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Abstract. We report on observations of the electrical transport within a chain of metallic beads (slightly
oxidised) under an applied stress. A transition from an insulating to a conductive state is observed as
the applied current is increased. The voltage-current (U—I) characteristics are nonlinear and hysteretic,
and saturate to a low voltage per contact (0.4 V). Our 1D experiment allows us to understand phenomena
(such as the “Branly effect”) related to this conduction transition by focusing on the nature of the contacts
instead of the structure of the granular network. We show that this transition comes from an electro-thermal
coupling in the vicinity of the microcontacts between each bead — the current flowing through these contact
points generates their local heating which leads to an increase of their contact areas, and thus enhances
their conduction. This current-induced temperature rise (up to 1050°C) results in the microsoldering of
the contact points (even for voltages as low as 0.4 V). Based on this self-regulated temperature mechanism,
an analytical expression for the nonlinear U—I back trajectory is derived, and is found to be in very good
agreement with the experiments. In addition, we can determine the microcontact temperature with no
adjustable parameters. Finally, the stress dependence of the resistance is found to be strongly non-hertzian
due to the presence of the surface films. This dependence cannot be usually distinguished from the one
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1 Introduction

on 2

D Coheration or the “Branly effect” is an electrical conduc-
tion instability which appears in a slightly oxidized metal-
b lic powder under a constraint [ﬂ] The initially high powder
= resistance falls several orders of magnitude as soon as an
electromagnetic wave is produced in its vicinity. Although
discovered in 1890 and used for the first wireless radio
transmission [E], this instability and other related phe-
nomena of electrical transport in metallic granular media
are still not well understood [H] Several possible processes
O at the contact scale have been invoked without any clear
O demonstrations: electrical breakdown of the oxide layers
O on grains [E,E], modified tunnel effect through the metal
L - oxide ~ semiconductor - metal junction [&, attraction
Rof grains by molecular or electrostatic forces [[ijg], local
O soldering of micro-contacts by a Joule effect [P}jL(] also
labelled as “A-fritting” [ﬂ]7 each being combined with a
global process of percolation [E,E,E,E,H].

Understanding the electrical conduction through gran-
ular materials is a complicated many body problem which
depends on a large number of parameters: global proper-
ties concerning the grain assembly (i.e. statistical distribu-
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due to the disorder of the granular contact network in 2D or 3D experiments.

PACS. 45.70.-n Granular systems — 72.80.-r Electrical conductivity of specific materials

tion of shape, size and pressure) and local properties at the
contact scale of two grains (i.e. degree of oxidization, sur-
face state, roughness). Among the phenomena proposed to
explain the coheration, it is easy to show that some have
only a secondary contribution. For instance, since coher-
ation has been observed by Branly with a single contact
(crossed cylinders or tripod) [EI,E], or with a column of
beads [@] or disks [B], percolation can not be the predom-
inant mechanism. Moreover, when a powder sample [@] or
just two beads in contact [@,@] are connected in series
with a battery, a coheration is observed at high enough
imposed voltage, in a similar way as the action at dis-
tance of a spark or an electromagnetic wave. In this paper,
we deliberately reduce the number of parameters, without
loss of generality, by focusing on the electrical transport
within a chain of metallic beads directly connected to an
electrical source. As with the acoustical propagation in
granular media [B, , such one-dimensional experiments
facilitate the understanding of the electrical contact prop-
erties, and is a first step toward more realistic media, such
as a 2-D array of beads (including disorder of contact) [P0,
and powder samples (including disorder of position). De-
spite some earlier studies in 1900, with a 2 bead “coherer”
showing nonlinear characteristics and saturation voltage

(1617 1,23 R3R4), surprisingly no 1D-work has been at-
tempted to tackle this problem.
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The second motivation of our work is to know the pres-
sure dependence of the electrical resistance, R, of a gran-
ular packing, which also remains an open problem. It was
first measured in the case of a contact between two con-
ductors, submitted to a force, F, in order to determine
the real area of contact [@] Indeed, careful attention was
paid to initially break any oxide layers at the surface [RJ],
or to work with noble metals [@], or specific surface coat-
ings [R7 in order to get reproducible results which fol-
low; R ~ 1/F'3 in agreement with the elastic Hertz law.
However, when superficial oxide and/or impurity layers
are present, this scaling is found again to be a power law
but with an exponent greater than 1. This has been ob-
served in a 3D packing of steel beads [@,@] under weak

elastic) compression, or for strongly compressed powders

@]. This anomalous exponent is ascribed either to a su-
perficial contaminant film [@,@], or a combinaison of a
contaminant film and the degree of contact disorder in the
packing @] Here again, a 1D experiment should allow to
answer if this exponent is driven by contact properties
since the effect of contact disorder is absent.

