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Résumé

Human sound systems are invariably phonemi-
cally coded. Furthermore, phoneme inventories fol-
low very particular tendancies. To explain these
phenomena, there existed so far three kinds of ap-
proaches : “Chomskyan”/cognitive innatism, morpho-
perceptual innatism and the more recent approach
of “language as a complex cultural system which
adapts under the pressure of efficient communica-
tion”. The two first approaches are clearly not sa-
tisfying, while the third, even if much more convin-
cing, makes a lot of speculative assumptions and
did not really bring answers to the question of
phonemic coding. We propose here a new hypo-
thesis based on a low-level model of sensory-motor
interactions. We show that certain very simple
and non language-specific neural devices allow a
population of agents to build signalling systems
without any functional pressure. Moreover, these
systems are phonemically coded. Using a realis-
tic vowel articulatory synthesizer, we show that
the inventories of vowels have striking similarities
with human vowel systems.

1. The origins of phonemic coding and
other related puzzling questions

Human sound systems have very particular properties.
First of all, they are phonemically coded. This means
that syllables, defined as oscillations of the jaw (Mac-
Neilage, 1998), are composed of re-usable parts. These
are called phonemes. Thus, syllables of a language may
look rather like la, li, na, ni, bla, bli, etc ... than like la, ze,
fri, won, etc .... This might seem unavoidable for us who
have a phonetic writing alphabet, but in fact our vocal
tract allows to produce syllable systems in which each
syllable is holistically coded and has no parts which is
also used in another syllable. Yet, as opposed to writing
systems for which there exists both “phonetic” coding
and holistic/pictographic coding (for e.g. Chinese), all
human languages are invariably phonemically coded.
Secondly, the set of re-usable parts of syllable systems,

as well as the way they are combined, follows precise
and surprising tendancies. For example, our vocal tract
allows us to produce hundreds of different vowels. Yet,
each particular vowel system uses most often only 5 or 6
vowels, and extremely rarely more than 12 (Maddieson
and Ladefoged, 1996). Moreover, there are vowels that
appear in these sets much more often than others. For
example, most of languages contain the vowels [a], [i]
and [u] (87 percent of languages) while some others are
very rare, like [y], [oe] and [ui] (5 percent of languages).
Also, there are structural regularities that caracterize
these sets : for example, if a language contains a back
rounded vowel of a certain height, for example an [o], it
will usually also contain the front, unrounded vowel of
the same height.

The questions are then : Why are there these regu-
larities ? How did they appear? What are the genetic,
glosso-genetic/cultural, and ontogenetic components of
this formation process? Several approaches have already
been proposed in the litterature.

The first one, known as the “post-structuralist” Chom-
skian view, defends the idea that our genome contains
some sort of program which is supposed to grow a lan-
guage specific neural device (the so-calles Language Ac-
quisition Device) which knows a priori all the algebric
structures of language. This concerns all aspects of lan-
guage, ranging from syntax (Chomsky, 1958; Archan-
geli and Langendoen, 1997) to phonetics (Chomsky and
Halle, 1968). For example this neural device is suppo-
sed to know that syllables are composed of phonemes
which are made up by the combination of a few binary
features like the nasality or the roundedness. Learning
a particular language only amounts to the tuning of a
few parameters like the on or off state of these features.
It is important to note that in this approach, the innate
knowledge is completely cognitive, and no reference to
morpho-perceptual properties of the human articulatory
and perceptual apparatuses appears. This view is beco-
ming more and more incompatible with neuro-biological
findings (which have basically failed to find a LAD), and
genetics/embryology which tend to show that the ge-
nome can not contain specific and detailed information



for the growth of so complex neural devices. Finally, even
if it revealed to be true, it is not really an answer to the
questions we asked earlier : it is only a displacement of
the problem. How do the concerned genes get there in the
course of evolution? Why were they selected? No answer
has been proposed by post-structuralist linguistics.

