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Abstract
In Continuum Light Cone Quantization (CLCQ) the treatment of scalar fields
as operator valued distributions and properties of the accompanying test func-
tions are recalled. Due to the paracompactness property of the Euclidean man-
ifold these test functions appear as decomposition of unity. The approach is
extended to QED Dirac fields in a gauge invariant way. With such test func-
tions the usual triangle anomalies are calculated in a simple and transparent
way.

1. INTRODUCTION

Over the years the interest in Light Cone (LC) formulation offield theories keeps growing mainly be-
cause of the varieties of physical processes amenable to direct evaluation, as reported in this volume. An
important issue still under debate is the treatment of LC induced infrared (IR) divergencies. Compactifi-
cation in one LC direction, sayx− = t − x3, with appropriate boundary conditions, permits anad hoc
elimination of the problematic zero mode of the field operator. But it is well recognized by now that it is
precisely this zero mode which carries the important non-perturbative informations which, in the equal
time formalism, are present in the existence of a non-trivial vacuum. For many purposes, in particular
to study critical properties of a given field theory, a non-compact formulation is necessary. It uses the
notion of fields as operator valued distributions (OPVD) as developped in [1]. These studies focussed on
Φ4 scalar field theory in1 + 1 dimension. Here we want to extend this approach to gauge theories. Due
to the paracompactness property of an Euclidean manifold weshow that the OPVD formulation permits
a simple and transparent evaluation of the QED triangle anomalies.

2. FIELDS AS OPVD

The Klein-Gordon (KG) equation for the free scalar field in D-dimension ,(2x +m2)̞(x) = 0, writes,
after a Fourier transform,(p2 −m2) ˜̞(p) = 0. The solution is a distributioñ̞ (p) = ˽(D)(p2 −m2)̐(p),
with ̐(p) arbitrary. The solution of the KG-eqution is therefore alsoa distribution,ie an OPVD, which
defines a functional with respect to a test function̊(x), which isC∞ with compact support,

Φ(̊) ≡< ̞, ̊ >=

∫

d(D)y̞(y)̊(y). (1)

Φ(̊) is aC-number with the possible interpretation of a more general functionalΦ(x, ̊) evaluated at
x = 0. Indeed the translated functional is a well defined object [2] such that

TxΦ(̊) =< Tx̞, ̊ >=< ̞, T−x̊ >=

∫

d(D)y̞(y)̊(x − y) (2)

Now the test function̊ (x− y) has a well defined Fourier decomposition

̊(x− y) =

∫

d(D)q

(2̉)D
expiq(x−y) f(q) (3)



It follows that

TxΦ(̊) =

∫

d
(D)p

(2̉)D
e−ipx˽(p2 −m2)̐(p)f(p). (4)

Due to the properties of̊ , TxΦ(̊) obeys the KG equation and is taken as the physical field with quan-
tized form

̞1(x) =

∫

d(D−1)p

(2̉)(D−1)

1
√

2̒p

[a+
p e

ipx + ape
−ipx]f(p, ̒p). (5)

f(p, ̒p) acts as regulator with very specific properties1[4]. This expression for̞ 1(x) is particurlarly
useful on the LC because the Haag serie can be used and is well defined in terms of products of̞1(xi).

3. PARACOMPACT MANIFOLD: TEST FUNCTIONS AS DECOMPOSITION OF UNITY

Consider a topological spaceM. An open covering [3] ofM is a family of open subspacesΩi, i ∈ I,
with the propertyM =

⋃

i∈I Ωi. Paracompactness is the property that for eachΩi there exists aC∞

function˻i(x) such that˻ i(x) = 1 if x ∈ ̒i ⊂ Ωi, 0 < ˻i(x) < 1 in the boundary region̒i ⊂ Bi ⊂ Ωi,
and˻i(x) = 0 outsideΩi. For allx ∈ M there is only a finite number of˻j(x) 6= 0. Let ˺j =

˻j

Σj˻j
.

Now Σj˻j is always non zero andΣj˺j = 1. {˺j} is therefore a decomposition of unity onM 2. The
important theorem is that: ”An Euclidean manifold is paracompact” [3]. We shall therefore work in
Euclidean metric. Thenf(p) is 1 except in the boundary region where it isC∞ and goes to zero with all
its derivatives.

