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Abstract

The neutron structure function F n
2 (x) is evaluated within the kinematic range

10−3 < x < 1 from the deuteron and proton data by employing relativistic the-
oretical description of FD

2 (x) and several assumptions on the high-x asymptotics
of F n

2 (x)/F p
2 (x). It is shown that new measurements of FD

2 (x) in the range 0.6 <
x ≤ 0.8 would substantially improve understanding of the relation between d and u
valence quarks in the limit x → 1.

1 Introduction

The valence quark structure of the proton and neutron has for some time been assumed
to be understood. A number of experiments have provided a detailed representation of
the nucleon’s quark distributions over a wide range of kinematics with some exceptions:
the range of Bjorken x close to a single nucleon kinematic limit, x = 1 , remains to be
inaccessible. Actually, the situation is even more unfortunate because the range beyond
x = 0.7 has been poorly explored experimentally. Recent reviews of the neutron and
proton structure, which still do not pretend to be complete, are presented in Refs. [1, 2].
The valence u and d quark distributions are generally obtained from measurements of
the proton and neutron structure functions, F p

2 (x) and F n
2 (x), respectively. The u quark

distribution is relatively well constrained by the F p
2 (x) data for x ≤ 0.8 but the absence

of free neutron targets has resulted in large uncertainties in the d quark distribution
beyond x > 0.6. Major uncertainties arise from model considerations of the deuteron
structure function FD

2 (x), from which F n
2 (x) is evaluated. They are normally represented

as a spectrum of different ratios Rn/p ≡ F n
2 /F p

2 as a function of x. There is no theoretical
constraint on the x dependence of Rn/p. Numerous very different constraints on Rn/p

at the kinematic boundary x = 1 have been suggested in quark models [3, 4] and QCD
inspired models [5, 6]. They rely on model considerations of the d/u ratio in the limit
x → 1 and neglect the contribution from sea quarks. Such predictions offer a nice testing
ground for our understanding of the role which valence quarks play in the nucleon wave
function. However, it is extremely difficult to confront the predictions made for the limit
x → 1 with measured values which have to be extrapolated to this limit. This explains
coexistence of numerous models of FD

2 (x) used in practice of measurements of F n
2 (x) as

well as for motivating new experimental research into the valence quark structure.
As it is demonstrated in Ref. [7] by using examples of evaluating the u/d ratio, im-
provement of the knowledge of F n

2 (x) in the region x ≥ 0.75 is very important for many



applications in hadron physics. Further, in Ref. [8], which continues the discussion trig-
gered in Ref. [9], it is shown that it is even more important to theoretically justify a
procedure of extraction of F n

2 (x) from the FD
2 (x) data.

The present paper continues the series of publications [7] – [10] by suggesting an alternative
approach to extraction of the F n

2 (x) from the data collected in deep inelastic scattering
(DIS) experiments which relies on relativistic theoretical description of FD

2 (x) [11, 12] and
well defined assumptions on the high-x asymptotics for Rn/p. We forward our criticism
against unjustified simplifications frequently made in consideration of the “nuclear” effects
in FD

2 . Most common misapprehension shows up in attempts to find an analogy (and even
extrapolation rule) between the EMC effect and a modification of the nucleon structure
inside the deuteron. There is no such theoretical concept as the EMC effect, which is
just a bare observation that F A

2 /FD
2 < 1 in a certain range of x. Therefore, there are no

grounds to relate directly the difference between F A
2 and FD

2 with that of FD
2 and the free

nucleon structure function FN
2 , where FN

2 ≡ (F n
2 +F p

2 )/2. The difference between FN
2 and

FD
2 can be conceptually original [13].

Experimental information on the deuteron and proton structure functions is available
from the experiments of BCDMS, EMC, SLAC, E665, NMC, H1 [14]. The data for FD

2

and F p
2 and their ratio are available in the range 10−3 < x < 0.6. There is also data at

0.6 < x < 0.9 from SLAC with relatively large errors. The SMC collaboration proposed
overall fit of world data which gives F p

2 and FD
2 in the range 10−4 < x < 0.85 [15]. We

make use of this approximation and extend it up to x = 1 based on the quark counting rule
for the x → 1 limit of F p

2 . Further we consider extraction of F n
2 (x) by assuming that the

deuteron can be considered as the two-nucleon bound state. We show that the behavior of
F n

2 (x) outside the x range covered by measurements can be established by employing well
known theoretical prescriptions. Possible ambiguities connected with these prescriptions
are investigated.

