Suppose we are in the situation of a flowing map Φ :
T → X defined by vector fields Wij = µgradℜgij. At any vertex v
of T with edges noted e1, e2, e3 (say e1 ingoing and e2, e3 outgoing), we
have three indices i, j, k such that

ie1 = ie2 = i; je2 = ie3 = j; je1 = je3 = k.

For the three vector fields Wik,Wij,Wjk corresponding to the edges
e1, e2, e3 we have the relation

Wik(Φ(v)) = Wij(Φ(v)) +Wjk(Φ(v)).

Proof. The vector fields Wij are all the same multiple of the gradients
gradℜgij. The fact that dgij = αi− αj implies that dgij + dgjk = dgik
giving the relation in question. �

Proof of Lemma 12.1. The disc Du(P ) will be determined by y > y1

for some y1 fixed as a function of y0 (and in fact one could take y1 =
y0 + 1 for example). A consequence of the additive relation is that if
Wik(Φ(v)) is outgoing (i.e. dy

dt
≤ 0 along this vector) then one of the

other two Wij(Φ(v)) or Wjk(Φ(v)) will also be outgoing. As we have
noted above, if the flow along any edge is outgoing at some point then
it is outgoing for all further points. In particular if at any point in the
tree the flow is outgoing then we can choose a strand going down to the
bottom, along which the flow is always outgoing. If there is an edge
which crosses out of Du(P ), at the crossing point it has dy

dt
≤ 0, so we

get a strand which maintains dy
dt

≤ 0 as long as it stays inside Dw(P ).
In particular the strand cannot go back to Dǫ(P ) so it must exit from
Dw(P ) (here using the hypothesis that any strand must end in some
Dǫ(Pi)). This completes the proof of Lemma 12.1. �



ASYMPTOTICS FOR CONNECTIONS 37

Now we come to the proofs of Lemmas 12.2 and 12.3. Fix notations
L := − log ǫ and L1 := − log ξ. Thus we will let L→ ∞ and we have to
specify L1 as a function of L such that L1 → ∞ too. Our discs Dǫ(P )
and Dξ(P ) respectively become the regions y > L and y > L1. We will
specify L1 as a function of L so as to make the proofs of Lemmas 12.2
and 12.3 work.

In both lemmas, we lift the maps Φ into maps into the coordinate
chart for the logarithmic coordinates.

Proof of Lemma 12.2. At any point where the flow is not steep, the
second derivative is bounded above by −γ. In particular the flow be-
comes outgoing before it becomes steep again. Furthermore, if v is a
vertex with indices i, j, k as above, such that the vector field Wik(Φ(v))
is not steep but is ingoing, then the additive relation insures that one
of the other two flows Wij(Φ(v)) or Wjk(Φ(v)) has slope less than or
equal to the slope of Wik(Φ(v)). For this, draw a line through the first
vector, and note that one of the two other vectors has to lie below or on
the line. Note that this gives two cases: either the new vector changes
direction (i.e. the sign (−1)m changes) and the new vector is in fact
outgoing; or else the direction stays the same and the slope decreases.
Thus if t0 is any point in T where the flow is ingoing but not steep,
then we can choose a strand σ below t0 with the property that at the
end of the strand the flow becomes outgoing; and along the strand the
direction stays the same and the second derivative satisfies

d

dx
((−1)m

dy

dx
) ≤ −γ

in a distributional sense. Then (noting by x(t), y(t)) the coordinates
of the image point Φ(t) for t ∈ σ) we have

y(t) ≤ y(t0) + A(−1)m(x(t) − x(t0)) −
γ

2
(x(t) − x(t0))

2

for any t ≥ t0. In particular there is a number N such that

y(t) ≤ y(t0) +N

further along the strand. We will choose L1 = L−N .
Recall now that in the hypotheses of the lemma, we suppose that

all strands in the tree remain inside Du(P ) and also finish in Dǫ(P ).
However, we construct above a strand which eventually becomes outgo-
ing; therefore the strand must enter the region corresponding to Dǫ(P )
before it becomes outgoing (and notice also that it could simply stop
inside this region before becoming outgoing, a case not mentionned
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above). In particular, if there is any point t0 corresponding to a non-
steep ingoing flow, or of course to any sort of outgoing flow, then we
have to have y(t0) +N > L or y(t0) > L1.