Stepper motori >

0

Fig. 1. Schematics of experimental setup

2 Experimental setup

The experimental setup is sketched in Fig. ﬂ It consists of
a chain of 50 identical stainless-steel beads, each 8 mm in
diameter, with a tolerance of 4um on diameter, and 2um
on sphericity [Ell] The physical properties of the beads are
summarized in Table [ll. The beads are surrounded by an
insulating framework of polyvinylchloride (PVC). It con-
sists of two parts, each one 30 mm high, 40 mm wide and
400 mm long, with a straight channel having a squared
section with 8.02 mm sides milled in the lower part to
contain the beads. A very small clearance of 2/100 mm
is provided in the channel, so that the beads move freely
along the chain axis but not in the perpendicular direction.
A static force F' is applied to the chain of beads by means
of a piston (8 mm diameter duralumin cylinder), and is
measured with a static force sensor (FGP Instr. 1054) with
a 6.1 mV/N sensitivity in the range from 1 to 500 N. A
1.8 degree stepper motor (RS 440-442) fitted to a gearhead
(gear ratio 25:1) is linked to an endless screw, with a 1 mm
thread, in order to axially move the piston and the force
sensor with a 0.2um/step precision. The number of mo-
tor steps is measured with a counter (Schlumberger 2721)
to determine the piston displacement necessary to reach

a specific force. Electrical contacts between the chain and
the electrical source are made by soldering leads on par-
ticular beads, and the measurements are performed in a
four-wire configuration. Note that the lowest resistance of
the whole chain (about 3 §2) is always found much higher
than the electrode or the stainless steel bulk material. The
bead number N between both electrodes is varied from 1
to 41 by moving the electrode beads within the chain. DC
voltage (resp. current) source is supplied to the chain by
a source meter (Keithley K2400) which also gives a mea-
sure of the current (resp. voltage). The maximum power
output is 22 W (210V at 0.105 A or 21V at 1.05A). Dur-
ing a typical experiment, we chose to supply the current
(107 < T < 1 A) and to simultaneously measure the
voltage V' and the resistance R. The current is supplied
during a short time (< 1 s) in order to avoid possible Joule
heating of continuous measurements. We note that similar
results have been found when repeating experiments with
imposing the voltage (1072 < U < 2 102 V) and measur-
ing current and resistance. The results reported here are
highly reproducible.

Table 1. Relevant mechanical and electrical properties of
stainless steel beads used in the chain (norms: AISI 420C,
AFNOR Z40C13, grade IV) [@] or for another stainless steel
type (AISI 304) [BY].

Signification Value

r Bead radius 4 mm +2um

R, Roughness 0.1-0.2 pm

p Density 7750 kg/m* [B1]

v Poisson’s ratio 0.27

E Young’s modulus 1.95 10" N/m? @]

Pel Electrical resistivity 20°C 72 pf2.cm %

650°C 116 pf2.cm [B2

A Thermal conductivity 20°C  16.2 W/(Km) [BZ]
500°C  21.5 W/(Km) [B9]

Trmer  Approx. melting point 1425 °C [@]

3 Mechanical Behaviour

The relation between the force F' applied on two identical
spheres and the distance of approach 0 of their centers is
%]en by linear elasticity through the so-called Hertz law
[

)

Lﬁ(ﬁ/?

F= 1

3(1—v?) (1)

and the “apparent” radius of the circular contact by [@]
3(1—v?) 13

A= [TTF , (2)

E being the Young’s modulus, v the Poisson’s ratio and r
the radius of the beads. For stainless steel beads used in
the chain [see bead properties in Table ([[)], when F ranges
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from 10 to 500 N, Eq. ([) leads to a range of deformations
§ between two beads from 2 to 20 um, and Eq. () to a
range of the contact radii A from 40 to 200 pm.