2 Neutron structure function

Our consideration of the deuteron is based on the standard picture of the proton and
neutron bound together into the simplest nucleus. It is then a favored source of infor-
mation about neutron structure function F n

2 (x). The main obstacle in the quantitative
evaluation of F n

2 (x) in this case comes from nuclear binding which is neglected in many
analyses on the grounds that the deuteron binding energy is very small. Of course, one
can assume that it will be sufficient to consider just Fermi motion which becomes partic-
ularly important at large Bjorken x. On the other hand the EMC effect [16] and nuclear
shadowing [18] show us that even small binding can qualitatively change the observed
nucleon structure. Its effect, as it is demonstrated by the analysis in Ref. [19], is clearly
manifested in the entire x range, including the range of x < 0.1. Up to now there is no
well established and unified explanation of nuclear effects in whole range of x. Numerous
models used to reproduce dynamics of the effects are not consistent. All these facts render
the procedure of F n

2 (x) evaluation very ambiguous and model dependent.
To elucidate the problem of model dependence, one needs an approach which is less
dependent on the details of dynamical nature of the effects and provides more general and
unified picture. We use the approach based on the covariant Bethe-Salpeter formalism [11].
It yields a good description of the ratio of the nuclear to deuteron structure function which
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is shown to be universal for all nuclei [13, 19]. Within this approach the hadronic part of
the nuclear deep inelastic amplitude W A

µν is expressed in terms of the off-mass-shell nucleon

and antinucleon amplitudes, WN
µν and WN

µν , respectively, by the following expression:

W A
µν(P, q) =

∑

i

∫
dki(W

N
µν(ki, q)f

N/A(P, ki) + WN
µν(ki, q)f

N/A(P, ki)) , (1)

where the indices µν denote the Lorentz components of the amplitude, index i counts
nucleons inside the nucleus, P is the total momentum of the nucleus, ki is the relative
momentum of the struck nucleon and q is the transferred momentum from the photon.
The distribution function fN/A is expressed in terms of the n-nucleon Bethe-Salpeter
vertex functions

fN/A(P, ki) =
∫

dk1 . . . dki−1dki+1 . . . dknu(ki)S(n)(P, ki)u(ki)Γ(P,K)S(n)(P,K)Γ(P,K),

fN/A(P, ki) =
∫

dk1 . . . dki−1dki+1 . . . dknv(ki)S(n)(P, ki)v(ki)Γ(P,K)S(n)(P,K)Γ(P,K). (2)

It gives 4D momentum distribution of the nucleon and antinucleon inside a nucleus. Thus,
according to Eq. (1), all nuclear effects should follow from the 4D Fermi motion of the
nucleon inside a nucleus [20]. The time component of the Fermi motion is exclusive feature
of the relativistic approach. In the 3D limit this component results in the change of the
nucleon structure [20]. Therefore, one can take explicit account of it by using a dynamical
model for the interlinkage of the nucleon and nuclear structure. This problem is closely
related to that of the off-mass-shell effects. Since the nucleon amplitude WN

µν in Eq. (1) is
off shell it cannot be connected with corresponding observable nucleon amplitude. This
fact makes Eq. (1) useless from the practical point of view. To solve this problem one can
use analytic properties of the integrand in (1) and remove explicitly the Fermi motion
along time axis by integrating over k0. We do it assuming small relative momenta of bound
nucleons. Preserving general form of Eq. (1) for the lightest nuclei one can transform it
as follows:

W A
µν(P, q) =

A−1∑

a,a′

∫
d3ka

(2π)3

[
W a

µν(ka, q) + ∆A
a,a′

dW a
µν(ka, q)

dka0

]

ka0=
√

ka

2+M2
a

ΦA
a,a′(k)2, (3)

where a and a′ denote the struck and spectator nuclear constituent, respectively. Depend-
ing on the mass of the considered nucleus, a and a′ assume different symbols:

(a, a′) =





(p, n), (n, p), if A = 2 (D)
(p, pn), (n, pp), (p, D), (D, p), if A = 3 (3He)
(n, pn), (n, pn), (n, D), (D, n), if A = 3 (3H)

(p, pnn), (n, ppn), (p, Dn), (n, Dp),
(D, pn), (D, D), (p,3 H), (n,3 He),

}
if A = 4 (4He) ,

(4)

where ∆A
a,a′ = MA − Ea − Ea′ is the separation energy of the corresponding nuclear

fragment. Now the nuclear effects are interpreted by the conventional 3D Fermi motion
of nuclear fragments and the derivative with respect to k0 of its DIS on-shell amplitudes.
The distribution function ΦA

a,a′(k)2 is defined by the projection of the Eq. (2) onto 3D
space

ΦA
a,a′(k)2 =

{
f Ñ/A(P, ki)

}

p2

i
=M2

a

(5)
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and it is closely related to the nuclear spectral function. The term containing the deriva-
tive represents a dynamical modification of the bound nucleon structure observed in the
3D projection of the relativistic bound state as nuclear shadowing and the EMC effect.
The spectrum of bound states presented by Eq. (4) is defined by analytic properties of
the distribution function fN/A and thereby ensures Pauli blocking of the forbidden states.
Starting from Eq. (3) one can derive the FD

2 in the form:

FD
2 (xD) =

∫ d3k

(2π)3

m2

4E3(MD − 2E)2

{
FN

2 (xN)

(
E − k3

MD
+

MD − 2E

MD

)
fN/D(MD, k)−

(6)

−MD − 2E

MD

(
xN

dFN
2 (xN)

dxN
fN/D(MD, k) − FN

2 (xN)(E − k3)
∂

∂k0
fN/D(MD, k)

)}

k0=E−MD/2

.

We consider this expression as an integral equation with the unknown function F n
2 . For

the functions F p
2 and FD

2 one can use a parametrization of the experimental data. Since
the latter are measured in the restricted kinematic region, the direct solution of Eq. (6) be-
comes ambiguous. Experience on its solution which employed the iteration procedure [21]
shows that the final result strongly depends on a number of initial conditions.
Another way of solving this problem is to fit the right hand side of Eq. (6) to experimental
data on FD

2 (x). As an initial condition we use the following anzats for F n
2 (x):

F n
2 (x) = Rn/p(x)F p

2 (x) (7)

with the extended SMC fit of F p
2 and the function Rn/p(x) in the form

Rn/p(x) = a1(1 − x)α1 + a2x
α2 + b1x

β1(1 − x)β2(1 + c1x
γ1) . (8)

The parameters a1, a2, α1, b1 are introduced in order to satisfy the asymptotics of the nu-
cleon structure functions: a1 = 1 (corresponds to the limit F p

2 (0) = F n
2 (0)); the parameter

a2 should be fixed according to limx→1F
n
2 (x)/F p

2 (x). We use three values for this limit in
order to study possibility to extract it from the experimental data. The simplest quark
model with SU(6) symmetry gives R

n/p
x=1 = 2/3. On the other hand, the kinematical limit

x = 1 corresponds to the elastic scattering off the nucleon. Therefore, the ratio of the
nucleon structure functions becomes equivalent to the ratio of the elastic cross sections
— R

n/p
x=1 = σn

elastic
/σp

elastic
. It gives another value for the ratio in this limit, R

n/p
x=1 = 0.47.

The minimal value of the ratio has been provided by the model with SU(6) symmetry

breaking with scalar diquark dominance — R
n/p
x=1 = 1/4. Thus one has a wide range of

possible values for the structure functions ratio at x = 1. In the next section we show
how measurements of FD

2 /F p
2 are sensitive to these assumptions. The last constraint for

the parameters can be obtained from the asymptotics of the proton and neutron structure
functions by assuming validity of the quark counting rule in the range x → 1. This results
in similar asymptotic behavior for F p

2 (x) and F n
2 (x):

lim
x→1

F p
2 (x) ≃ Cp(1 − x)3, (9)

lim
x→1

F n
2 (x) ≃ Cn(1 − x)3. (10)