Now we can complete the proof of the lemma. If v is any vertex,
such that the incoming edge is steep and ingoing, then one of the two
outgoing edges has to be either non-steep and ingoing, or outgoing.
This is verified from the fact that at most two different vector fields
can be attached as ingoing asymptotic vector fields for the same band
B. From what was said above, the bottom vertex of the first edge e
of the tree must satisfy y(Φ(v)) > L1, in other words the first edge
continues all the way until Dξ(P ). Also the part of the edge e which
is outside of Dξ(P ) must be contained in an ingoing asymptotic band
for its vector field Wij and the flow is steep at all points of Φ(e) which
are outside of Dξ(P ). This completes the proof of Lemma 12.2. �

Proof of Lemma 12.3. Consider a vertex v along κ where a subtree in
the normal form of Lemma 12.2 comes off. Use the same notation
as previously for the edjes and indices adjoining v. For the sake of
simplicity we assume that κ corresponds to the two leftmost edges e1
and e2 at v. The upper edge of the subtree is thus e3 with indices jk.

Note from the proof of 12.2 that Wjk is ingoing and steep at Φ(v).
As a first case, note that if the anterior edge e1 of κ has Wik which is

outgoing and steep, then the subsequent edge e2 of κ is also outgoing
and steep. In particular at any point where κ becomes outgoing and
steep, it remains that way and in fact will leave the region y > y1 before
it goes into any other band B. By looking at the possible combinatorics
of the indices one sees, even in the case of two vector fields sharing the
same band, that there can be no further normal-form vertices on κ.

In view of the previous paragraph we may restrict our attention
to the places where κ is either not steep, or else steep but ingoing.
However, if it is steep but ingoing then again at most one vertex with
a normal-form subtree can correspond to the current band; thus at
some point κ leaves this band and must become non-steep. On the
other hand, once κ is non-steep, it doesn’t change to become steep and
ingoing. It doesn’t do this in the middle of an edge, because of the
second derivative condition. It doesn’t do it at a vertex because the
edge e3 which comes off is steep and ingoing, and a Wik which is not
steep couldn’t be the sum of two steep and ingoing vectors.

The two previous paragraphs show that we may (at the price of
at most two extra normal-form subtrees) restrict our attention to the
region where κ is non-steep. Now one sees again from the additive
relation that if Wik and Wij are non-steep, whereas Wjk is steep and
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ingoing, then the directions of Wik and Wij must be the same. Indeed,
if not then we would have Wjk = Wik + (−Wij) which would be a
sum of two vectors in the same non-steep quadrant, so Wjk in a steep
quadrant would be impossible.

Since the sign (−1)m of dx
dt

doesn’t change, we can use x to param-

etrize κ. Furthermore the slope (−1)m dy
dx

is decreasing along κ (note
that at any vertices where a subtree in normal form comes off, the re-
maining outgoing edge of κ has a smaller slope than the ingoing edge,
because of the additive relation).

In other words, the second derivative is distributionally less than
the constant −γ, so at some time t with |x(t) − x0| ≤ 2A/γ we get
to (−1)m dy

dx
≤ −A, i.e. κ becomes steep and outgoing. We get that

the non-steep part of the path κ is parametrized by an interval in the
x-coordinate, of length ≤ 2A/γ. There is a bound K so that such an
interval can cross (or go near) at most K−2 asymptotic bands. A band
is attached to at most two pairs of indices, but only one of these can
lead correspond to a normal-form subtree. Thus (counting the two we
may have missed above) the number of normal-form subtrees attached
to γ is ≤ K. This completes the proof of Lemma 12.3. �

We now come to the main result of this section. Fix u, w as above,
and let L1 := L +N be the function determined by the above proofs.
For any ǫ put L := log ǫ and set ξ := eL1 = eNǫ. Note that ξ → 0 as
ǫ→ 0.