Figure E shows the total chain displacement d;,: as a
function of F'. As expected, there is good agreement with
the F2/3 Hertz law for our range of F. The departure at
low F' is linked to the fact that J:;; includes the piston
displacement z(, needed to bring all the beads in contact,
i.e. 0t = wo + 494. This is indeed shown in the inset of
Fig. , where ddzot /dF is found to scale as F~1/3 and to be
independent of xg. Using Eq. (m), the intersection of the
F~1/3 fit with the ordinate axis gives a measurement of
the elastic properties of the bead materials through F/(1—
v?) ~ 10! N/m? in agreement with values extracted from
Table . From the sensor documentation, we have checked
that the force sensor displacement is 50 times less than
the total bead displacement, d;,+ — xg, at ' = 500 N. The
mechanical contact of the bead chain is thus very well
described by the Hertz law (see also Ref. [Ld,B4)).

10~

F(N)

10° 10" 10° 10°

Force (N)

Fig. 2. Total chain displacement, d:0t, as a function of the
applied static force, F'. (Full line of slope 2/3). Inset shows
ddtor/dF vs. F (Full line of slope of —1/3). N = 13.

4 Electrical behaviour
4.1 Dependence of the resistance on the applied force.

Let us denote Ry as the electrical resistance of the bead
chain, at low imposed voltage or current. The evolution
of Ry as a function of the applied force is shown in Fig.
H. Experimental points are found to be well fitted by a
F~3/2 power law (solid line). This measurement is per-
formed simultaneously with the mechanical displacements
corresponding to those found in Fig. ] which are well de-
scribed by the Hertz law (see Sect. B). Thus, assuming
Ry ~ 1/A for metallic contact or Ry ~ 1/A? for a slightly
oxydized one [A29], Eq. (B) leads to an electrical resistance

1
10 L L
10° 10" 10> 10°

Force (N)

Fig. 3. Electrical resistance, Rp, as a function of the applied
static force, F, at low imposed voltage U = 1073V. (o) same
sample as the one in Fig. E An other run (see text for details)
with increasing F' (), then decreasing F' (R). (—) shows F /2
fit, and (——) the F~?/3scaling from the Hertz law. N = 13.

scaling of F~1/3 or F~2/3 respectively. The unexpected
F~3/2 scaling observed in Fig. fJ thus shows that Ry does
not only depend on F' through the radius of contact A but
also through the resistivity and thickness of the contam-
inant and/or oxide film probably present at the interface
between metallic surfaces.

The Ry ~ F~3/2 scaling is only valid at low current.
When [ is increased, the R — F' law is changed as shown
on Fig. . For each applied I, one can roughly assume a
R ~ F% power law where 6 is found to be I-dependent (see
inset of Fig. [). This complex dependence of () comes
from the nonlinear characteristics of the system as shown

in Sect. [1.9

These scaling laws are very robust when repeating our
experiments. After each cycle in force, we roll the beads
along the chain axis to have a new and fresh contact be-
tween beads for the following cycle. This is a critical con-
dition to have reproducible measurements. Indeed, Fig. E
shows another force cycle leading to the same low current
scaling in F~3/2, but shifted vertically by one order of
magnitude in resistance. This indicates that, at a given
force, Ry depends on the film properties at the location
where the new contacts have been created. Therefore, Ry
will subsequently be the control parameter instead of F.

Finally, as for the different pressure dependences of the
sound velocity observed in a 1D [ or 2D [[1d] granular
medium, the electrical resistance scaling (R ~ F~3/2 at
low current) should be different for higher dimensions due
to the effects of contact disorder and/or percolation. This
work is in progress in a 2D hexagonal array of stainless
steels beads [ﬁ] or in 3D copper powder samples [B].
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Fig. 4. Electrical resistance, R, as a function of F', for various
current I: 107¢ (0), 107* (v7), 1072 (0), 1072 (o), 107! (+) A.
F is increased then decreased. For each curve, 6(I) exponents
are extracted from R ~ F° power law fits, and are shown in
the inset (semilogx axis). N = 41.