4. QED: CONSTRUCTION AND GAUGE TRANSFORMATION OF THE OPVD FERMIONIC
FIELD

Let ̑(x) be the Dirac massive free field, then(i 6∂ − m)̑(x) = 0 =⇒ Ψ(x) ≡< Tx̑, ̊ >=
∫

d(D)y̑(y)̊(y − x). For QED the fermionic field obeys(i 6∂− 6A − m)̑(x) = 0, and it is clear
that the translation inΨ(x) must be done in a gauge invariant way, that is

Ψ˼(x) =

∫

d(D)ẙ(y − x) exp[ie

∫ y

x

dz̅A̅(z)]̑(y). (6)

In a gauge transformationA̅(x) ջ A̅(x)+1
e
∂̅Λ(x),̑(y) ջ eiΛ(y)̑(y) and thenΨ˼(x) ջ eiΛ(x)Ψ˼(x).

Due to the presence of the gauge phase factor in (6)Ψ˼(x) is path dependant. Let˼(s) be a parametriza-
tion of the path fromx to y, ˼(0) = x, ˼(1) = y. Then

∫ y

x

dz̅A̅(z) =

∫ 1

0
ds ˙˼ ̅(s)A̅(˼(s)) =

∫

d(D)z[

∫ 1

0
ds ˙˼ ̅(s)˽(D)(˼(s) − z)]A̅(z)

≡

∫

d(D)z lC̅(˼;x, y, z)A̅(z) (7)

It is easy to see thatlC̅(˼;x, y, z) obeys the differential equation∂̅
z lC̅(˼;x, y, z) = ˽(x− z)− ˽(y− z),

the solution of which is known only after a choice of path and boundary condition on z3. With y−x = ǫ,
the OPVD Dirac field is nowΨ˼(x) =

∫

d(D)ǫ̊(ǫ) exp[ie
∫ x+ǫ

x
dz̅A̅(z)]̑(x + ǫ). One expects that

if the extent of the ballB(ǫ), support of̊(ǫ), is ”small” the straight path is the good choice. This is
corroborated when evaluating the change∆Ψ˼(x) = Ψ˼+˽˼(x) − Ψ˼(x) for a change˽ ˼ of the path
˼. Indeed∆Ψ˼(x) ∝ (∆˼̆(s)∆ ˙˼ ̅(s)−∆˼̅(s)∆ ˙˼ ̆(s))F̆,̅(˼(s))Ψ˼(x), which is zero for a straight
path∆˼(s) = f(s)(y − x), f(0) = 0, f(1) = 1.

1f(p) is alsoC∞ with fast decrease in the sense of L. Schwartz [2].
2An explicit construction involves the characteristic function ̐̒j

(x) = 1(0) if x ∈ (/∈) ̒j and Schwartz’s test function
̊ǫ(x) in the ballB(ǫ) , ˻j(x) =

∫

̐̒j
(t)̊ǫ(x − t)dt.

3Solution of the form [4]lC̅(˼; x, y, z) = ∂̅c(˼; x, y, z) are excluded, for then
∫

d(D)z(∂̅
z c)A̅ = −

∫

d(D)zc(∂̅
z A̅)

which would be zero in the Lorentz gauge.



5. QED ANOMALIES

We consider the usual QED triangle diagrams with Ryder’s convention [5] and Euclidean metric. Let
I1
̃,̄,̅ andI2

̄,̃,̅ be the direct and exchange contributions respectively. Thedirect axial current contribu-
tion writes, after performing the traces on˼−matrices

(p1 + p2)
̅I1

̃,̄,̅ = 4e2ǫ̌,̄,˽,̃

∫

d4k

(2̉)4

[ p̌
2k

˽

(k + p2)2k2
−

k˽p̌
1

k2(k − p1)2

]

f(k2)f((k + p2)
2)f((k − p1)

2),

(8)
where thef ’s factors come from the test fuctions present in the fermionic propagators to lowest order
in e andǫ̌,̄,˽,̃ is the usual antisymmetric tensor. The exchange axial contribution is obtained with the
changes(̃ ս ̄), (p1 ս p2). Due to thef ’s the integrals are finite: one may changek to k − p1 in the
first integral andk to k + p2 in the second. Regrouping terms the total axial contribution is now

(p1 + p2)
̅(I1

̃,̄,̅ + I2
̄,̃,̅) = 4e2ǫ̌,̄,˽,̃

∫

d4k

(2̉)4
k˽

k2

{ p̌
1

(k − p1)2

[

f((k − p1 − p2)
2) − f((k + p2)

