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Abstract

The definitions of the temperature in the nonextensive statistical
thermodynamics based on Tsallis entropy are analyzed. A definition
of pressure is proposed for nonadditive systems by using a nonadditive
effective volume. The thermodynamics of nonadditive photon gas is
discussed on this basis. We show that the Stefan-Boltzmann law can
be preserved within nonextensive thermodynamics.

PACS : 05.20.-y, 05.70.-a, 02.50.-r

1 Introduction

The nonextensive statistical mechanics (NSM)[1] based on Tsallis entropy
is believed by many to be a candidate replacing Boltzmann-Gibbs statistics
(BGS) for nonextensive or nonadditive systems which may show probability
distributions different from that of BGS. So according the common belief,
NSM, just as BGS, should be able to address thermodynamic functions and
intensive variables like temperature T , pressure P , chemical potential µ etc.
Although the Legendre transformation between the thermodynamic functions
is preserved in some versions of NSM with sometimes certain deformation, the
definition of intensive variables is not obvious if the thermodynamic functions
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such as entropy S, energy U or free energy F are nonadditive. There are
sometimes misleading calculations using β = 1/T =

(

∂S
∂U

)

V
(let Boltzmann

constant k = 1) and P = −
(

∂F
∂V

)

T
or P = 1

3
U
V

(for photon gas) without

specifying the nonadditivity (or additivity) of each functions or noticing that
additive internal energy U and volume V associated with nonadditive S and
F will lead to non-intensive temperature or pressure which would make the
thermodynamic equilibrium or stationarity impossible in the conventional
sense.

On the other hand, within NSM, due to the fact that different formalisms
are proposed from different statistics or information considerations, thermo-
dynamic functions do not in general have the same nonadditive nature in
different versions of NSM. This has led to different definitions of, among
others, a physical or measurable temperature βp which is sometimes equal
to β[2], sometimes equal to β multiplied by a function of the partition func-
tion Zq−1[3, 4, 5, 6, 7] or Z1−q[8, 9] which keeps βp intensive, where q is the
nonadditive entropy index1, or sometimes defined by deformed entropy and
energy[9, 10, 11]. This situation often results in confusion and misleading
discussions of these temperatures[12] or other intensive variables[13], with-
out knowing or mentioning the validity conditions relevant to them and the
risk to have non intensive temperature or pressure.

The present paper tries to make a state of the art on this subject with
brief discussions of the specificities of each formalism of NSM and the relevant
consequences. It is hoped that this paper may offer to the reader a global
view of the situation and of some important questions which are still matters
of intense investigation.

2 The first definition of physical temperature

of NSM

We look at a composite system containing two subsystems A and B, all
having the same q as nonadditive entropy index. The entropy nonadditivity
of the total system is given by

S(A + B) = S(A) + S(B) + (1 − q)S(A)S(B). (1)

1Tsallis entropy is given by S =

∑

i
p

q

i
−1

1−q
, (q ∈ R)[1]
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This relationship is intrinsically connected with the product joint probability

pij(A + B) = pi(A)pj(B), (2)

or inversely, where i or j is the index of physical states for A or B. Eq.(2) has
been intuitively taken as an argument for the independence of A and B and
for the energy additivity of A + B. This additivity offers the first possibility
to establish zeroth law and to define temperature within NSM[3, 4, 5, 6, 7].
The intensive physical temperature is defined as

βp =
1

Tp

=
1

∑w
i pq

i

∂S

∂U
=

1
∑w

i pq
i

β. (3)

This definition is an universal model of NSM and not connected to any spe-
cific statistical formalism.

If this βp is applied to NSM having typically the power law distribution

pi =
1

Z
[1 − aβpEi]

1

a with [·] ≥ 0 (4)

where Ei is the energy of a system at state i and a is 1− q or q−1 according
to the maximum entropy constraints of the formalism[8, 14], there may be
in general a conflict between the product joint probability and the energy
additivity condition due to the nonadditive energy Ei(A + B) = Ei(A) +
Ej(B)−aβpEi(A)Ej(B). So the validity of this thermostatistics strongly lies
on neglecting Ei(A)Ej(B).

A mathematical proof[3] shown that this was possible, for a N-body sys-
tem, if and only if q < 1 and N → ∞. This is not to be forgotten. For the
systems with q > 1 or with finite size without thermodynamic limits, this
additive energy model is not justified.