4.2 Nonlinear U-I characteristics.

For various applied forces, Fig. Ea shows the typical hys-
teretical R—I characteristics when imposing the current
1076 < I < 1 A to the bead chain. At low I, the chain
resistance R is found to be constant and reversible. As
I is increased further (see open symbols), the resistance
strongly decreases and reachs a constant bias (see dashed
line of slope 1). This will be refered to as the satura-
tion voltage Uy. As soon as Up is reached, the resistance
is irreversible upon decreasing the current (see full sym-
bols). This decrease of the resistance by several orders
of magnitude has similar erties as that of the co-
herer effect with powders ﬁﬁ or with a single contact
Ell . . Q E |. We have verified these observations are
not due to experlmental artefacts. The compliance values
of the source meter (see solid lines in Fig. fla) are indeed
greater than the measured values, and when the chain is
replaced by test resistances of known values from 2.7 to
10* §2, measurements (see e-marks) lead to the expected
results in the full range of currents. As explained previ-
ously, after each cycle in the current, the applied force is
reduced to zero, and we roll the beads along the chain
axis to have new and fresh contact between beads for the
next cycle. With this methodology, the resistance drop
(coherer or Branly effect) and the saturation voltage are
always observed and are very reproducible.

The U-I representation of Fig. Ea is displayed in Fig.
fb. It more easily shows the constant reversible resistance
at low current (see open symbols of slope 1), followed by
the asymptotical approach to a constant bias value of Uy
for larger I. When decreasing I, it also reveals the irre-
versible behaviour at another constant resistance (see full
symbols of slope 1) having a lower value which depends
on the maximum imposed current, but not on the applied

104— . . . . . . . . . N 4
6000000 o
%
10° :
O 0O o0oooo oo g
~— VANRVANRVANRYANEYANRYANRVANRVANRVANRVAN
g ,
0:10 FQ O QO O O QOO0 Q0 Q0O B
w0t .t .
2
psstteteen
. H )
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Current | (A)
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Y - T T T T T T T T T T T T T T T O 78 gg@ «3y 3
0 A B
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10 1
-2
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o
b Y,
.43
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A
107 o E
10°F 1
. 107 10° 10° 10
10_ | | , RBM™ |
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Fig. 5. Log-log R — I (a) or U-I (b) characteristics when
increasing the current I (open symbols) from 107° to 1 A, then
decreasing I (full symbols) for N = 13 and various F' = 34 (),
119 (O), 305 (A), 505 (o) N. Saturation voltage Uy = 5.8 V is
shown (——). Inset shows the U-I scaling by the low current
resistance Ro(F). Generator maximum compliance values of
21 V and 1.05 A (—), and measurements of test resistances
Riest = 10%, 91, 12.7 and 2.7 2 (small e-marks) instead of the
chain are indicated.

force (see Sects. . and [£.4). As mentioned in Sect. [i.1],
the best way to rescale all the U-I curves of Fig. Eb (per-
formed at various F') is not by the force itself but by the
resistance at low current, Ro(F). This rescaling is shown
in the inset of Fig. Eb leading to an impressive collapse on
a single master curve. The current-voltage characteristic
has thus an ohmic (linear) component which is followed
continuously by a nonlinear part saturating for a critical
voltage.
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Fig. 6. (a) U-I characteristics (in linear axes) showing the
saturation voltage, Up = 5.8 V, when increasing the current [
in the range 1 mA < I < Inar (open symbols), then decreasing
I (full symbols) for various F' = 32 (O), 125 (o), 321 (%) and
505 () N with Imaez = 1 A, and for FF = 211 N (<) with
Imaz = 0.5 A. Measurement of test resistance Ries: = 2.7 (2
(small e-marks) instead of the chain. (b) Same open symbols
as (a) rescaled by Ro(F') in linear or semilogx axes (inset).
Additional F' = 13 N (v/) is shown. Solid line show empirical
fit of Guthe [L7]. N =13.

4.3 The saturation voltage

In this section, we focus on the saturating regime of the
U-I behaviour. We performed similar U-I studies as de-
scribed in Sect. , but with linear increments of the im-
posed current. Fig. Ea shows that the characteristic de-
pends on the history of the maximum applied current
Inaz. At low current, U—I is reversible and ohmic of resis-
tance Ro(F') (arrow 1). As I is increased, the characteristic
follows a constant irreversible line (arrows 2). Then, a de-

crease from different values of I,,,.. leads to different U1
trajectories (see full symbols) which are found reversible
and non-ohmic (arrows 3 and 4).