Theorem 12.5. There is a bound K depending on u, w and a real con-
stant F (which will be ζ0 +2ν−ζ1 later on), but with K independent of
ǫ, ξ and µ, with the following properties. Suppose T is a furnished tree
and Φ : T → X is a flowing map such that the top vertices are outside
of any Dw(Pi) and such that the bottom vertices are each mapped into
some Dǫ(Pi). Suppose furthermore that g(zbot) ≥ g(ztop) − F . Then
we can cut T into a tree T ′ onto which are attached subtrees, such that
Φ maps the bottom vertices of T ′ into various Dξ(Pi) and such that the
number of bottom vertices of T ′ is bounded by K.

Proof. Among the subtrees that we strip off are any ones starting with
edges e for which ie = je. In particular we may assume from the start
that T has no such edges.

Next group the bottom vertices into series connected by intervals
where the bounding loop of the interval is mapped into Du(P ). There
is a bound K1 for the number of such series, because any loop which
goes out of Du(P ) has to contribute at least a certain fixed amount to
g(ztop) − g(zbot). Next we can look at a specific series. It is the set
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of bottom vertices of a subtree T1 obtained by taking the union of all
of the loops joining the bottom vertices together. Note in particular
that Φ(T1) ⊂ Du(P ). Let κ denote the boundary path of T1. Note
that the subtree T1 doesn’t necessarily include all strands emanating
from all of its vertices. However, if v is a vertex on κ corresponding
to an adjoining edge e not in κ, then either e goes into the interior of
the region bounded by κ, in which case e starts a subtree mapped into
Du(P ) and such that all bottom edges go into Dǫ(P ); or else it goes
out of the region bounded by κ in which case e is not a part of the
tree T1. In the former case, the normal form of Lemma 12.2 applies to
the subtree starting at e. In the latter case, the subtree starting at e
could be in normal form or not. However, if e is an edge going out of κ
such that the subtree starting at e is not in the normal form of Lemma
12.2, then this subtree contains at least one strand which goes out of
Du(P ). By Lemma 12.1 it also contains a strand which goes out of
Dw(P ) and there is a global bound K2 on the number of such edges e.
If we cut κ at vertices v where such edges e go out, then it is cut into
≤ K2 strands κ′ and each little strand has only vertices corresponding
to normal-form subtrees. Finally, by the bound of Lemma 12.3 there
are no more than K3 such vertices on each little strand κ′. Each of
these normal-form subtrees can be cut at the point where it goes into
Dξ(P ), and there is only one such point for each subtree. Thus if we
trim off the tree T1 at all of the points where the strands enter Dξ(P ),
there are at most K2K3 bottom vertices. Finally, since there were at
most K1 subtrees T1 corresponding to series of bottom vertices, we
can trim off T to a tree T ′ where there are at most K1K2K3 bottom
vertices, all going inside some Dξ(Pi). This proves the theorem. �

13. Proofs

By a multisingular point we mean a point y = (y1, . . . , yk) ∈ Z∗
I such

that the yn are singular points of the functions ginin+1
. Note that in

our situation the singular points in Z are the preimages of the turning
points P ∈ R corresponding to the places where the Higgs field θ has
singular eigenvalues.

If z is a point in Z∗
I with r(z) ≤ M then in particular each zi is

at distance ≤ M from p with respect to dσ (using the notations of
§9). This defines a relatively compact subset of Z, containing a finite
number of singular points. It is improved with the lemma below.