Another approach is that of “morpho-perceptual” in-
natists. They argue (Stevens 1972) that the properties
of human articulatory and perceptual systems explain
totally the properties of sound systems. More precisely,
their theory relies on the fact that the mapping between
the articulatory space and the acoustic and then per-
ceptual spaces is highly non-linear : there are a number
of “plateaus” separated by sharp boundaries. Each pla-
teau is supposed to naturally define a category. Hence
in this view, phonemic coding and phoneme invento-
ries are direct consequences of the physical properties
of the body. Convincing experiments have been conduc-
ted concerning certain stop concsonants (Damper 2000)
with physical models of the vocal tract and the cochlea.
Yet, there are flaws to this view : first of all, it gives
a poor account of the great diversity that caracterize
human languages. All humans have approximately the
same articulatory/perceptual mapping, and yet different
language communities use different systems of catego-
ries. One could imagine that it is because some “pla-
teaus”/natural categories are just left unused in certain
languages, but perceptual experiments (Kuhl 2000) have
shown that very often there are sharp perceptual non-
linearities in some part of the sound space for people
speaking language L1, corresponding to boundaries in
their category system, which are not perceived at all by
people speaking another language L2. This means for ins-
tance that japanese speakers cannot hear the difference
between the “l” in “lead” and the “r” in “read”. As a
consequence, it seems that there are no natural catego-
ries, and most probably the results concerning certain
stop consonants are anecdotal. Moreover, the physical
models of the vocal tract and of our perceptual system
that have been developped in the litterature (Boersma
1998) show clearly that there are important parts of the
mapping which is not at all looking like plateaus separa-
ted by sharp boundaries. Clearly, considering only phy-
sical properties of the human vocal tract and cochlea
is not sufficient to explain both phonemic coding and
structural regularities of sound systems.

A more recent approach proposes that the phenomena
we are interested in come from self-organisation pro-
cesses occuring mainly at the cultural and ontogenetic
scale. The basic idea is that sound systems are good so-
lutions to the problem of finding an efficient communica-
tive system given articulatory, perceptual and cognitive
constraints. And good solutions are caracterized by the
regularities that we try to explain. This approach was
initially defended by (Lindblom 1992) who showed for

example that if one optimizes the energy of vowel sys-
tems as defined by a compromise between articulatory
cost and perceptual distinctiveness, one finds systems
which follow the structural and frequency regularities of
human languages. (Schwartz et al. 1997) reproduced and
extended the results to CV syllables regularities. As far
as phonemic cogding is concerned, Lindblom made only
simple and abstract experiments in which he showed that
the optimal systems in terms of compromise between ar-
ticulatory cost and acoustic distinctiveness are those in
which some targets composing syllables are re-used (note
that Lindblom presuposes that syllables are sequences
of targets, which we will do also in this paper). Yet,
these results were obtained with very low-dimensional
and discrete spaces, and it remains to be seen if they
remain valid when one deals with realistic spaces. Lind-
blom proposed another possible explanation for phone-
mic coding, which is the storage cost argument. It states
that re-using parts requires less biological material to
store the system, and thus is more advantageous. This
argument seems weak for two reasons : first the additio-
nal cost of storing un-related parts is not so important,
and there are many examples of cultural systems which
are extremely memory unefficient (for example the picto-
gram based writing systems) ; secondly, it does suppose
that the possibility of re-using is already there, but what
“re-using” means and how it is performed by our neu-
ral systems is a fundamental question (this is similar to
models of the origins of compositionality (Kirby, 1998)
which in fact pre-suppose that the ability to compose ba-
sic units is already there, and in fact only show in which
conditions it is used or not).

These experiments were a breakthrough as compara-
red to innatists theories, but provide unsatisfaying expla-
nations : indeed, they rely on explicit optimization pro-
cedures, which never occur as such in nature. There are
no little scientists in the head of humans which make
calculations to find out which vowel system is cheaper.
Rather, natural processes adapt and self-organise. Thus,
one has to find the processes which formed these sound
systems, and can be viewed only a posteriori as optimi-
zations. It has been proposed by (de Boer 2001) that
these are imitation behaviors among humans/agents. He
built a computational model which consisted of a so-
ciety of agents playing culturally the so-called “imita-
tion game”. Agents were given a physical model of the
vocal tract, a model of the cochlea, and a simple pro-
totype based cognitive memory. Their memory of pro-
totypes was initially empty and grew through invention
and learning from others, and scores were used to as-
sess them and possibly prune the unefficient ones. One
round of the game consisted in picking up two agents, the
speaker and the hearer. The speaker utters one sound of
its repertoire, and the hearer tries to imitate it. Then
the speaker evaluates the imitation by checking if he ca-