Especially, when this model is applied to the formalism of NSM de-
duced from the normalized expectation given by the escort probability U =
∑

i
p

q
i
Ei

∑

i
p

q
i

[14] where pi is a normalized probability which reads

pi =
1

Z
[1 − (1 − q)βp(Ei − U)]

1

1−q =
1

Z
[1 − (1 − q)

β

Z1−q
(Ei − U)]

1

1−q , (5)

Eq.(3) becomes

βp =
1

Z1−q

∂S

∂U
= Zq−1β. (6)

In this case, βp is not to be confounded with β although we have here β = ∂S
∂U

which is evidently non intensive.
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3 The first formalism of NSM

The first formalism[1] of NSM maximizes entropy under the constraint U =
∑

i piEi with normalized pi. The distribution function is given by

pi =
1

Z
[1 − (q − 1)βpEi]

1

q−1 . (7)

The product probability implies the following nonadditivity of energy :

Ei(A + B) = Ei(A) + Ej(B) − (q − 1)βpEi(A)Ej(B) (8)

and U(A + B) = U(A) + U(B) − (q − 1)βpU(A)U(B). The temperature of
this formalism is still given by Eq.(6) as briefly discussed in [8].

The thermodynamic relations can be deduced from the basic expression
of entropy of this formalism

S =
Z1−q − 1

1 − q
+ βpZ

1−qU (9)

or Sp = Zq−1S = Zq−1
−1

q−1
+βpU where Sp is an “auxiliary entropy” introduced

to write the generalized heat as dQ = TpdSp. The first law reads dU =
TpdSp − dW . The free energy F is defined as

F = U − TpSp = −Tp

Zq−1 − 1

q − 1
. (10)

The first law becomes dF = −SpdTp − dW where dW is the work done by
the system.

Sp can be calculated by using Sp = −
(

∂F
∂Tp

)

V
and Eqs.(5) and (10) with

Z =
∑

i[1 − (q − 1)βpEi]
1

q−1 [12]. This leads to

Sp = −
∑

i

p2−q
i

pq−1
i − 1

q − 1
=

1 −
∑

i p
2−q
i

1 − q
. (11)

Notice that this auxiliary entropy is not to be maximized since it is concave
only for q < 2.
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4 The second formalism of NSM with unnor-

malized expectation

This formalism is deduced from the entropy maximum under the constraint
U =

∑

i p
q
i Ei with normalized pi[15]. The distribution function is given by

pi =
1

Z
[1 − (1 − q)βpEi]

1

1−q . (12)

and the nonadditivity of energy by Ei(A + B) = Ei(A) + Ej(B) − (1 −

q)βpEi(A)Ej(B) and

U(A + B) = U(A)Z1−q(B) + U(B)Z1−q(A) + (q − 1)βpU(A)U(B). (13)

As discussed in [2], this is the only formalism of NSM in which the math-
ematical framework of the thermodynamic relationships is strictly identical
to that of BGS with βp = β. The heat is given by dQ = TdS, the first law
by dU = TdS − dW and the free energy by

F = U − TS = −T
Z1−q − 1

1 − q
. (14)

Heat and work are interpreted as dQ =
∑

i Eidpq
i and dW =

∑

i p
q
i dEi, which

is not so simple within other formalisms[2].

5 The formalism with incomplete probability

distribution

If the probability distribution is incomplete in such a way that
∑

i p
q
i =

1[17, 18] where the sum is calculated only over an incomplete set of states or
of random variables as discussed in [16] and if we suppose U =

∑

i p
q
i Ei, the

maximum entropy leads to the following distribution function

pi =
1

Z
[1 − (1 − q)βpEi]

1

1−q . (15)

where Zq =
∑

i[1 − (1 − q)βpEi]
1

1−q .
The nonadditivity of energy is given by

U(A + B) = U(A) + U(B) + (q − 1)βpU(A)U(B).

