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Exact pairing correlations in one-dimensional trapped fermions
with stochastic mean-field wave-functions

O.  Juillet and F. Gulminelli
LPC/ISMRA, Boulevard du Marechal Juin, F-14050 Caen Cedex, France

Ph. Chomaz
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The canonical thermodynamic properties of a one-dimensional system of interacting spin-
1/2 fermions with an attractive zero-range pseudo-potential are investigated within an exact
approach. The density operator is evaluated as the statistical average of dyadics formed from a
stochastic mean-field propagation of independent Slater determinants. For an harmonically trapped
Fermi gas and for fermions confined in a 1D-like torus, we observe the transition to a quasi-BCS
state with Cooper-like momentum correlations and an algebraic long-range order. For few trapped
fermions in a rotating torus, a dominant superfluid component with quantized circulation can be
isolated.
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Since the pioneering works [1] on the realization
of atomic Bose-Einstein condensates (BEC), a great
variety of experimental investigations has probed the
macroscopic coherence of confined quantum gases in the
superfluid regime. For example, by rotating an
asymmetric potential, quantized vortex and vortex lattices
have been generated in atomic condensates [2]. With the
recent progresses on cooling of trapped fermionic atoms
[3], one major observation to be detected is now the
predicted [4] Bardon-Cooper-Schiffer (BCS) transition to a
paired-fermion superfluid state. The use of Fesbach
resonance also opens up the possibility to achieve strong-
coupling fermionic superfluidity and the associated BCS-
BEC crossover [5]. Due to the experimental realization of
very anisotropic trapping geometries [6], the study of the
peculiar properties of ultra-cold atomic gases in reduced
dimensions is also a topic of growing interest [7]. In this
letter, we investigate Cooper-pair formation in a 1D
trapped Fermi gas of two hyperfine states ���, . With a
delta-functional two-body interaction, exact
eigenfunctions can be obtained via the Bethe ansatz only
for the spatially homogeneous system [8]. Here, we
perform exact calculations at finite temperature of local
and non-local correlation functions in the framework of
our stochastic reformulation of the N-fermion problem
with binary interactions [9].

An interacting 1D trapped Fermi gas can be
modeled by the lattice Hamiltonian
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where  the coordinates x  run on a grid of an even number
N  of points with periodic boundary conditions. The cell
size � x  is smaller than the macroscopic physical scale
and the field operators ��� x

���
 satisfy the anticommutation

relations � �� � ���� � �� �� � � ���� �����  "!
x x xx x,    . These operators

can be expanded on the plane wave basis according to#�$ $
x a k e L

k

ikx
%�&(' %)&*

  where k n L+ 2 ,  with the

integer n  running from - N 2 to N 2 1. , L N x/  0
being the length of the lattice. The one-body Hamiltonian
in the confining potential U x

1�2
 is  h p m U xo 3 4 5�62 2 ,

where m  is the atomic mass and p  the single-particle
momentum operator. Two-body interactions are modeled
by a discrete delta pseudo-potential with a coupling
constant g . The discrete Hamiltonian (1) can also
represent interacting fermions trapped in a ring of radius
R : x  then correspond to the azimuthal angle and p  to
the angular momentum, L 7 2 8 , and
h p mR po 9 :2 22 ;  where the contribution <>= p  is
specific to a trap rotating at frequency ?  and described in
the rotating frame. Given any single-particle basis
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 for each spin E , the unnormalized canonical
equilibrium density operator of a system, with a fixed
number N F  of fermions in each spin state, can be
expressed  as

e e eH H HG HJI KLG GM NPOQR R RSTSPS U U,
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where V�W 1 k TB  with T  the temperature,XZY Y Y[\ \]_^
i i N, ,..., 1  a set of occupied  orbitals  and



�  the associated Slater determinant. To optimize the
exploration of the closure relation, in actual simulations,
we use the eigenbasis of the single-particle Hamiltonian
ho and bias the expansion (2) with the Boltzmann factor
associated to ho :
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We have recently shown [9] that the imaginary-time
propagation of each state �  can be exactly reconstructed
by the coherent average of dyadics formed from two
independent Slater determinants ����� 2

� � ���� �
1 2,  that

have evolved with a mean-field Hamiltonian
supplemented with a one-particle-one-hole Itô noise.
Explicitly [9],
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with the following stochastic differential equations in
imaginary-time 4  :
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Here, E ...