Accordingly, the derivative of Rn/p at x = 1 is zero because

lim
x→1

Rn/p(x) =
Cn

Cp

= Const. (11)
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Figure 1: The structure function of the deuteron FD
2 measured in the SLAC (filled squares)

and NMC (empty circles) experiments, shown as a function of x for bins of fixed Q2 (left
upper panel — on a log scale, and right upper panel — on a linear scale), and as a function
of Q2 for bins of fixed x (two lower panels). It is approximated with Eq. (6) in the range
10−3 < x < 0.6 with the constraints as explained in the text.
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This gives following constraints on the parameters of Eq. (8): α1 = 1, β2 = 1, b1 =
(α2a2 − 1)/(1+ c1). All other parameters are considered as free and used to fit Eq. (6) to
the deuteron data in the range 10−3 < x < 0.6.

3 Discussion of results

The procedure described in the previous section is used to approximate the SLAC and
NMC data on FD

2 (x, Q2) in the range 0.6 GeV2 ≤ Q2 ≤ 65 GeV2 and 10−3 ≤ x ≤ 0.6. This
is done by fixing three different limits of F n

2 /F p
2 at x = 1 and by varying four parameters

in Eq. (8), namely α2, β1, c1 and γ1. In the considered kinematic range all three limits
provide equally good approximation. The result of the fit which corresponds to the case
F n

2 (1)/F p
2 (1) = 0.47 is displayed in Fig. 1. The obtained ratio F n

2 (x)/F p
2 (x) is shown in
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0.2

0.4
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1.0

1.2

10-2 10-1

1.0

 

 

F 2n  / 
F 2p

X

 

  

 

Figure 2: The ratio of the neutron to proton structure functions evaluated in the frame-
work of the presented approximation by setting three different values for the parameter
R

n/p
x=1: (1) — 2/3 (short-dashed line), (2) — 0.47 (solid line) and (3) — 1/4 (long-dashed

line). The results of the NMC experiment [22] obtained in naive approach are shown by
the points with error bars. Additionally, the small x range (x < 0.1) is displayed on a log
scale in the inset.

Fig. 2 with three lines. The branching of lines observed in the high x region is the result of
three different assumptions on asymptotic behavior of F n

2 (x)/F p
2 (x) which is constrained

by the corresponding values R
n/p
x=1. We emphasize that the results of calculations presented

in Fig. 2 correspond to the free nucleon structure function, and they are compared with
the result of Ref. [22] shown by the points with error bars obtained by assuming a naive
approach F n

2 = 2FD
2 − F p

2 that is equivalent to the assumption FD
2 = FN

2 . In the range
x < 0.6 all three line are in good agreement with the result of NMC obtained by neglecting
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nuclear effects in the deuteron. We explain the success of the naive approach in the range
x < 0.6 by the effect of cancellation of the modifications of the free nucleon structure
function due to the nuclear (deuteron) binding and nucleon Fermi motion in this very
kinematic range. Of course, the cancellation is not complete, which is seen from small
(2–4 %) overestimation of the data at medium values of x. The difference between the
naive approximation and the exact result becomes dramatic at 0.62 < x < 1. This is why
the evaluation of Rn/p(x) in the range of large x requires complete accounting of both
the nuclear binding and Fermi motion. In order to understand theoretical uncertainties
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1.0

 

 

F 2D
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Figure 3: The result of modification of the ratio of the deuteron to proton structure
functions evaluated for three values of the parameter R

n/p
x=1 as in Fig. (2) compared to the

data of Ref. [22]. Additionally, the small x range is displayed on a log scale in the inset.

in description of the data one should investigate how the extracted F n
2 (x) can modify

theoretical evaluation of the deuteron to proton ratio. The three different constraints on
R

n/p
x=1 considered in this paper change the approximation of FD

2 (x) in the range of high
x which is better seen in the ratio FD

2 /F p
2 shown in Fig. 3, in which three alternative

calculations are compared with data from Ref. [22]. We conclude, that the present status
both of the data and theory does not allow to constrain the value of the function Rn/p(x)
at x = 1: both 1/4 and 0.47 are in agreement with experiments, while the value 2/3 can
be regarded as less preferable. Further understanding of the relation between F p

