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Abstract

The inverse medium problem for a circular cylindrical domain is studied
using low-frequency acoustic waves as the probe radiation. It is shown that to
second order in k0a (k0 the wavenumber in the host medium, a the radius of the
cylinder), only the first three terms (i.e., of orders 0, -1 and +1) in the partial
wave representation of the scattered field are non-vanishing, and the material
parameters enter into these terms in explicit manner. Moreover, the zeroth-
order term contains only two of the unknown material constants (i.e., the real
and imaginary parts of complex compressibility of the cylinder κ1) whereas the
±1 order terms contain the other material constant (i.e., the density of the
cylinder ρ1). A method, relying on the knowledge of the totality of the far-zone
scattered field and resulting in explicit expressions for ρ1 and κ1, is devised and
shown to give highly-accurate estimates of these quantities even for frequencies
such that k0a is as large as 0.1.
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1 Introduction

Retrieving the mechanical material constants (e.g., elastic moduli, density) of a material,
either by direct measurements of these quantities, or by measurements of other variables
from which the material constants can be derived with the help of suitable models, is one of
the central problems in materials science. When the specimen is a solid, the elastic moduli
are determined either by the usual static methods or by dynamic methods involving the
inversion of data relative to resonant frequencies and/or mode shapes of vibrations excited,
for instance by percussive forces [5], [20], [10], [16], or relative to velocities and attenuations
for ultrasonic wave probe radiation [13]. Ultrasound methods can also be employed for fluids,
or fluid-like materials [13], [17].

Another class of material characterization methods, called resonance spectroscopy [2]
combines the underlying principles of vibratory resonances with an acoustic excitation of the
specimen. This technique has also been employed to determine the refractive index of beads
by means of laser irradiation [6]. This class of techniques differs from the previous ones in that
it relies on measurements of the wavefield diffracted by the specimen, and appeals to a quite
intricate theory relating the resonances to coefficients computed from the diffracted field for
estimating the material parameters (it can also be employed for estimating the geometrical
parameters of the specimen [6], [2], [7]). This theory is only feasible for specimens having
simple geometry (e.g., spherical, circular cylindrical, plate-like). A simple specimen geometry
is also required in the standard vibration-resonance and velocity-attenuation methods if
absolute quantitative characterizations are aimed at.

During the last 25 years, another materials-characterization method has been developed
which can be termed wavefield imaging. The underlying idea is: i) acquire measurements
of the field scattered from a specimen at a series of locations in space arising either from
several monochromatic probe fields, and/or from a pulse-like probe field, and ii) retrieve
from these measurements an image of the specimen (i.e., a spatial map of some material
characteristic, such as wavespeed or attenuation) with the help of a suitable model of the
specimen/wave interaction. Insofar as there is a sharp difference between the material prop-
erties of the specimen and those of the host medium, this method also gives a picture of
the geometry (location, orientation, size and shape) of the specimen. When, as is often the
case, the information relating to the material constants of the specimen is not reliable, only
the geometrical information can been exploited (this is called qualitative wavefield imaging;
otherwise it is called quantitative wavefield imaging). For instance, computerized diffraction
tomography, making use of a model appealing either to the Rytov or Born approximations of
the specimen/wave interaction, is a qualitative wavefield imaging technique except for speci-
mens whose properties differ only slightly from those of the host medium (this is fortunately
the case in biological imaging applications) [17], [19], [9], [8]. It has been suggested [19],
[9], [8] that one of the reasons why Born-based techniques do not furnish reliable estimates
of the material properties (notably the wavespeed, in specimens assumed to be lossless and
surrounded by a host medium which is also lossless and has the same density as that of the
specimen), is that data relating to low-frequency probe radiation was either not available or
not used in the inversion algorithm.