One can show that the saturation voltage Uy depends
on the number of beads, IV, between the electrodes. When
varying N from 1 to 41, the saturation voltage per contact
Upje = Uo/(N + 1) is found constant and on the order of
0.4 V per contact as shown in Table E These value changes
when replacing all stainless steel beads with others of an-
other material, Uy, ~ 0.2 V for bronze beads and 0.3
V for brass beads (see Table fl). Therefore, Uy, depends
slightly on the bead material (see also Ref. @,ﬁ@]),
but does not depend on the bead radius [[L§] nor on the
gas surrounding the beads [PJR4]. Moreover, the non-
linear saturation bias Uy does not depend explicitly on
the force F. This means that when the previous charac-
teristics obtained for different F' are rescaled by Ro(F'),
all U-I curves collapse as shown in Fig. fib on linear
or semilog (see inset of Fig. [jb) axes. This saturation
bias was first observed in 1901 by Guthe for two
beads in contact. He suggested an empirical fit of the form
U = Uy[l — exp(—1Ro/Up)] which does not describe our
data (see solid line in the inset of FigfJb). If we use a more
complex fit, U = Up[l — exp (—IRy/Up)"]? with af =1
as used in percolation studies [, this leads to a better
description but with one adjustable parameter. However,
no satisfactory physical description has been proposed for
such characteristics and the conduction mechanisms in-
volved. In Sect. E, we suggest a physical interpretation for
Uy, based on an electro-thermal coupling within the mi-
crocontacts. Finally, we note that the saturation voltage
has not been reported in higher dimensional systems, al-
though these systems exhibit a nonlinear and irreversible
U-I characteristics (e.g. in 3D polydisperse packing of
beads [B7 or in 2D metallic packing of pentagons [Bg)).

Table 2. Saturation voltage, Uy, for various bead numbers, N,
in the chain and for different bead materials. No = (N + 1) is
the number of bead-bead contacts.

Materials N. Uy (V) Uy/Nc (V)
Stainless Steel 02 0.75 0.37
Stainless Steel 14 5.8 0.41
Stainless Steel 42 16.5 0.39
Brass 14 4.4 0.31
Bronze 14 3 0.21

4.4 Symmetry properties of the U—I characteristics

Due to contaminants and/or oxide layers probably present
on the bead surfaces, a contact between two beads can be
described as a Metal/Oxide/Oxide/Metal contact. If the
conduction through this contact is ionic or electronic, we
expected that the Oxide/Oxide interface has less influence
than the Metal/Oxide one. In this case, the conduction via
a bridge between metals through the oxide should thus
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lead to an ionic or electronic accumulation on one side
of the contact. When the saturation voltage is reached, it
should affect differently the two sides, breaking the origi-
nal symmetry. This broken symmetry should be observed
by an asymmetrical characteristic U—I, when reversing the
applied current to the chain.

However, when the current is reversed and applied
to the chain, Fig. ﬁ clearly shows a symmetrical curve
U(I) = —U(-1I). At low applied current, U-I is reversible
and ohmic (solid arrow 1), then it nonlinearly reaches the
irreversible saturation regime (solid arrow 2) for increas-
ing I up to Imaz, = 1 A, and finally follows a nonlin-
ear and reversible back trajectory (solid arrow 3) when I
is decreased to 1 mA. When reversing the current up to
Inae. = —1 A, the characteristic follows this reversible
non-ohmic line symmetrically (solid arrows 4 and 5). We
can thus conclude that the important interface is the Ox-
ide/Oxide interface in this case.

We now repeat the experiment (see ¢-marks) up to
a different Inq., = 0.5 A. It leads to a different back
trajectory (dashed arrow 3) which is again symmetrical
when reversing the applied current up to Lye,_ = —0.5 A
(dashed arrow 4). When the current is further decreased
up to -1 A, the characteristic symmetrically reaches the
saturation bias —Uj (see ¢-marks), before joining the pre-
vious reversible non-ohmic line (dashed arrow 5), when the
current is increased from -1 A to 1 mA. Thus, the back
trajectory of this symmetrical loop is driven by |Inq4z]. To
check this, let us first define Rq, as the electrical resis-
tance of the chain, at low decreasing current, that is, the
slope of the back trajectory in Fig. []. When repeating this
experiment up to different values of I,,,, and for various
applied forces F', one can show that Ry, does not depend
on F', but only on I,,4; such as Rop * Imaz = Umaz 18
constant. It is indeed shown in the inset of Fig. [] where
the reversible back parts of Fig. ﬁ are rescaled by Ry, and
follow the same back trajectory.