Define SM to be the set of complex values of the form g(y) where y
are multisingular points with r(y) ≤ M0+2M . This is the subset which
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is to enter into the definition of analytic continuation with locally finite
branching for f(ζ).

Lemma 13.1. For each M , the set SM is finite.

Proof. There is a positive constant c such that if P1 and P2 are distinct
singular points, then the distance from P1 to P2 using the metric dσ is
at least c. Suppose y = (y1, . . . , yk) is a multisingular point, so each yi
is a singular point. If r(y) ≤ M0 + 2M then, in view of the definition
of r there are at most (M0 + 2M)/c indices i such that yi 6= yi+1. Let
y′ := (y′1, . . . , y

′
k′) be the sequence of distinct different points in the

sequence y. Define a new multi-index I ′ by setting i′a = ib(a) where
b(a) is the place with yb(a) = y′a and yb(a)+1 = y′a+1. Then y′ ∈ ZI′
and gI′(y

′) = gI(y). Now k′ ≤ (M0 + 2M)/c so there are only a finite
number of possibilities for y′ (the singular points themselves occuring
in a fixed relatively compact subset of Z as pointed out above). Thus
there are only a finite number of possible values. �

Proof of Theorem 6.3. Suppose we have already analytically continued
f along a piecewise linear path of length ≤ M1. Inductively we may
assume that the points of η have remoteness ≤ M0 + 2M1. If we
add a segment S then the total length of the path is ≤ M where
M = M1 + |S|. We assume that S doesn’t meet any of the points in
SM .

Fix a number ν > 0 so that the segment S stays at a distance > 2ν
away from the points of SM . Choose our neighborhoods Ni with N1

being the oval around S of radius ν, so N1 stays at a distance > ν away
from the points of SM . Let K be the bound of Theorem 12.5. Choose
ǫ small enough so that if z ∈ Dξ(P ) then for any i

∣∣∣∣
∫ z

P

αi

∣∣∣∣ <
ν

K
.

We show that all points of the chain Fτ are sent (by g) outside of N3.
Suppose on the contrary that we had a point, corresponding to a tree
T , such that g(zbot(T )) ∈ N3.

By Theorem 12.5 there exists a pruning T ′ of T with ≤ K bottom
vertices, such that for every bottom vertex v of T ′ we have Φ(v) ∈
Dξ(P (v)) for some singular point P (v). In particular, the point zbot(T ′)
which is the vector of these Φ(v) is near to a point y = (. . . , P (v), . . .).
More precisely we obtain from k ≤ K and the bound above,

|g(y)− g(zbot(T ′))| < ν.

On the other hand, if g(zbot(T ′)) were inside N3 then the singular
point y would occur below points of η at distance ≤ |S|, and hence
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below points of p at distance ≤ M0 + 2M1 + |S| < M , therefore g(y)
must be included in SM . On the other hand, the point g(zbot(T ′))
occurs on the real segment between g(zbot(T )) and some point of g(η′).
This contradicts the assumption that the neighborhood N1 stays away
from SM by distance at least ν. This shows that all points of g(Fτ)
are outside of N3, and completes the proof that we can analytically
continue f(ζ) along the segment S.

Finally in order to maintain the inductive hypothesis we note that,
cutting everything off fairly close to the segment S we can insure that
the points of the new cycle of integration Fτ (and also Fψ) are remote
from points of η at distance ≤ 2|S|, hence they have remoteness ≤
M0 + 2M as required. �

Proof of Theorem 1.1. — The statement is essentially contained in that
of Theorem 6.3, but we need to show that SM ⊂ Σ(γ). In other words,
if z ∈ ZI is a multisingular point, we need to show that g(z) is the inte-
gral of the tautological form on a piecewise homotopy lifting γ̃. Recall
the formula

gI(z) =

∫ z1

p

αi0 + . . .+

∫ q

zk

αik .