The importance of disposing of multi-frequency (and, in particular, low frequency) data
is increasingly recognized as the key to success for material characterization in wavefield

2



imaging techniques such as the distorted Born method [11], [18], the modified Born and
modified gradient methods [3], and the contrast source method [4]. The possibility of ob-
taining a quantitatively-accurate image with these iterative methods is often dependent on
being able to initialize the algorithm with a plausible image of the object at the lowest fre-
quency of the probe radiation. More often than not, this initial image is obtained via the
Born approximation, and since the latter is not accurate for large contrasts (between the
host and the object) of the material constants, the algorithm has trouble with restoring the
right values of the material constants during the iterative process. Thus, it would be useful
to find a means for obtaining a better estimate of the material constants at low frequencies
in the case of arbitrarily-large contrasts. This is done herein.

In particular, we shall be concerned with the retrieval of the three material constants
ℜκ1, ℑκ1 and ρ1 (wherein κ1 = ℜκ1 + iℑκ1) of a generally-lossy fluid object in a lossless
fluid host probed by plane-wave acoustic radiation. The case ℑκ1 = 0 of a lossless material
can also be treated. No assumption is made concerning the contrasts of density and com-
pressibility between the host and the object. The latter is assumed to be a circular cylinder,
of known radius a. The material constants of the host medium (in which the probe radiation
propagates) are also assumed to be known, as is known the frequency and incident angle of
the plane wave probe radiation, as well as the scattered acoustic wavefield in the far zone
of the cylinder. The analysis for recovering the three material parameters of the cylinder is
focused on the case in which the wavelength (λ0 = 2π/k0, with k0 = ω/c0, c0 the speed of
bulk waves in the host, and ω the angular frequency) of the probe radiation is much larger
than the cylinder radius.

2 Physical configuration and governing equations

The scattering body is an infinite cylinder whose generators are parallel to the z axis in the
cylindrical polar coordinate system (r, θ, z). The intersection of the cylinder, within which
is located the origin O, with the xOy plane defines (see figure 1):

i) the boundary curve Γ = {r = ρ(θ); 0 ≤ θ < 2π}, with ρ a continuous, single-valued
function of θ (further on, we shall take Γ to be a circle, i.e., ρ(θ) = a),

ii) the bounded (inner) region (i.e., that occupied by the body in its cross-section plane)
Ω1 = {r < ρ(θ); 0 ≤ θ < 2π},

iii) the unbounded (outer) region Ω0 = {r > ρ(θ); 0 ≤ θ < 2π}.
It is assumed that Ω0 and Ω1 are filled with linear, homogeneous, isotropic, time-invariant

fluid-like media M0 and M1 respectively and that M1 is possibly lossy.
The cylinder is probed by a monochromatic acoustic plane whose propagation vector lies

in the xOy plane. Due to the invariance of the cylinder and incident field with respect to z,
the incident and scattered field is also invariant with respect to z. Let U designate pressure,
which, due to the previously-mentioned invariance, is of the form:

U = U(x, t) , (1)

with x = (x, y) = (r, θ). This invariance applies also when superscripts i and d (i for
’incident’ and d for ’diffracted’) are attached to U . It is convenient to associate U(x, t) with
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Figure 1: Problem configuration in the xOy plane

the total field, it being understood that the latter takes the form Uj(x, t) in Ωj and:

Uj(x, t) = U i(x, t)δj0 + Ud
j (x, t) ; x ∈ Ωj , (2)

with δjk the Kronecker delta.
We express U by the Fourier transform

Uj(x, t) =

∫ ∞

−∞

uj(x, ω) exp(−iωt)dω , (3)

with similar expressions for U i and Ud. The monochromatic, plane-wave nature of the
incident field is such that

ui(x, ω) = exp
[

−ik0r cos
(

θ − θi
)]

, (4)

wherein θi designates the incident angle.
The essential task in both the forward and inverse scattering contexts is to determine

uj(x, ω) = ui(x, ω)δj0 + ud
j (x, ω) ; x ∈ Ωj . (5)

via the governing equations:

(∆ + k2
j )uj(x, ω) = 0 ; x ∈ Ωj , j = 0, 1 , (6)

4



lim
r→∞

r1/2(∂r − ik0)u
d
0(x, ω) = 0 ; ∀θ ∈ [0, 2π[ , (7)

|ud
1(x, ω)| < ∞ ; x ∈ Ω1 , (8)

u0(x, ω) − u1(r, θ, ω) = 0 ; x ∈ Γ , (9)

α0n · ∇u0(x, ω) − α1n · ∇u1(x, ω) = 0 ; x ∈ Γ , (10)

wherein n is the unit vector normal to Γ and:

k2
j = ω2(cj)

−2 , c2
j = (ρjκj)

−1 , αj = (ρj)
−1 . (11)

3 Forward and inverse scattering problems

The forward scattering problem (notably for simulating measured data) is formulated as
follows:
given:

i) the location, shape, size and composition (material properties ) of the scattering body,
ii) the material properties of the host medium M0

iii) the incident wavefield (i.e., (4), as well as the frequency thereof,
determine:

the field (i.e., ud
j ; j = 0, 1) scattered by the body at arbitrary points of space.

The general inverse scattering problem is formulated as follows:
given:

i) the incident wavefield (i.e., (4)), as well as the frequency thereof,
ii) the material properties of the host medium M0

ii) the wavefield in some subregion of Ω0,
reconstruct:

the location, shape, size and composition of the scattering body.

Hereafter, we shall be concerned mostly with the inverse problem, and, in particular, with
one in which the location, size and shape of the body are known beforehand, the task being
to reconstruct the composition of the body.

In fact, the body will be chosen to be a homogeneous cylinder with center at the origin

O and radius a, and we will try to reconstruct its material properties ρ1 and κ1 from the
scattered acoustic field for low-frequency probe radiation.

4 Partial wave expressions of the fields

A well-known identity [1] informs us that the plane-wave probe radiation admits the partial
wave expansion

ui(x, ω) =
∞
∑

m=−∞

γmJm(k0r) exp (imθ ) ; ∀x ∈ R
2 . (12)
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wherein Jm( ) is the m-th order Bessel function and

γm = exp (−im(θi + π/2) ) . (13)

By applying the separation of variables technique to (6) and (7), it is found that

ud
0(x, ω) =

∞
∑

m=−∞

CmH(1)
m (k0r) exp (imθ ) ; ∀x ∈ Ω0 , (14)

wherein H
(1)
m ( ) is the m-th order Hankel function. The application of the same technique

to (6) and (8) gives

ud
1(x, ω) =

∞
∑

m=−∞

DmJm(k1r) exp (imθ ) ; ∀x ∈ Ω1 . (15)

From the transmission conditions (9) and (10) we deduce, due to the orthogonality of
the functions {exp(imθ)}, the fact that ρ(θ) = a and n · ∇ = −∂r in the present case,

Cm = γm
Jm(k0a)J̇m(k1a) − βJ̇m(k0a)Jm(k1a)

βḢ
(1)
m (k0a)Jm(k1a) − H

(1)
m (k0a)J̇m(k1a)

, (16)

Dm = γmβ
Jm(k0a)Ḣ

(1)
m (k0a) − J̇m(k0a)H

(1)
m (k0a)

βḢ
(1)
m (k0a)Jm(k1a) − H

(1)
m (k0a)J̇m(k1a)

, (17)

wherein: Zm(ξ) = Jm(ξ), Zm(ξ) = Ym(ξ) or any linear combination thereof, knowing that

H
(1)
m (ξ) = Jm(ξ)+ iYm(ξ), with Ym(ξ) the m-th order Neumann function), Ż(ξ) := dZ(ξ)/dξ

and β = k0α0/k1α1.