5 Interpretation
5.1 Qualitative interpretation

Assume a mechanical contact between two metallic spheres
covered by a thin contaminant film (~ few nm). The inter-
face generally consists of a dilute set of microcontacts due
to the roughness of the bead surface at a specific scale [f.
The mean radius, a, of these microcontacts is of the or-
der of magnitude of the bead roughness ~ 0.1 ym, which
is much smaller than the apparent Hertz contact radius
A ~ 100 pm. Figure schematically shows the building of
the electrical contact by transformation of this poorly con-
ductive film. At low applied current, the high value of the
contact resistance (k{2 — M{2) probably comes from a com-
plex conduction path [@} found by the electrons through
the film within a very small size (< 0.1 gm) of each mi-
crocontact (see lightly grey zones in Fig. E) The electron
flow then damages the film, and leads to a “conductive
channel”: the crowding of the current lines within these

R

O F=56N,I 1A
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Fig. 7. Symmetrical characteristics U-I for various current
cycles in the range 1 mA< I < lnge, and Imge_ < I < -
1 mA, and for various forces. Inset shows the reversible back
trajectories rescaled by Rob. Umaz = Rob * Imaz ~ 3.5 V. N =
13. (See text for details).

microcontacts generates a thermal gradient in their vicin-
ity, if significant Joule heat is produced. The mean radius
of microcontacts then strongly increases by several orders
of magnitude (e.g., from a; < 0.1 pm to ay ~ 10 pm),
and thus enhances their conduction (see Fig. f). This cor-
responds to a nonlinear behaviour (arrow 1 until 2 in Fig.
ﬂ) At high enough current, this electro-thermal process
can reach the local soldering of the microcontacts (arrow
2 in Fig. ﬁ), the film is thus “piercing” in a few areas
where purely metallic contacts (few (2) are created (see
black zones in Fig. §). [Note that the current-conductive
channels (bridges) are rather a mixture of metal with the
film material rather than a pure metal. It is probable that
the coherer action results in only one bridge — the contact
resistance is lowered so much that puncturing at other
points is prevented]. The U—I characteristic is then re-
versible when decreasing and then increasing I (arrow 3
in Fig. ﬂ) The reason is that the microcontacts have been
soldered, and therefore their final size af does not vary
any more with I < I,,4,. The U-I back trajectory then
depends only on the temperature reached in the metal-
lic bridge through its parameters (electrical and thermal
conductivities), and no longer on its size as previously.

5.2 Quantitative interpretation

To check quantitatively the interpretation in @, we shall
first recall the voltage - temperature U-T relation, and we
shall see that this electro-thermal coupling is the simplest
way to interpret quantitatively the U-I back trajectory
(arrows 3 in Fig. ﬂ) Indeed, the relationship between the
voltage-drop across the contact U, the current I and the
microcontact radius a is strongly modified compared to
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Fig. 8. Schematic view of the electrical contact building
through microcontacts by transformation of the poorly con-
ductive contaminant/oxide film. At low I, the electrical contact
is mostly driven by a complex conduction mechanism through
this film via conductive channels (of areas increasing with I).
At high enough I, an electro-thermal coupling generates a
soldering of the microcontacts leading to efficient conductive
metallic bridges (of constant areas).

the classical constricted case, U/I = pe;/2a, derived with-
out taking into account the significant heat production
within the microcontact.

Assume a microcontact between two clean metallic
conductors (thermally insulated at uniform temperature
To, with no contaminant or tarnish film at the contact).
Such a clean microcontact is generally called a “spot”. If
an electrical current flowing through this spot is enough
to produce Joule heating, then a steady-state tempera-
ture distribution is quickly reached (~ us) in the con-
tact vicinity. The maximum temperature T, is located at
the contact, and is linked to the voltage-drop U by the
Kohlrausch’s equation [H,@,@]

T’VTL
U?=8 / Nper dT (3)
To
where, pe; is the electrical resistivity and A the thermal
conductivity, both being dependent on the temperature
T. However, for man@conductors, the Wiedemann-Franz
|

law states that [H,,
Aper = LT, (4)

where L = m2k?/(3e?) = 2.45 1078 V2/K? is the Lorentz
constant, k the Boltzmann’s constant, and e the electron
charge. This is a consequence that the electron scattering
time contributes to both the electrical conductivity and
the heat conductivity. Combining Eqs. (E) and (E) yields
for the local heating;
U2