ikj
 denotes the statistical average; l mnAo x,

p q
 is

the spatial density associated to the Slater determinantr�sutvcw . The density-dependent part of the deterministic
evolution is the self-consistent Hartree-Fock potential
obtained from the mean value of the two-body interaction
in the state x�yuz{c|  [9]. Q};~�� ���  is the orthogonal
projector to the Fermi sea of spin �  associated to���u��c� . The stochastic sources arise from a rewriting of
the density-density part of the two-body interaction which
allow the two-particles-two-holes excitations to be
linearized by the introduction of complex Wiener
processes Zk  obeying to  Itô rules :

E dZ E dZk k

� �e� �
0 ,

dZ dZ dZ dZk k k k  � �� � 0 , dZ dZ dk k k k   � ���� � (7)
With the Hamiltonian (1) and with single-particle orbitals
that does not mix different spin states, the reformulation
(4-6) of the fermionic many-body problem is very close
to the formalism recently introduced in the bosonic case
[10]. Concerning fermions, the stochastic mean-field
scheme can be combined with standard quantum Monte-

Carlo algorithms where stochastic paths are generated
according to their real weight in the partition function.
However, the drawback of the sign-problem would not be
solved.  Here we proceed in a different way by computing
separately the Boltzmann operator, with the representation
(4), and its trace.

We first consider a 1D system of N N� �� � 10
harmonically trapped fermions interacting via an attractive
pseudo-potential. The coupling constant is   g ao

�	� 2  h �
where �  is the trap frequency and   a mo � h � .
Calculations were performed on a grid of N � 64  or 32
points with the lattice spacing � x ao

� 0 25.  or � x ao
� 0 4.

depending on the temperature   k TB   2 h ¡  or

  k TB ¢ 0 5.  h £ . For all the thermal mean values,
statistical error bars are less than 5%. The expected
development of Cooper pairing at low temperature clear
emerge from the exact stochastic mean-field calculations,
as shown in fig.1 in terms of the following momentum
correlation function :¤
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where  is the average at equilibrium. As already
observed in grand-canonical calculations with small
coupling constants [11], only correlations at °;±k k  or²´³	µ
k k  around the Fermi surface are dominant (see fig.1).
The first ones reflect the formation of co-oscillating pairs
of fermions in different spin states. As the temperature
decreases, these semi-classical correlations gradually
disappear and at   k TB ¶ 0 5.  h · , the behavior of ¸ k k,

¹ º
reveals an anticorrelation at equal momentum. On the
contrary, correlations between spin-up and spin-down
particles, with opposite momenta in the vicinity of the
Fermi surface, grow when the temperature is lowered. At
  k TB » 0 5.  h ¼ , these correlations dominate and probe the
transition to a Cooper paired state. The quantum
coherence properties of this state can now be investigated
via the non-local correlation function½ ¾
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In the usual BCS picture, the condensation of Cooper
pairs occur induces a long-range order (LRO) in the
system, signaled by a nonvanishing correlation functionÌ x
ÍuÎ  in the asymptotic regime x Ï�Ð . However, in

reduced dimensions, such a scenario is generally perturbed
by quantum fluctuations that inhibit any LRO in the strict
sense at finite temperature [12]. For 1D harmonically
trapped fermions, our exact calculations reveal a similar
behavior. The results are presented in fig.2 where Ñ x

ÒuÓ  is
compared with the correlation function between spin-up



FIG. 1. Cooper pairing correlations in a 1D system of
N N� �� � 10 interacting fermions in an harmonic trap at
different temperatures   k TB

� 2 h �  (top) and   k TB � 0 5.  h �
(bottom). Left part: density plot of the momentum
correlation function. Right part: momentum density profiles� k
�
	

 (solid line) and correlations � k k, �
 �
 (see text) relative

to their value for k � 0.

and spin-down densities :� �x x x x x x x x
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For    k TB ! 2 h " , where Cooper pairs coexist with semi-
classical correlations, the coherence function # x

$�%
 rapidly

decays  to zero at a distance comparable to the pair
correlation length. In the Cooper paired state obtained at
temperature   k TB & 0 5.  h ' , ( x

)�*
 decays as a power law

with an exponent +-, 1 4. . In contrast with the BCS state
which always displays quantum coherence, 1D fermionic
paired states in an harmonic trap only exhibit an algebraic
LRO.