tegorizes the imitation as the item he initially uttered.
Finally, he gives feedback to the hearer about the result
of this evaluation (good or not). de Boer showed that
after a while, a society of agents forms a shared vowel
system, and that the formed vowel systems follow the
structural regularities of human languages. They are so-
mewhat optimal, but this is a side effect to adaptation
for efficient communication under the articulatory, per-
ceptual and cognitive pressures and biases. These results
were extended by (Oudeyer 2001b) for the case of syllable
systems, where phonological rules were shown to emerge
within the same process. As far as phonemic coding is
concerned, (Oudeyer 2002) has made experiments which
tend to indicate that the conclusions drawn from the
simple experiments of Lindblom can hardly be extended
to realistic settings. It seems that with realistic articu-
latory and perceptual spaces, non phonemically coded
syllable systems that are perfectly sufficient for efficient
communication emerge easily. Thus it seems that new
hypothesis are needed.
This paper will present a model that follows a simi-

lar approach, yet with a crucial difference : no functional
pressure will be used here. Another difference is that
the cognitive architecture of the agents that we use is
modeled at a lower level, which is the neural level. We
will show that phonemic coding and shared vowel sys-
tems following the right regularities emerge as a conse-
quence of basic sensory-motor coupling on the one hand,
and of unsupervised interactions among agents on the
other hand. In particular, we will show that phonemic
coding can be explained without any reference to the ar-
ticulatory/perceptual mapping, and yet how this map-
ping explains some of the structural regularities. The
emergent vowel systems will be shown to have great ef-
ficiency if they were to be recruited for communication,
and yet were not formed under any communicative pres-
sure. This is a possible example of what has been some-
times termed “exaptation”. An important aspect to keep
in mind is that the neural devices of our agents are very
generic and could be used to learn for example hand-eye
coordination. Thus they are not at all language specific
and at odds with neural devices like the LAD.

2. A low-level model of agents that in-
teract acoustically

The model is a generalization of the one described in
(Oudeyer 2001a), which was used to model a particu-
lar phenomenon of acoustic illusion, called the percep-
tual magnet effect. (Oudeyer 2001a) also described a first
simple experiment which coupled agent and neural maps,
but it involved only static sounds/articulations and abs-
tract articulatory models. In particular, the question of
phonemic coding was not studied. The present paper ex-
tends it to dynamic articulations, hence complex sounds,
and will use both abstract and realistic articulatory mo-

dels. We also describe in details the resulting dynamics
by introducing entropy-based measures which allow to
follow precisely what happens.
The model is based on topological neural maps. This

type of neural network has been widely used for many
models of cortical maps (Morasso et al., 1998), which
are the neural devices that humans have to represent
parts of the outside world (acoustic, visual, touch etc...).
There are two neuroscientific findings on which our mo-
del relies, and that were initially made popular with the
experiments of Georgopoulos (1988) : on the one hand,
for each neuron/receptive field in the map there exist a
stimulus vector to which it responds maximally (and the
response decreases when stimuli get further from this
vector) ; on the other hand, from the set of activities
of all neurons at a given moment one can predict the
perceived stimulus or the motor output, by computing
what is termed the population vector (see Georgopoulos
1988) : it is the sum of all prefered vectors of the neu-
rons ponderated by their activity (normalized like here
since we are interested in both direction and amplitude
of the stimulus vector). When there are many neurons
and the preferred vectors are uniformly spread across
the space, the population vector corresponds accurately
to the stimulus that gave rise to the activities of neurons,
while when the distribution is inhomogeneous, some im-
precisions appear. This imprecision has been the sub-
jects of rich research, and many people proposed more
precise variants (see Abbot and Salinas, 1996) to the for-
mula of Georgopoulos because they assumed the sensory
system coded exactly stimuli (and hence that the for-
mula of Georgopoulos must be somewhat false). On the
contrary we have shown in (Oudeyer 2001a) that this
imprecision allows the interpretation of “magnet effect”
like psychological phenomena, i.e. sensory illusions, and
so may be a fundamental characteristic of neural maps.
Moreover, the neural maps are recurrent, and their re-
laxation consists in iterating the coding/decoding with
the population vector : the imprecision coupled with po-
sitive feedback loop forming neuron clusters will provide
well-define non-trivial attractors which can be interpre-
ted as (phonemic) categories.
A neural map consists of a set of neurons ni whose