5 Low-frequency approximation of the scattered field

outside of the body and inversion formulas

We use the formulas [1]

Żm(ξ) = Zm−1(ξ) −
m

ξ
Żm(ξ) , Z−m(ξ) = (−1)mZm(ξ) , (18)

to find:
Ż0(ξ) = −Z1(ξ) , (19)

and

C0 = γ0
−J0(k0a)J1(k1a) + βJ1(k0a)J0(k1a)

−βH
(1)
1 (k0a)J0(k1a) + H

(1)
0 (k0a)J1(k1a)

, (20)

C±1 =

γ1
J1(k0a) [J0(k1a) − (k1a)−1J1(k1a)] − βJ1(k1a) [J0(k0a) − (k0a)−1J1(k0a)]

βJ1(k1a)
[

H
(1)
0 (k0a) − (k0a)−1H

(1)
1 (k0a)

]

− H
(1)
1 (k0a) [J0(k1a) − (k1a)−1J1(k0a)]

, (21)
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etc.
We employ the notation:

ζ := k1/k0 , δ := k0a . (22)

Due to the hypothesis of low frequencies (and/or small cylinder radius),

δ << 1 . (23)

We employ the small-argument asymptotic forms of the Bessel and Neumann functions [1]

J0(δ) ∼ 1 − δ2/4 , J1(δ) ∼ δ/2 , Y0(δ) ∼ (2/π) ln δ , Y1(δ) ∼ −2/πδ ; δ → 0 , (24)

to find

C0 ∼ C̃0 := −γ0
iπδ2

4β
(−ζ + β) ; δ → 0 , (25)

C±1 ∼ C̃±1 := −γ1
iπδ2

4

1 − ζβ

1 + ζβ
; δ → 0 . (26)

Thus, C0 and C±1 are O(δ2) as δ → 0. In the same way we show that C|m|>1 vanishes faster
than δ2, so that to second order in δ we can write

ud
0(x, ω) ∼

1
∑

m=−1

C̃mH(1)
m (k0r) exp (imθ ) ; ∀x ∈ Ω0 ; δ → 0 , (27)

or, in other terms,

ud
0(x, ω) ∼

iπδ2

4

ζ − β

β
H

(1)
0 (k0r)−

πδ2

2

1 − ζβ

1 + ζβ
H

(1)
1 (k0r) cos(θ−θi) ; ∀x ∈ Ω0 ; δ → 0 . (28)

It is customary, but not necessary, to measure the field in the far-field zone. In this case, we
employ the large-argument asymptotic form of the Hankel functions [1]:

H(1)
n (ξ) ∼

√

2

πξ
exp

[

i
(

ξ −
nπ

2
−

π

4

)]

; ξ → ∞ , (29)

to find:

ud
0(x, ω) ∼ ŭd

0(θ, θ
i, ω)

√

2

πk0r
exp

[

i
(

k0r −
π

4

)]

; k0r → ∞ , (30)

wherein, the so-called far-field scattering function is given (in the asymptotic low-frequency
regime) by

ŭd
0(θ, θ

i, ω) ∼
iπδ2

4

[

ζ − β

β
− 2

(

ζβ − 1

ζβ + 1

)

cos(θ − θi)

]

; δ → 0 . (31)

Using (11) we find that (28) and (31) become:

ud
0(x, ω) ∼

iπ(k0a)2

4

[

(

κ1

κ0
− 1

)

H
(1)
0 (k0r) − 2i

(

ρ1

ρ0

− 1
ρ1

ρ0

+ 1

)

H
(1)
1 (k0r) cos(θ − θi)

]

; ∀x ∈ Ω0 ; (k0a) → 0 , (32)
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ŭd
0(θ, θ

i, ω) ∼
iπ(k0a)2

4

[

(

κ1

κ0

− 1

)

− 2

(

ρ1

ρ0

− 1
ρ1

ρ0

+ 1

)

cos(θ − θi)

]

; δ → 0 . (33)

The general problem in (32) and (33) is to express A and B in terms of C(θ) ; ∀θ ∈ [0, 2π[
knowing that