5



The definition of the physical temperature βp in this formalism is discussed
in [8, 9] and reads

βp = Z1−q ∂S

∂U
= Z1−qβ. (16)

The introduction of the distribution Eq.(15) into Tsallis entropy gives

S =
Zq−1 − 1

q − 1
+ βpZ

q−1U (17)

or Sp = Z1−qS = Z1−q
−1

1−q
+ βpU where still Sp is the “entropy” introduced to

write dQ = TpdSp. The first law reads dU = TpdSp − dW or, with the help
of the free energy

F = U − TpSp = −Tp

Z1−q − 1

1 − q
, (18)

dF = −SpdTp − dW where dW is the work done by the system. Sp is given
by[12]

Sp = −
∑

i

pq
i

pq−1
i − 1

q − 1
=

1 −
∑

i p
2q−1
i

q − 1
. (19)

which is concave only for q > 1/2 so that not to be maximized to get dis-
tribution functions although its maximum formally leads to pi ∝ [1 − (q −

1)βpEi]
1

q−1 . Notice that this latter is not the original distribution function of
incomplete statistics.

The above calculation of Sp cannot be carried out for S by using β or
T because S 6= −∂F

∂T
although we can write F = U − TpSp = U − TS. In

addition, Z is not derivable with respect to β since it is a self-referential
function when written as a function of β. This calculation can be done for S
only in the second formalism with unnormalized expectation and normalized
probability associated to β = 1/T = ∂S

∂U
.

An additive form of this formalism of a nonadditive statistical ther-
modynamics is proposed by using some deformed entropy s and energy
ei[9], where s =

∑

i p
q
i ln 1

pi
and ei = ln[1+(q−1)βpEi]

(q−1)βp
both being additive, i.e.,

s(A + B) = s(A) + s(B) and eij(A + B) = ei(A) + ej(B). The maximization
of s under the constraint u =

∑

i p
q
i ei and

∑

i p
q
i = 1 leads to pi = 1

Z
e−βpei

which is identical to Eq.(15). Within this framework, the temperature is
β = ∂s

∂u
, the deformed first law is du = Tpds − dw (dw is a deformed work),

the deformed free energy is

f = u − Tps = −Tp ln Z =
ln[1 + (q − 1)βpF ]

(q − 1)βp

. (20)
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In this deformed formalism, everything is just as in BGS. This mathematical
framework has been used for the equilibrium problem of the systems having
different q’s[10, 11].

6 Systems having different q’s

The reader should have noticed that all the above discussions are based on
the entropy nonadditivity given by Eq.(1) which is valid only for systems
having the same index q. For systems A, B and A + B each having its own
q, this relationship breaks down even if the product joint probability holds.
So for establishing the zeroth law, we need more general nonadditivity for
entropy. A possible one is proposed as follows[10] :

(1 − qA+B)S(A + B) = (1 − qA)S(A) + (1 − qB)S(B) (21)

+ (1 − qA)(1 − qB)S(A)S(B)

which recovers Eq.(1) whenever qA+B = qA = qB.
The establishment of zeroth law for this case has been discussed by using

the unnormalized expectations just as in the second formalism of NSM, i.e.,
u =

∑

i p
q
i ei with

∑

i pi = 1[10], or u =
∑

i piei with
∑

i p
q
i = 1[11]. The reason

for this is that these unnormalized expectations allow one to split the ther-
modynamics of the composite systems into those of the subsystems through
the generalized product joint probability p

qA+B

ij (A + B) = pqA

i (A)pqB

i (B) if
∑

i pi = 1 [or pij(A + B) = pi(A)pi(B) if
∑

i p
q
i = 1]. This thermodynamic

splitting is just a necessary condition for the statistical interpretation of the
zeroth law.

In this case, the deformed entropy s and energy u are not necessarily
additive as in the case of an unique q. In fact, when u =

∑

i p
q
i ei with

∑

i pi = 1 is used, their nonadditivities are given as follows

qA+Bs(A + B)
∑

ij p
qA+B

ij (A + B)
=

qAs(A)
∑

i p
qA

i (A)
+

qBs(B)
∑

j pqB

j (B)
(22)

and

qA+Bu(A + B)
∑

ij p
qA+B

ij (A + B)
=

qAu(A)
∑

i p
qA

i (A)
+

qBu(B)
∑

j pqB

j (B)
. (23)
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The temperature is given by βp = β = ∂s
∂u

= ∂S
∂U

here U =
∑

i p
q
i Ei. The

thermodynamic relations are the same as in the second formalism of NSM or
in BGS.