Let γ̃′i be the path joining zi to zi+1 where by convention z0 = p and
zk+1 = q. These paths are unique up to homotopy because we are
working in the contractible universal cover Z. Composing the main
projection Z → Y with Galois automorphisms of Y and then the pro-
jection Y → V , gives projections τi : Z → V which commute with
the projection to X, such that αi is the pullback of the tautological
form α on V , i.e. αi = τ ∗i (α). We can put γ̃i := τi ◦ γ̃

′
i. The collection

γ̃ = {γ̃i} is a piecewise homotopy lifting of γ. To see this, note that the
projections to X of the γ̃i are equal to the projections of the original
γ̃′i, so these join together to give a path homotopic to the projection
of the path from p to q in Z. Since the lifts p, q ∈ Z were chosen to
correspond to our original path γ in X, so the composite path in X is
homotopic to γ. Our formula for gI(z) becomes

gI(z) =
∑

i

∫

γ̃i

α =

∫

γ̃

α.

This shows that SM is a subset of Σ(γ). �
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14. Conclusion

We close with a few more general remarks about the consequences
of Theorem 6.3. The first is to note that it also applies to any polyno-
mials in the transport matrix coefficients, in particular to the Procesi
coordinates for MB.

Lemma 14.1. Suppose f1 and f2 have analytic continuations with lo-
cally finite branching, then the same is true for their convolution f1∗f2.

Proof. This was proven in [9]. See also the proof of [34] Lemma 11.1.
There, the proof of locally finite branching for the convolutions uses
only locally finite branching for the two functions. �

Corollary 14.2. If P (t) is a polynomial in the transport matrices for
various paths, then then the Laplace transform of P (t) has an analytic
continuation with locally finite branching.

Proof. The Laplace transform of a product of functions m1(t)m2(t)
is the convolution of their Laplace transforms, so Lemma 14.1 and
Theorem 6.3 give the result. �

The next remark is about the growth rate of m(t). This is measured
by the hull hull (m) defined in the introduction.

For reference we indicate first an elementary argument showing that
hull (m) is convex. Indeed, if ζ0 is a point which is not in hull (m),
then by definition there is an angular sector s in which m(t)e−ζ0t is
rapidly decreasing. Suppose u is a complex number such that ζ0 + u
is in hull (m). Again by the definition of hull (m) this implies that
m(t)e−ζ0te−ut is no longer rapidly decreasing in any part of s. This
means that s is contained in the half-plane ℜut ≤ 0. In particular,
for any vector u′ which is a negative real multiple of u, we have that
ℜu′t ≥ 0 so m(t)e−ζ0te−u

′t is rapidly decreasing on s, therefore ζ0 + u′

is not in hull (m). This proves the convexity.
Next we can characterize hull (m) as the intersection of all closed

half-planes H ⊂ C such that the Laplace transform f of m admits
an analytic continuation over the complementary open half-plane (this
would give another proof of convexity). Indeed, if a point ζ is in the
complement of hull (m) then the sector along which m(t)e−ζt is rapidly
decreasing provides an open half-plane containing ζ over which f can be
analytically continued. This shows one inclusion. The other inclusion
is clear from the inverse Laplace transform.

The hull is related to growth rates as follows. If hull (m) is a single
point, then some multiplicative translate of the form m(t)eζt has sub-
exponential growth. If hull (m) contains at least a line segment, then
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we say m is semistrictly exponential: for sectors covering all but two
directions we have a lower bound of the form |m(t)| ≥ cea|t|, and in
particular there is a positive lower bound for the possible exponents a
which can enter into bounds of the form |m(t)| ≤ Cea|t|. If hull (m)
contains a nonempty interior then we say m is strictly exponential:
there is a lower bound of the form |m(t)| ≥ cea|t| valid in all directions.

Unfortunately we are only able to show that some monodromy ma-
trix is semistrictly exponential in the generic case of Corollary 1.2 of
the introduction.