C(θ) = A + B cos(θ − θi) ; ∀θ ∈ [0, 2π[ . (34)

Then
∫ 2π

0

C(θ) cos nθdθ = A

∫ 2π

0

cos nθdθ + B

∫ 2π

0

cos(θ − θi) cos nθdθ ; ∀n ∈ Z . (35)

from which we find:

A =
1

2π

∫ 2π

0

C(θ)dθ , B =
1

π cos θi

∫ 2π

0

C(θ) cos θdθ . (36)

Applied to (33), this gives:

κ1 = κ0

[

1 +
4

iπ(k0a)2

1

2π

∫ 2π

0

ŭd
0(θ, θ

i, ω)dθ

]

, (37)

ρ1 = ρ0

[

1 − 2
iπ(k0a)2

1
π cos θi

∫ 2π

0
ŭd

0(θ, θ
i, ω) cos θdθ

1 + 2
iπ(k0a)2

1
π cos θi

∫ 2π

0
ŭd

0(θ, θ
i, ω) cos θdθ

]

. (38)

This shows that: i) κ1 can be retrieved independently of ρ1, ii) κ1 is a linear function of
the measured scattered field, whereas iii) ρ1 is a nonlinear function of this field. More
importantly: (37)-(38) constitute a method for determining ρ1 and the real and imaginary
parts of κ1 from the (far-field) scattering function, in an explicit, analytic manner.

6 Numerical results

We applied formulas (37) and (38) to retrieve the density and complex compressibility from
the far-field scattering function. More precisely, we computed the relative errors (see figures
2-4):

δρ1
:=

∣

∣

∣

∣

ρ̃1 − ρ1

ρ1

∣

∣

∣

∣

, δℜκ1
:=

∣

∣

∣

∣

ℜκ̃1 − ℜκ1

ℜκ1

∣

∣

∣

∣

, δℑκ1
:=

∣

∣

∣

∣

ℑκ̃1 −ℑκ1

ℑκ1

∣

∣

∣

∣

, (39)

(wherein ρ̃1 is the value of density obtained from (38), and ℜκ̃1, ℑκ̃1 the values of the real
and imaginary parts of the complex compressibility obtained from (37)) over a range of
frequencies corresponding to 10−5 ≤ k0a ≤ 1.5. The far-field data was simulated using (14)
in which the lower and upper limits of the series were replaced by -5 and +5 respectively
and use was also made of (30). The other parameters involved in the production of this data
were: ρ0 = 1000 kg/m3, c0 = 1500 m/s, ρ1 = 1200 kg/m3, c1 = 2500 + i250 m/s, θi = 0,
a = 1.0 m. One sees from figures 2-4 that in order to get relative errors of the mechanical
material parameters inferior or equal to 5%, the probe frequency should be such that k0a is
not greater than ∼ 0.1.
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Figure 2: Relative error of ρ1

7 Conclusion

Low frequency probe radiation is interesting in that it provides solutions to the inverse
medium problem which can be written in closed form and which are unique. Moreover, these
solutions do not rely (as those appealing to the Born approximation) on any assumptions
concerning the compressibility and density contrasts. Thus, the results presented herein are
valid for arbitrary values of these contrasts.

At the worst, the solutions of the inverse problem treated with low-frequency probe
radiation provide suitable starting solutions for reconstructions carried out with higher-
frequency probe radiation as well as possible explanations of the difficulties encountered in
inverse medium problems such as the one considered herein. They may also provide decent
estimates of the material parameters of homogeneous (and even inhomogeneous) bodies of
more general shapes.

In case the characteristic dimension of the body (here the radius a) is not known a priori,
it can be determined from high-frequency probe radiation using the asymptotic technique
described in [12], [14] [15].

The method outlined herein is obviously transposable to: homogeneous fluid slabs and
spheres, homogeneous elastic slabs, circular cylinders and spheres, and to fluid-like or elastic
circular tubes and spherical shells.
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