In a true BCS or BEC state, the long-range
order induce a superfluid behavior that can be revealed by
generating topological defects like quantized vortices.
Moreover, as well known from bi-dimensional systems
undergoing a Kosterlitz-Thouless transition, a quasi-LRO
can be sufficient to induce superfluidity. Motivated by
the famous "rotating bucket" experiment with superfluid
helium liquid and by recent works on atomic condensates
[2], we now investigate a small sample of N N. /0 0 5
interacting fermions in a ring-like trap rotating at various
frequencies 1 . The strength of the 2 -pseudopotential
interaction is   g 3
4 2 h 5  where   6-7 h mR2  is the
frequency associated to the trap. All the calculations have
been performed in the rotating frame for a temperature
  k TB 8 0 5.  h 9  on  a  N : 16  points  grid  or   k TB ; 2 h <

FIG. 2. Exact non-local correlation functions = x
>@?

 and A x
B@C

for N ND EF F 10 harmonically trapped fermions at different
temperatures   k TB G 2 h H  (a) and   k TB I 0 5.  h J  (b). (c):

comparison of the coherence function K x
L@M

 for the two
considered temperatures.  

with a lattice of N N 32  points. The statistical error bars
on the thermal mean values are less than 5%.  Without
rotation, low-temperature equilibrium states display the
same features as those shown in fig.1,2 for harmonically
trapped fermions: dominant Cooper pairing correlations
around the Fermi surface and algebraic-LRO (see fig.3-
a1,a2). When the ring is set into rotation, we analyze the
principal pairing mode identified as the eigenvector O x

P�Q
of the two-body correlation matrixR

2 ST U�V T�U T�U STWU STXU
Y T�U STWU T�U STWU
Z Z [ Z [ Z
Z Z Z [ Z [x x x x x x

x x x x

, \ \ \ \
\ \ \ \

   

   (11)
corresponding to the largest eigenvalue. Such a procedure
combines Yang’s definition of the order parameter for the
superfluid phase transition in macroscopic fermionic
systems [13] and the finite-size corrections introduced for
ultra-small superconducting grains [14]. A dominant
superfluid component should manifest as an irrotational
behavior via the Hess-Fairbank effect [15] in the pairing
field ] x

^�_
 when the trap is rotating slowly. Our results

are summarized in fig.3 and effectively confirm this
behavior: at `ba 0 125 0 25. , .  c , no rotation of the
pairing mode d x

e�f
 appears. Indeed, at this low

frequency, g hi ix E i x
j�k�l j km  xp  is real in all grid

points, which implies a zero angular frequency n-o . As
expected in a superfluid scenario, when the frequency p
of the rotation drive is increased, the mean angular
momentum   L q qr= h  associated to s x

t�u  exhibits
plateaus of the quantized circulation (fig.3-c). It is
interesting to remark that the dominant mode v x

w�x
coexists with at least another non-negligible pairing field
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FIG. 3. Stochastic Hartree-Fock calculations of the thermal
equilibrium state of N N� �� � 5 interacting fermions
confined in a rotating ring of radius R . In (a1,a2,b1,b2,c),
the temperature is   k TB

� 0 5.  h �  with   
��� h mR 2 .  

(a1): momentum correlations � k k, 	
 �
 relative to their value

for k � 0 in the non-rotating trap; (a2): coherence function
 x
���

 for  the non-rotating trap; (b1-b2): vector field

representation of the dominant pairing mode � x
���

 for the
frequency of the rotating drive ��� 0 125 0 25. , .  �  (b1) and��� 0 4 0 5 0 6. , . , .   �  (b2). The different fields are
indistinguishable at the scale of the figure. (c): angular
frequency of rotation ���  associated to the velocity field of
the principal pairing mode. (d): distribution of the
eigenvalues   � n  (relative to their sum) of the correlation
matrix � 2  (see text) at different temperatures

  k TB  0 5 2. ,  h !  and for a frequency of rotation "�# 0 5.  $ .

rotating at a different frequency (fig.3.d).  When the
temperature increases, all the pairing eigenmodes of the
correlation matrix % 2  have a comparable weight and the
dominant superfluid behavior is destroyed.

In conclusion, we have performed exact
stochastic mean-field calculations for 1D trapped
fermions at finite temperature. With attractive binary
interactions, we have observed the transition to a
fermion-paired state characterized by dominant Cooper
pairing correlations, an algebraic long-range order and a
superfluid component. Even if we are currently limited to
a rather small number of particles, these first realistic
calculations with stochastic mean-field wave functions
illustrate the ability of our method to obtain the

equilibrium state of fermionic systems in the canonical
ensemble. In addition, the imaginary-time fluctuating
mean-field propagation used here can be coupled to a real-
time one to get the exact dynamics of a initial finite
temperature state. Finally, the same approach can be used
with trial wave-functions different from Slater
determinants than Slater determinants: for example,
investigations on macroscopic fermionic systems
dominated by pairing correlations, are under
developement with stochastic BCS wave functions.
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manuscript.
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