This definition of temperature can be discussed in another way. From
Eq.(21), for a stationary state of (A + B) extremizing R(A + B), we have

(qA − 1)dS(A)
∑

i pi(A)
+

(qB − 1)dS(B)
∑

i pi(B)
= 0. (24)

Now using the above mentioned product joint probability and the relationship
∑

i p
q
i = Z1−q + (1 − q)βU , we get (1−qA)β(A)dU(A)

∑

i
pi(A)

+ (1−qB)β(B)dU(B)
∑

i
pi(B)

= 0 which

suggests following energy nonadditivity

(1 − qA)dU(A)
∑

i pi(A)
+

(1 − qB)dU(B)
∑

i pi(B)
= 0 (25)

as the analogue of the additive energy dU(A) + dU(B) = 0 of Boltzmann-
Gibbs thermodynamics. Eq.(27) and Eq.(28) lead to β(A) = β(B).

Summarizing the definitions of temperature, we have βp = Zq−1β =
Zq−1 ∂S

∂U
for the normalized expectations U =

∑

i piEi or U =
∑

i p
q
i Ei/

∑

i p
q
i

with
∑

i pi = 1, and βp = Z1−qβ = Z1−q ∂S
∂U

for the normalized expectations
U =

∑

i p
q
i Ei with

∑

i p
q
i = 1. On the other hand, βp = β = ∂S

∂U
can be pre-

served if and only if unnormalized expectations U =
∑

i p
q
i Ei with

∑

i pi = 1
(or U =

∑

i piEi with
∑

i p
q
i = 1) are used. The additive energy model of the

nonextensive thermostatistics is justified for q < 1 and with the thermody-
namic limits.

7 What about the pressure?

If the work in the first law is dW = PdV , where P is the pressure and V a
certain volume, then the pressure can be calculated through P = −

(

∂F
∂V

)

T
. If

we want the pressure to be intensive, V will be nonadditive. This is a delicate
choice to make since nonadditive volume is nontrivial and not so easy to be
understood as nonadditive energy or entropy. For a standard system, we tend
to suppose additive volume as well as additive particle number. However, in
view of the fact that the work dW is in general nonadditive, additive volume
implies non intensive pressure P , which is impossible if the equilibrium or
stationary state is established in the conventional sense for, e.g. a gas of
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photons or of other particles. So, first of all, for the following discussion,
let us suppose an intensive pressure P , i.e., P (A) = P (B) at equilibrium or
stationarity.

Intensive P implies nonadditive V . If one wants to suppose additive
volume (the real one) and particle number N , V must be regarded as an
effective volume, as a function of the real volume Vp supposed additive.

In this case, a question arises about the nature of the work dW which
is no more proportional to the real volume dVp. Is it a real work? Our
answer is Yes because dW is supposed to contribute to the energy variation
dU or dF according to the first law. A possibility to account for this work
is that, for a nonextensive or nonadditive system, e.g., a small system or
a heterogeneous system, the surface/interface effects on the total energy,
compared with the volume effect, are not negligible. When the pressure
makes a small volume variation dVp, the work may be dW = PdVp + dWσ

where dWσ is the part of work related to the surface/interface variation dσ.
In general, the relationship dWσ ∼ dσ should depend on the nature and
the geometry of the system of interest. If we suppose a simple case where
dWσ = αPd(σθ) and σ = γV η

p (α, γ, η and θ are certain constants), the work
can be written as dW = PdVp + αγPd(V ηθ

p ) = Pd[Vp + αγV ηθ
p ] which means

V = Vp + αγV ηθ
p . This example shows that a nonadditive effective volume

can be used for nonextensive systems to write the nonadditive work in the
form dW = PdV , just as in the conventional additive thermodynamics.

7.1 A definition of pressure for NSM

Now let us come back to NSM. To determine the nonadditivity of the effective
volume V with additive real volume Vp, one has to choose a given version
of NSM with given nonadditivity of entropy and energy. Without lose of
generality, the following discussion will be made within the second formalism
of NSM. From the entropy definition and nonadditivity Eq.(1) and the energy
nonadditivity Eq.(13), we can write, at equilibrium or stationarity,

dS(A + B) = [1 + (1 − q)S(B)]dS(A) + [1 + (1 − q)S(A)]dS(B) (26)

=
∑

i

pq
i (B)

[(

∂S(A)

∂U(A)

)

V

dU(A) +

(

∂S(A)

∂V (A)

)

U

dV (A)

]

+
∑

i

pq
i (A)

[(

∂S(B)

∂U(B)

)

V

dU(B) +

(

∂S(B)

∂V (B)

)

U

dV (B)

]

9



=
∑

i

pq
i (B)

[(

∂S(A)

∂U(A)

)

V

−

(

∂S(B)

∂U(B)

)

V

]

dU(B)

+
∑

i

pq
i (B)

(

∂S(A)

∂U(A)

)

V

(

∂U(A)

∂V (A)

)

S

dV (A)

+
∑

i

pq
i (A)

(

∂S(B)

∂U(B)

)

V

(

∂U(B)

∂V (B)

)

S

dV (B)

= β

[

P (A)
∑

i

pq
i (B)dV (A) + P (B)

∑

i

pq
i (A)dV (B)

]

= 0.