“preferred” stimulus vector is noted vi. The activity of
neuron ni when presented stimulus v is computed with
a gaussian function :

act(ni) = e−dist(vi,v)2/σ2
(1)

with sigma being a parameter of the simulation (to
which it is very robust). The population vector is then :

pop(v) =
∑

i
act(ni)∗vi∑
i
act(ni)

The normalizing term is necessary here since we are not
only interested in the direction of vectors. There are ar-
guments for this being biologically acceptable (see Reg-
gia 1992). Stimuli are here 2 dimensional, corresponding



to the first two formants of sounds. Each neural map is
fully recurrent : all the neurons ni of the map are connec-
ted with symmetric synapses of weight

wi,j = e−dist(vi,vj)
2/σ2

, which represent the correlation of activity between 2
neurons (and so could be learnt with a hebbian rule for
instance, but are computed directly here for sake of effi-
ciency of the simulation). When presented an input sti-
mulus, two computations take place with a neural map :
the population vector is calculated with the initial acti-
vation of neurons, and gives what is often interpreted as
what the agent senses ; then the network is relaxed using
local dynamics : the activity of each neuron is updated
as :

act(ni,t+1) =
∑

j
act(ni,t)∗wi,j∑

i
act(ni,t)

This is the mechanism of competitive distribution of ac-
tivation as described in (Reggia et al. 1992, Morasso et
al. 1998), together with its associated dynamical proper-
ties. The fact that weights are symmetric makes that this
dynamic system has point attractors. As a consequence,
the iterated update of neurons activity soon arrive at a
fixed point, which can be interpreted as a categorizing
behavior. So the population vector allows to model how
we perceive for example a particular vowel, say [e], in a
particular sentence and spoken by a particular person,
and the attractor in which the map falls models the be-
havior of categorizing this sound as being of class [e].
Moreover, it is easy to show that this local dynamics
is equivalent to the global process of iteratively coding
and decoding with the population vector, and each time
feeding back to the input the decoded vector.
There are two neural maps : one articulatory which

represents the motor space (neurons ni), and one acous-
tic which represent the perceptual space (neurons li).
Both spaces are typically isomorphic to [0,1]n. The two
maps are fully connected to each other : there are sym-
metric connections of weights w

′
i,j between every neuron

of one map and the other. These weights are supposed
to represent the correlation of activity between neurons,
and will allow to perform the double direction acous-
tic/articulatory mapping. They are learnt with a heb-
bian learning rule (Sejnowsky 1977)

δw
′
i,j = c2(acti− < acti >)(actj− < actj >)

where acti is the activation of neuron i and < acti >
the mean activation of neuron i over a certain time in-
terval (correlation rule). The propagation of signals in
this paper always happen from the acoustic map to the
articulatory map (the articulatory map can only give in-
formation to the acoustic map through the environment,
as in the babbling phase described below where activity
in the motor map moves articulators, which then pro-
duces sound and activate the cochlea which finnaly ac-
tivate the acoustic map). Figure 1 gives an overview of
the architecture.

Fig. 1 Overview of the architecture

The network is initially made by initializing the pre-
ferred vectors of neurons (i.e. their weights in a biological
implementations) to random vectors following a uniform
distribution, while the w

′
i,j are set to 0. Part of the ini-

tial state can be visualized by plotting all the vi as in
one of the upper squares of figure 2 which represents
the acoutic maps of two agents (the perceptual space is
2-dimensional, and points represents the preferred vec-
tors of neurons). Also, one can visualize how agents ini-
tially perceive the sound world by plotting all the pop(v)
corresponding to a set of stimulus whose vectors values
are the intersections of a regular grid covering the whole
space. This gives graphs similar to those used in (Kuhl
2000) who discovered the perceptual magnet effect. The
lower squares of figure 2 are examples of such an initial
perceptual state : we see that the grid is nearly not de-
formed, which means as predicted by theoretical results,
that the population vector is a rather accurate coding of
the input space. It means that initially, agents are not
subject to auditory illusions as will be the case later on.
One can also visualize the initial attractors of the acous-
tic neural maps : figure 3 shows one example, in which
each arrow has its ending point being the population co-
ded vector after one iteration of the relaxation rule with
initial activation of neurons corresponding to the popu-
lation vector represented as the beginning of the arrow.
In brief, if one views the relaxation rule as a function
which maps one set of neuronal activities, caracterized
by a unique population vector, to another one, caracteri-
zed by another population vector, then the ending point
of arrows are the image of the starting points through
this function. What one can notice is that initially, at-
tractors are few, trivial and random (most often there is
only one).
Before having agents interact, there is a first phase of