T2 -1 = — . 5
This relationship shows that the maximum temperature
T,, reached at the contact is independent of the contact

geometry and of the materials in contact! This is a conse-
quence that both the electrical and thermal conductivities
are related to the conduction electrons through Eqs. (fI).
However, the temperature distribution within the bridge
depends on the geometry [@] A voltage near 0.4 V across
a constriction thus leads from Eq. (f]) to a contact tem-
perature near 1050°C for a bulk temperature Ty = 20°C.
This means that U ~ 0.3 — 0.4 V leads to contact tem-
peratures that exceed the softening or/and the melting
point of most conductive materials . Efficient conduc-
tive metallic bridges (or “hot spots”) are therefore created
by microsoldering. Moreover, Eq. (é) shows that the pa-
rameter determining the spot temperature is the voltage-
drop across the contact, not the magnitude of the current:
this explains why the experimental saturation voltage Uy .
is the relevant parameter in Sect. @ In addition, when
U approaches Uy, the local heating of microcontacts is
enough, from Eq. (E), to soft them (mainly at their periph-
eries @]) Then, their contact areas increase thus leading
to a decrease of local resistances, and thus stabilizing the
voltage, the contact temperatures and the contact areas,
since the current is fixed. The phenomenon is therefore
self-regulated in voltage and temperature.

Let us now specify the temperature dependance for the
thermal and electrical conductivity in the case of an alloy
or a pure metal. For an alloy, some defects are present in
the bulk metal, and contribute to the electrical conduc-
tivity (but have no influence on the Eq. (f}) []). The elas-
tic scattering of the conductive electrons with the metal
phonons and with the defects is random, and thus the
corresponding scattering frequencies add up. This leads
to the Mathiessen’s rule: the total resistivity is the sum of
a temperature dependant resistivity due to the scattering
with phonons and a residual resistance at zero tempera-
ture due to defects such as

pel(T) = (T + BTo) (6)

where a = 6.98 1071 2.m/K and (3 = 2.46 are extracted
from the stainless steel resistivity in Table EI, and Ty =
293 K is the room temperature. This defines an effective
temperature linked to the defects Ty = 571p. Note that
for pure metals, o = po /Ty, 8 = 0 (since only the “phonon
resistivity” contributes), and thus from Eq. (), \(T) =
Ao = LTo/po, where pg and \g are the electrical resistivity
and thermal conductivity of the pure metal at Tj.

One can analytically solve the electro-thermal problem
for the general case of an alloy, i.e. with pe;(T") and A(T)
as in Egs. () and (f), as shown in the appendix:

— the isothermal temperature T;, at the contact surface
as a function of the voltage U is
U2
7
el (7)

T =|TE +

— the normalized current I Ry, through the contacts only
depends on this temperature T, (i.e. on U) such as

%o cos

IRoy, =2ToN.VL(1 —df
0 0 \/_( +5) o [Bcosfy+ cosb

(®)



8 E. Falcon et al.: Nonlinear electrical conductivity in a 1D granular medium

where 6y = arccos (Tp/Th,).

We remind the reader that T3, does not depend on the
material properties, or the microcontact geometry, but
only on the room temperature, Ty, the number of bead-
bead contacts in the chain, N, = N + 1, and the Lorentz
constant L. IRy, has an additional parameter 3 related
to the defects in the material. For pure metals, i.e with
a = po/To and B =0 in Eq. (E), Eq. (B) simplifies to the
well-known explicit expression with no adjustable param-

eter [E,@]

IRg, = 2N.To+/ L arctan[T* (2 + T7%)] , 9)

where T = (T, — To)/To.

The normalized U-I back trajectory (i.e., IRgp as a
function of U) is displayed in Fig. E Here, the experi-
mental results of Fig. [] are compared with the theoretical
solutions for an alloy [Eq. (§)] calculated with AISI 304
stainless steel properties, and for a pure metal [Eq. (])]. A
very good agreement is shown between the experimental
results and the electro-thermal theory, notably for the al-
loy case. Qualitatively, the alloy solution has a better cur-
vature than the pure metal one. The agreement is quanti-
tatively excellent when choosing 3 = 3 instead of 2.46 (the
B value for AIST 304 stainless steel), since the [ value for
the bead material (AISI 420 stainless steel) is unknown,
but should be close. This gives a measurement of the ef-
fective temperature due to the defects Ty = 37Tp. During
this experimental back trajectory, the equilibrium temper-
ature, T}, on a microcontact is also deduced from Eq. ([])
with no adjustable parameter (see inset of Fig. ). There-
fore, when the saturation voltage is reached (Uy = 5.8
V), T, is close to 1050°C which is enough to soften or to
melt the microcontacts. Our implicit measurement of the
temperature is equivalent to use a resistive thermometer.
When very high voltage (more than 500 V) is applied to a
monolayer of aluminium beads, direct visualization with
an infrared camera has been performed by Vandembroucq

et al. [{].