Here we have used dS(A)
∑

i
p

q
i
(A)

+ dS(B)
∑

i
p

q
i
(B)

= 0, dU(A)
∑

i
p

q
i
(A)

+ dU(B)
∑

i
p

q
i
(B)

= 0[2], and
(

∂S
∂V

)

U
=
(

∂U
∂V

)

S

(

∂S
∂U

)

V
. Then P (A) = P (B) leads to dV (A)

∑

i
p

q
i
(A)

+ dV (B)
∑

i
p

q
i
(B)

= 0,

which implies that the quantity dV
∑

i
p

q
i

is additive, just as dS
∑

i
p

q
i

and dU
∑

i
p

q
i

.

It can be checked that this kind of calculation is also possible within
other versions of NSM as long as the energy nonadditivity is determined by
the product joint probability which is in turn a consequence of the entropy
nonadditivity Eq.(1) or Eq.(21) postulated for Tsallis entropy.

7.2 About nonadditive photon gas

Now let us suppose a nonadditive photon gas, which is possible when emission
body is small. For example, the emission of nanoparticles or of small optical
cavity whose surface/interface effect may be important. We have seen in
the above paragraph that dU , dS and dV should be proportional to each
other. This can be satisfied by U = f(T )V and S = g(T )V . In addition,
we admit the photon pressure given by P = U

3V
= 1

3
f(T ). From the first law

dU = TdS − PdV , we obtain

V
∂f

∂T
dT + fdV = T (V

∂g

∂T
dT + gdV ) −

1

3
fdV, (27)

which means ∂f
∂T

= T ∂g
∂T

and 4
3
f = Tg leading to 1

3
∂f
∂T

= 4f
3T

implying

f(T ) = cT 4 (28)

where c is a constant. This is the Stefan-Boltzmann law. On the other hand,
from the relationship ( ∂S

∂V
)T = (∂P

∂T
)V , we obtain g = 1

3
∂f
∂T

and g(T ) = bT 3

where b is a constant. Notice that the above calculation is similar to that
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in the conventional thermodynamics. This is because the thermodynamic
functions here, though nonadditive, are nevertheless “extensive” with respect
to the effective volume. This result contradicts what has been claimed for
blackbody radiation on the basis of non intensive pressure[13], and is valid
as far as the pressure is intensive.

Is intensive pressure always true? The final answer of course depends on
experimental proofs which are still missing as far as we know. If pressure may
be non intensive for nonadditive or nonextensive systems, the whole theory
of thermodynamics must be reviewed.

8 Conclusion

In summery, we have analyzed all the temperature definitions of NSM we can
actually find in the literature. A definition of intensive pressure is proposed
for nonextensive thermodynamics by using a nonadditive effective volume.
The thermodynamics of a nonadditive photon gas is discussed on that ba-
sis. It is shown from purely thermodynamic point of view that the Stefan-
Boltzmann law can be valid within NSM in this case.
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[2] Q.A. Wang and A. Le Méhauté, Chaos, Solitons & Fractals,

15,537(2003)

[3] S. Abe, Physica A,269,403(1999)

[4] S. Abe, Physica A,300,417(2001);

S. Abe, S. Martinez, F. Pennini and A. Plastino, Phys. Lett.A,

281,126(2001)

[5] S. Martinez, F. Pennini, and A. Plastino, Physica A, 295,416(2001);

S. Martinez, F. Pennini, and A. Plastino, Physica A, 295,246(2001)

[6] S. Martinez, F. Nicolas, F. Pennini, and A. Plastino, Physica A,

286,489(2000)

11



[7] Raul Toral, Physica A, 317,209(2003)

[8] Q.A. Wang, Euro. Phys. J. B, 26,357(2002)
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