babbling during which appropriate initial values of the
w

′
i,j ’s are learnt with the correlation rule : random arti-

culations are performed, which on the one hand provides
activations for the neurons in the articulatory map, and
on the other hand produces sounds which are percei-



ved with the cochlea which then provides activations in
the acoustic map. Also, acoustic neurons who get very
low activity or equivalently whose arriving w

′
i,j are very

low are simply pruned. This is consistent with the well
know phenomena of activity dependant growth, and in
particular allows a better visualization of the neurons
in the acoustic map. Once this initial phase is over, the
w

′
i,j ’s still continue to evolve with the associated hebbian

rule. This is indeed necessary since neurons in each map
change their “preferred vector” during the simulation.
Then there is a learning mechanism used to update the

weights/preferred vectors in the two neural maps when
one agent hears a sound stimulus

v = (vt0 ,vt1 ,vt2 ,vt3 ...),
which is represented by a temporal sequence of feature
vectors here in [0,1]n, typically corresponding to the for-
mants of the sound at a moment t (formants are the
frequencies for which there is a peak in the power spec-
trum). The delay between two feature vectors is typically
a few milliseconds, corresponding to the time resolution
of the cochlea. For each of these feature vectors, the acti-
vation of the neurons (just after perception) in the acous-
tic map is computed, and propagates to the motor map.
Then, the population vector of both maps is computed,
giving two vectors vacoust and vmotor corresponding to
what the networks perceived of the input. Then, each
neuron of each map is updated so as to be a little bit
more responsive to the perceived input next time it will
occur (which means that their preferred vectors are shif-
ted towards the perceived vectors). The actual formula
is

δvi = c1 ∗ e−
dist(vacoustormotor,vi)

2

σ2 ∗ (vacoustormotor − vi).
The agents in this model produce dynamic articula-

tions. These are generated by choosing N articulatory
targets (which are configurations of the vocal tract), and
then using a control mechanism which drives the arti-
culators successively to these targets. Articulators are
the parts of the vocal tract that control its shape (for
example the jaw). In the experiments presented here,
N=3 for sake of simplicity, but experiments have been
conducted for N=2,...,5 and showed this does not change
the results. The choice of the articulatory targets is made
by activating successively and randomly 3 neurons of the
articulatory map. Their preferred vectors code for the
articulatory configuration of the target. The control me-
chanism that moves the articulators which we used here
was very simple : it is simply a linear interpolation bet-
ween the successive targets. We did not use realistic me-
chanisms like the propagation techniques of population
codes proposed in (Morasso et al., 1998), because these
would have been rather computationally unefficient for
this kind of experiment, and does not alter the results.
Finally, gaussian noise is introduced just before sending
the target values to the control system. This noise is
fixed in the present paper : the standard deviation of the

gaussian is equal to 5 percent of the articulatory range
(similar to experiments of de Boer).

When an articulation is performed, a model of the vo-
cal tract is used to compute the corresponding acoustic
trajectory. There are two models. The first one is abs-
tract and serves as a test model to see which properties
are due to the coupling of neural systems and which are
due to the particular shape of the articulatory/acoustic
mapping. This is simply a random linear mapping bet-
ween he articulatory space and the acoustic space. In this
paper the articulatory space is always three-dimensional,
isomorphic to [0,1]3, and the perceptual space is always
2-dimensional.

The second model is realistic in the sense that it re-
produces the human articulatory to perceptual mapping
concerning the production of vowels. We model only vo-
wels here for sake of computational efficiency. The three
major vowel articulatory parameters are used : (Ladefo-
ged and Maddieson, 1996) tongue height, tongue posi-
tion and lip rounding. To produce the acoustic output
of an articulatory configuration, a simple model of the
vocal tract was used, as described in (de Boer, 1999),
which generates the 4 first formant values of the sound.
Then, from these four values one extracts the first for-
mant and what is called the second effective formant (de
Boer, 2001), which is a highly non-linear combination of
the first 4 formants. The first and second effective for-
mant are known to represent well human perception of
vowels (de Boer, 2001).