6 Conclusion

We have reported the observation of the electrical trans-
port within a chain of oxidized metallic beads under ap-
plied static force. A transition from an insulating to a
conductive state is observed as the applied current is in-
creased. The U—I characteristics are nonlinear, hysteretic,
and saturate to a low voltage per contact (~ 0.4 V). Elec-
trical phenomena in granular materials related to this con-
duction transition such as the “Branly effect” were previ-
ously interpreted in many different ways but without a
clear demonstration. Here, we have shown that this tran-
sition, triggered by the saturation voltage, comes from
an electro-thermal coupling in the vicinity of the micro-
contacts between each bead. The current flowing through
these spots generates local heating which leads to an in-
crease of their contact areas, and thus enhances their con-
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Fig. 9. Comparison between experimental U-I back trajec-
tories of Fig. [| (symbols), and theoretical curves for an alloy
[Eq. (E)] with stainless steel properties [ =3 (—) or § = 2.46
(--+)], and for a pure metal (—.—) [Eq. (E) . Inset shows the
theoretical maximum temperature, Ty, [Eq. (h)], reached in one
contact when the chain is submitted to a voltage U. N = 13.

results in the microsoldering of contacts (even for so low
voltage as 0.4 V). Based on this self-regulated tempera-
ture mechanism, an analytical expression for the nonlin-
ear U-1 back trajectory is derived, and is found in very
good agreement with the data. It also allows the determi-
nation of the microcontact temperature all through this
reverse trajectory, with no adjustable parameter. Finally,
the stress dependence of the resistance is strongly found
non-hertzian underlying a contribution due to the surface
films.

We thank D. Bouraya for the realization of the experimental
setup, and G. Kamarinos for sending us Ref. [E,E} L. K. J. Van-
damme and E. Guyon are grateful for the fruitful discussions.

A Appendix

Assume a single plane contact (of any shape) between two
identical conductors (of large dimensions compared to the
contact ones) submitted to a constant current I. The elec-
trical power dissipated by the Joule effect is assumed to-
tally drained off by thermal conduction in the conductors.
This thermal equilibrium and Ohm’s law lead to the po-
tential  at the isotherm 7" in the contact vicinity [ﬂ,@,@],

Tm

©*(T) :2/ per(TINT")AT' (10)
T

where T),, is the maximum temperature occurring in the

contact plane, A the thermal conductivity and p.; the

electrical resistivity of the conductor. Denote by Rgp, the

“cold” contact resistance presented to a current low en-

ough not to cause any appreciable rise in the tempera-

duction. This current-induced temperature rise (up to 1050°Chure at the contact (the conductor bulk being at the room
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temperature Tp). The relation between the current flow-
ing through the contact and the maximum temperature
produced is then [f(]

IROb == 2pel(T0>/T " %dT .

Note that the dependence on temperature of the right-
hand side of Eq. ([LI]) arises solely from the presence of
material parameters, and that only Rg, depends on the
contact geometry. Solving this equation for the general
case of A\(T') and pe(T) such as in Egs. () and (f). Sub-
stituting Eqs. ([f) and (f) in the so-called “o-T” relation
[the Kohlrausch’s equation ([[()] leads to Eq. () for N.
contacts in series, since p(Tp) = U/2. Substituting Egs.

@) and (E) in Eq. (EI) yields to

(11)

T/To
B+T/To

T/l — (T/Tp)?

Making the change of variable § = arccos (T/Tr,), Eq. ([19)
reduces to

Tm
IRg, = 2V LTy(1 + ﬁ)/ dr . (12)
To

0,

0 9
IRoy = 2VLTo(1 + B) / L )
0

13
cos@ + Bcosly (13)

with 6y = arccos (Ty/Tm). For N, contacts in series, Eq.

(L3) leads to Eq. (§).
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