Proof of Corollary 1.2. By Theorem 1.1, the Laplace transform has lo-
cally finite branching (Definition 6.2). Choose M big enough so that
one goes all the way around hull (m) with a path of length ≤ M . Let
Sreal
M ⊂ SM be the subset of non-removable singularities of the Laplace

transform attainable by a path of length ≤M (which is finite because
SM is finite). Then f admits an analytic continuation to an open
half-plane if and only if this half-plane doesn’t meet Sreal

M . Therefore
hull (m) is a polygon.

We show by specialization that for some fundamental group ele-
ments at least, hull (m) is not reduced to a single point. General
considerations using Hartogs’ theorem show that if the monodromy is
semistrictly exponential for a special curve going to infinity, then the
same will be true away from a piecewise holomorphic real codimension
2 divisor.

We choose as special curve the family of connections on the trivial
bundle of the form d + B + tA with A diagonal and B off-diagonal,
everything being holmorphic on X, that was originally considered in
[34]. In that case, we get asymptotic expansions whose coefficients can
be calculated. One route is to note that for generic values of A and B,
calculation of the coefficients gives nonzero coefficients at more than
one singular point. Another route would be to note that if there were
only one singularity for the monodromy matrices for this family, then
the monodromy representation would actually have polynomial growth.
That possibility is ruled out by specializing again to a direct sum of
a 2 × 2 system and trivial systems, and noting that for 2 × 2 systems
we have proven (in the paper [38]) that the monodromy representation

always has growth at least et
1/k

for some integer k.
In any case by either of these two routes we can conclude that the

Laplace transform for at least one monodromy matrix has at least two
singularities. �

It is perhaps more interesting to note that the same thing also works
for the Procesi coordinates. This improves, at least for certain generic
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points at infinity approached from certain sectors, the bound given in
[38].

Corollary 14.3. For each family (E,∇ + tθ) going to infinity at a
generic Higgs bundle (E, θ), let ρt denote the family of monodromy
representations, thought of as a point in MB. Let Ri : MB → C denote
a set of Procesi coordinates giving an affine embedding. Write by abuse
of notation Ri(t) := Ri(ρt). Then each hull (Ri) is a polygon, and
for general (E, θ) (in a dense open set) at least one Ri is semistrictly
exponential (i.e. its hull has at least two vertices). If we define |ρt| :=
supi |Ri(t)| then for general (E, θ) and for a family of sectors of t→ ∞
covering all but possibly two opposite directions, we have bounds of the
form

|ρt| ≥ cea|t|

with a > 0.

Proof. The same proof as for Corollary 1.2 works here too. �

Lastly it is important to reiterate that, in spite of the above con-
sequences, the result of Theorem 6.3 is highly unsatisfactory in that
it doesn’t say anything about the behavior of the Laplace transform
f(ζ) near the singularities. It doesn’t even seem clear what the answer
will be: on the one hand one can imagine that an improvement of the
present analysis, potentially based on Remark (i) following the proof of
Lemma 5.1, might lead to a polynomial bound for the singularities. On
the other hand, a crude look at the present argument yields no such
bound, and it is also quite concievable that the poles in the matrix
B lead unavoidably to more complicated singularities of f(ζ). This is
undoubtedly true in the general case where B has poles of order > 1.

This problem also leads to the unsatisfactory statement of Corollary
14.3: if we could calculate exactly where the singularities were we could
probably show that for generic values of (E, θ) the singularities would
span a convex hull with nonempty interior, in other words that the
monodromy families ρt would be strictly exponential. This would be a
more significant improvement of the result of [38].

The result of Theorem 6.3 should be thought of as a weak form of
“resurgence” for the monodromy function m(t) and its Laplace trans-
form. The problem of getting more precise information about this be-
haviour is probably most naturally attacked using new ideas and tech-
niques for resummation such as have been developped by the school of
J.-P. Ramis.
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