The experiment presented consists in having a popula-
tion of agents (typically 20 agents) who are going to in-
teract through the production and perception of sounds.
They are endowed with the neural system and one of
the articulatory synthesizers described previously. Each
neural map contains 500 neurons in the simulations. Ty-
pically, they interact by pairs of two (following the evo-
lutionary cultural scheme devised in many models of the
origins of language, see Steels 1997, Steels and Oudeyer,
2000) : at each round, one agent is chosen randomly and
produces a dynamic articulation according to its articu-
latory neural map as described earlier. This produces a
sound. Then another random agent is chosen, perceives
the sound, and updates its neural map with the learning
rule described earlier. It is crucial to note that as op-
posed to all simulations on the origins of language that
exist in the litterature (Hurford et al., 1998) our agents
do not play here a “language game”, in the sense that
there is no need to suppose an extra-linguitic protocol of
interaction such as who should give a feedback to whom
and at what particular moment and for what particular
purpose. Indeed, there are no “purpose” in our agents
heads. Actually, the simulation works exactly in the same
way in the following setup : imagine that agents are in a
world in which they have particular locations. Then, the
only thing they do is to wander randomly around, pro-



duce sounds at random times, and listen to the sounds
that they hear in their neighborhood. In particular, they
might not make any difference between sounds produ-
ced by themselves and sounds produced by other agents.
No concept of “self” is needed. They learn also on their
own productions. As a consequence, the model presen-
ted here for example makes a lot less assumptions about
cognitive and social pre-requisites than the model in (de
Boer 2001) for the origins of vowel systems.

3. Shared crystalisation with phonemic
coding : the case of abstract linear ar-
ticulatory/acoustic mappings

Let us describe first what we obtain when agents use
the abstract articulator. Initially, as the receptive fields
of neurons are randomly and uniformly distributed across
the space, the different targets that compose the produc-
tions of agents are also randomly and uniformly distri-
buted. What is very interesting, is that this initial state
situation is not stable : rapidly, agents get in the a situa-
tion like on figures 4 (for the unbiased case) or 8 which
are respectively the correspondances of figures 2 and 8 af-
ter 1000 interactions in a population of 20 agents. These
figures show that the distribution of receptive fields is
not anymore uniform but clustered. The associated point
attractors are now several, very well-defined, and non-
trivial. Moreover, the receptive fields distribution and at-
tractors are approximately the same for all agents. This
means that now the targets that agents use belong to one
of well-defined clusters, and moreover can be classified
automatically as such by the relaxation of the network.
In brief, agents produce phonemically coded sounds. The
code is the same for all agents at the end of a simula-
tion, but different across simulations due to the inherent
stochasticity of the process.
Also, what we observe is that the point attractors that

appear are relatively well spread across the space. The
prototypes that they define are thus perceptually quite
distinct. In terms of Lindblom’s framework, the energy
of these systems is high. Yet, there was no functional
pressure to avoid close prototypes. They are distribu-
ted in that way thanks to the intrinsic dynamic of the
recurrent networks and rather large tuning function of
receptive fields : indeed, if two neuron clusters just get
too close, then the summation of tuning functions in the
iterative process of relaxation smoothes locally their dis-
tribution and only one attractor appears.
To show this shared crystalisation phenomenon in a

more systematic manner, measures were developped that
track on the one hand the evolution of the clusteredness
of targets for each agent, and on the other hand the si-
milarity of target distributions between agents. The ba-
sic idea is to make an approximation of these distribu-
tions. A first possibility would have been standard bin-

ning, where the space is discretized into a number of
boxes, and one counts how many receptive fields fall in
each bin, and then normalize. The drawback is that the
choice of the bin size is not very convenient and robust;
also, as far as distribution comparison is concerned, this
can lead to inadequate measures if for example there are
small translations among clusters from one distribution
to another. As a consequence, we did decide to make ap-
proximations of the local probability density function at
a set of particular points using parzen windows (Duda
et al., 2001). This can be viewed as a fuzzy binning. For
a given point x, the approximation of the probability
density function is calculated using a gaussian window :