2 (x) and
F n

2 (x) can not be achieved without improvement of experimental data on FD
2 (x) in the

range above x = 0.6.
We would like to note that the analysis performed in this paper by employing Eq. (3) is
consistent with the data available for the ratio of 4He and deuteron structure functions in
the range 10−3 < x ≤ 0.8 [11, 13]. Good agreement with experiment in two different cases
observed in a wide x range proves that Eq. (3) offers a general approach for accounting
of the nuclear effects in the whole region of x.
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Naturally, FD
2 (x) can be further modified in the high x region if one assumes the presence

of non-nucleonic degrees of freedom in a nucleus, which are not implied in the nucleon
structure. Moreover, if there exist dibaryon states, like 6q states, which can not be
excluded on theoretical grounds, FD

2 (x) can significantly change at x ≃ 1. Our calculations
therefore provide reference lines for the search of such effects in forthcoming measurements
proposed for the upgraded CEBAF facility [23].

4 Conclusions

We have proposed theoretically justified and fully consistent procedure for extracting
the neutron structure function F n

2 (x) in the kinematic range 10−3 < x ≤ 1 under three
different assumptions on F n

2 /F p
2 at x = 1. The procedure involves a numerical fit of the

expression (6) to the deuteron data. The performed analysis indicates that the increase
in experimental accuracy in measurements of F p

2 (x) and FD
2 (x) in the range 0.6 < x < 0.8

by factor of two will be sufficient for verification of models suggested for the evaluation
of the d/u ratio at x = 1. The developed procedure allows one to avoid appreciable
theoretical ambiguities which are present in other analyses largely due to simplifications
in the treatment of Fermi motion. This concerns rather wide interval of x and not only
high x range as it is commonly believed. The procedure proved to be a robust one
because it relies on a good approximation of FD

2 (x) which is not sensitive to different
high x limits of the neutron structure function. This also means that FD

2 (x) measured
by already completed DIS experiments (x ≤ 0.9) can be described without introducing
nonbaryonic degrees of freedom. The interval which remains unmeasured can in principle
accommodate dibaryon states or some other exotica. More data in the high x region is
required in order to obtain model independent information on hadronic structure of the
deuteron and to find which physics is responsible for the d/u ratio.
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6 Appendix

Here we present for completeness the parametrization for F p
2 (x, Q2) as suggested in

Ref. [15] and slightly modified in the present analysis:

F p
2 (x, Q2) = xλ1(1 − x)λ2

∑

n=1..5

Cn(1 − x)n−1


 ln(Q2

Λ
)

ln(
Q2

0

Λ
)




B(x)
1 +

∑
n=1..4

κnxn

Q2


 (A.1)
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where
B(x) = ρ1 + ρ2x +

ρ3

ρ4 + x
.

Fit parameters as obtained in Ref. [15] are presented in Table 1. The parametrization
is restricted to the kinematic region 3.5 · 10−5 < x < 0.85. In order to extend it to the

i λi ρi κi Ci

1 −0.2499713175097 0.1141083888210 −1.451744104784 0.2289630236346
2 2.396344728724 −2.235597858569 8.474547402342 0.08498360257578
3 − 0.03115195484229 −34.37914208393 3.860797992943
4 − 0.02135222381130 45.88805973036 −7.414275585348
5 − − − 3.434223579597

Table 1: Values of the parameters for F p
2 given in Eq. (A.1).

region of high x and satisfy the (1 − x)3 behavior at x → 1 we modify the parameter λ2

as follows:
λ2 → λ̃2(x) = λ2 + (3 − λ2)x

15 .

This correction does not affect the values of F p
2 at x < 0.6 and affords an approximation

of the proton data in a much wider kinematic region.
The neutron structure function is defined by Eqs. (7) and (8) in the main text. Taking
into account the constraints on the parameters we arrive at the following expression for
Rn/p:

Rn/p(x) = (1 − x) + a2x
α2 +

α2a2 − 1

1 + c1
xβ1(1 − x)(1 + c1x

γ1) . (A.2)

The fit parameters are presented in Table 2.

a2 = 2/3 a2 = 0.47 a2 = 1/4
α2 3.13971 2.2262 1.15416
β1 2.2129 1.61188 0.88126
c1 −1.01176 −1.00692 0.86217
γ1 0.01901 0.08483 5.65744

Table 2: Parameters of Eq. (A.2) which is the constrained form of Eq. (8) connecting the
proton and neutron structure functions.
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