pn(x) = 1
n

∑n
i=1

1
2πσ e−

||x−xi||
σ2

where the xi are the set of targets. The width of the
windows is determined by σ, and the range of satisfaying
values is large and so this is easy to tune. This approxi-
mation is repeated for a set of points distributed on the
crossings of a refular grid. Typically, for the 2D percep-
tual map/space, the grid is 10 points wide and gaussian
have a variance equal to that of the noise (5 percent of
range).
In order to track the evolution of clusteredness, we

chose to use the concept of entropy (Duda et al. 2001).
The entropy is minimal for a completely uniform dis-
tribution, and maximal for a distribution in which all
points are the same (1 perfect cluster). It is defined here
as :

entropy = −∑l
i=1 pn(xgridi)ln(pn(xgridi)

where xgridi are the crossings of the regular grid at
which we evaluated the probability density function. As
far as the comparison between two target distributions is
compared, one used a symmetric measure based on the
Kullback-Leibler distance defined as :

distance(p(x),q(x)) =
1
2

∑
xgrid q(x)log( q(x)

p(x) ) + p(x)log p(x)
q(x)

where p(x) and q(x) are distributions of targets.
Figure 6 shows the evolution of the mean clustered-

ness for 10 agents during 2000 games. We clearly see the
process of crystalisation. Figure 7 shows the evolution
of similarity among the distributions of targets. Each
point in the curve represents the mean distance among
distributions of all pairs of agents. What we expect is
that the curve stays relatively stable, and does not in-
crease. Indeed, initially, all distributions are approxima-
tely uniform, so approximately identical. What we verify
here is that while each distribution becomes peaked and
non-trivial, it remains close to the distributions of other
agents.
Why does this phenomenon occur? To understand in-

tuitively, one has to view the neural map that agents
use, in particular the perceptual map, as modeling the
distribution of sounds that are perceived, and which are
produced by members of the society. The crucial point is



Fig. 2 Acoustic neural maps at the beginning (top), and as-

sociated initial perceptual warping, i.e. images the points of a

regular grid through the population vectir function (bottom).

As with all other figures, the horizontal axis represents the

first formant (F1), and the vertical axis represents the second

effective formant (F2’)

that the acoustic map is coupled and evolves with the ar-
ticulatory map so that the distribution of sounds which
are produced is very close to the distribution of sounds
which is modeled in the acoustic map. As a consequence,
agents learn to produce utterances composed of sounds
following the same distribution as what they hear around
them. All agents initially produce, and so perceive, the
same distribution. Logically, one would expect that this
state remains unchanged. Yet, this is not what happens :
indeed, at some point, symmetry breaks due to chance.
The “uniform” state is unstable. And positive feed-back
loops make that this symmetry breaking, which might
happen simultaneously in several parts of the space or
in several agents, gets amplified and converges to a state
in which the distribution is multi-peaked, and of course
still shared by agents.
These results show a real alternative to earlier descri-

bed theories to explain phonemic coding as well as the
formation of shared sound systems : the neural device
is very generic and could have been used to learn the
correspondence between other modalities (e.g. hand-eye
coordination, see Morasso et al., 1998, who use similar
networks), so no LAD is required (Chomskian innatists);
the articulatory to perceptual mapping is linear and tri-
vial, so there is no need for innate particularities of this
mapping (morpho-perceptual innatists); agents are not
playing any sort of particular language game, and there
is no pressure for developing an efficient and shared si-
gnalling system (they do develop it, but this is a side ef-
fect !), so there are many fewer assumptions needed than

Fig. 3 Representation of the population vector function for

the initial neural maps of figure 1 : each arrow gives informa-

tion about in which direction are shifted stimuli in the local

area where they are drawn

Fig. 4 Neural maps and perceptual warping after 1000 inter-

actions, corresponding to the intial states of figure 1)

in Lindblom’s or de Boer’s approach, and as a conse-
quence the hypothesis presented in this paper should
be preferred for simplicity sake, following Occam’s ra-
zor law.

4. The use of realistic articulatory/acoustic
mapping

Yet, we have so far not been able to reproduce the
structural regularities of for example human vowel sys-
tems as done by de Boer’s model. By “structure” we
mean what set of vowels (and how many of them) ap-
pear together in a vowel system. Indeed, our vocal tract
theoretically allows us to have thousands of different vo-
wel systems, but yet only very few are actually used in
human languages (Ladefoged and Maddison, 1996). This
is due to the fact that we used an abstract articulatory
synthesizer. We are now going to use the realistic vowel
articulatory synthesizer presented earlier. The mapping



Fig. 5 Representation of the population vector function for

the final neural maps of figure 3 : each arrow gives informa-

tion about in which direction are shifted stimuli in the local

area where they are drawn

Fig. 6 Evolution of entropy of target distributions during 2000

interactions : the emergence of clusteredness

that it implements is not any more linear. To get an idea
of it, figure 8 shows the state of the acoustic neural maps
of agents just after the initial babbling phase which al-
lows to set up initial weights for the connections with
the articulatory map, and after the pruning phase which
got rid of never used acoustic neurons. We see that the
image of the cube [0,1]3 which is uniformly explored du-
ring babbling is a triangle (the so-called vocalic triangle).
A series of 500 simulations were ran with the same set of
parameters, and each time the number of vowels as well
as the structure of the system was checked. The first re-
sult shows that the distribution of vowel inventory size
is very similar to the one of human vowel systems (La-
defoged and Maddison, 1996) : figure 10 shows the 2 dis-
tributions (in plain line the distribution corresponding
to the emergent systems of the experiment, in dotted
line the distribution in human languages), and in par-
ticular the fact that there is a peak at 5 vowels, which
is remarkable since 5 is neither the maximum nor the
minimum number of vowels found in human languages.
Also, among these 5 vowel systems, it appeared that one
of them is generated much more frequently (79 percent)
than others : figure 9 shows an instance of it. The re-
maining 5 vowel systems are either with a central vowel
together with more front vowels, or with more back vo-

Fig. 7 Evolution of target distributions similarity during

2000 interactions : emergent clusters are similar in different

agents

Fig. 8 Initial neural map, population vector function repre-

sentation and perceptual warping of one agent within a popu-

lation of 20 agents. Here the realistic articulatiry synthesizer

is used

wels. This agrees very well with what has been found
in natural languages. (Schwartz et al. 1997) found that
89 percent of the languages had the symmetric system,
while the two other types with the central vowel occur in
5 percent of the cases. For different system sizes similarly
good matches between predicted systems and human vo-
wel systems are found.

5. Conclusion

Functional and computational models of the origins of
language (Hurford et al., 1998) typically make a lot of
initial assumptions such as the ability to play language
games or in general coordinate. The present paper pre-
sented an experiment concerning sound systems which
might be a possible example of how to bootstrap these
linguistic interactions. Indeed, with very simple and non-
specific neural systems, without any need for explicit co-
ordination schemes, without any deus ex-machina func-
tional pressure, we obtained here a signalling system
which could very well be recruited as a building block
for a naming game for example. (Oudeyer 2002) presents
a more traditional functional model of higher aspects of
sound systems (phonological rules) which is based on the



Fig. 9 neural map, population vector function representation

and perceptual warping of the agent of figure 4 after 2000

interactions with other 20 agents. The corresponding figures

of other agents are nearly identical, as in figures 2 and 3.

The produced vowel system corrresponds to the most frequent

5 vowel system in human languages.

Fig. 10 Distribution of vowel inventories sizes in emergent

and exsiting human vowel systems

bootstrapping mechanism presented here.

Moreover, it provides a very simple explanation for
phonemic coding, which received only poor account in
previous research. Yet, understanding truly phonemic
coding might be of crucial importance to understand the
origins of language : indeed, syntax is thought to be the
keystone and one the hottest topics is how compositiona-
lity appeared. Interestingly, phonemic coding is a form
of primitive compositionality.

Finally, the use of a realistic vowel synthesizer allowed
to show that the model also predicts inventories regula-
rities. We showed how the use of a realistic synthesizer is
crucial for the prediction of these regularities, but is cer-
tainly not the explanation of phonemic coding. As far
as phonemic coding and vowel inventories are concer-
ned, the model presented in this paper is more biology-
compliant than innatists models, and makes less assump-
tions than traditional cultural functional models.
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