2)
]

f((k − p1)
2) −

p̌
2

(k + p2)2

[

f((k + p1 + p2)
2) − f((k − p1)

2)
]

f((k + p2)
2)

}

f(k2). (9)

It is seen that iff = 1 everywhere the axial contribution would be zero, but the variable change
in this case is not legitimate for the integrals are linearlydivergent. Howeverf = 1 almost ev-
erywhere except in the vicinity of the boundary of its support. Its generic shape in thek˽ direc-
tion (in dimensionless units) is shown in FIG.1. Clearly thesituation of interest is the largeΛ limit
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FIG. 1 Generic shape off(k) as a function ofk. FIG. 2 DomainD where∆f 6= 0

and we can look at cases wherep1, p2 ≪ Λ and all f ’s shrink to step functions.Then Eq.(9)
reduces to

(p1 + p2)
̅(I1

̃,̄,̅ + I2
̄,̃,̅) = 4e2ǫ̌,̄,˽,̃

∫

d4k

(2̉)4
k˽

k4
f2(k2)

{

p̌
1

[

f((k − p2)
2) − f((k + p2)

2)
]

−p̌
2

[

f((k + p1)
2) − f((k − p1)

2)
]}

. (10)

Consider the quantity∆f = f2(k2)
[

f((k − p2)
2) − f((k + p2)

2)
]

in the direction ofk˽. The situation

is depicted in FIG.2.∆f is different from zero in the shaded areaD of amplitude(p2)˽, ∀Λ. Hence

∫ Λ˽

(Λ−p2)˽

d4k

(2̉)4
k˽

k4
=

2̉2

(2̉)4

∫ Λ˽

(Λ−p2)˽

dk
k˽

k
=

1

8̉2

∫ Λ˽

(Λ−p2)˽

dk˽ =
(p2)˽
8̉2

, (11)

and we have the result(p1 + p2)
̅(I1

̃,̄,̅ + I2
̄,̃,̅) = e2

2̉2 ǫ̌,̄,˽,̃

[

p̌
1p

˽
2 + p̌

2p
˽
1

]

= 0, because of the

antisymmetry ofǫ̌,̄,˽,̃. The axial current is therefore conserved. Consider now thevector current.



After tracing over the˼ −matrices the potentially divergent contribution is

p̃
1(I1

̃,̄,̅ + I2
̄,̃,̅) = −4e2ǭ,̃,̅,˺p

˺
1

∫

d4k

(2̉)4
k˺

k4
f(k2)

[

f((k − p1)
2)f((k + p2)

2)

−f((k + p1)
2f((k − p2)

2)
]

. (12)

Denote∆f the test function factor and letĕ(̑k, ̞k, ́k) = k̆

k
= {sin(̑k) sin(̞k) cos(́k), etc} Per-

forming the analysis of∆f in terms of step functions gives, usingcos ́kpi
= p̆

i ĕ/pi,
∫

dk∆f =
2(p1 cos ̚kp1 − p2 cos ̚kp2) = 2(p1 − p2)

̆ĕ(̑k, ̞k, ́k). The integral overdΩk is now straightforward

with the resultp̃
1(I1

̃,̄,̅ + I2
̄,̃,̅) = e2

4̉2 ǫ̃,̄,̅,˺p
̃
1p

˺
2 . The vector current (charge) conservation is there-

fore restored with the correction˽Ĩ,̄,̅ = e2

4̉2 ǫ̃,̄,̅,˺(p1−p2)
˺, resulting in the standard axial anomaly

(p1 + p2)
̅(I1

̃,̄,̅ + I2
̄,̃,̅ + ˽Ĩ,̄,̅) = e2

2̉2 ǫ̃,̄,̅,˺p
̅
2p

˺
1 .

6. CONCLUSIONS

Treating scalar fields as OPVD gives a consistent LCQ in the continuum which permits the study of
critical properties. It is achieved because IR-induced divergences are handled by the test function present
in the regularized field which, in the limitk+ ջ 0, goes to zero faster than any inverse power ofk+. An
essential feature is also the possible use of the Haag serie,for its construction is well defined in terms of
the regularized scalar field. In going to gauge theories the definition of the regularized fermionic field
from its OPVD counterpart faces the problem of gauge invariance. Taking into account the necessity that
the original OPVD fermionic field must be translated in a gauge invariant manner leads to a regularization
scheme which does not suffer the general illness of a straight momentum cut-off. It is examplified
in the field equation,∂̅F

̅,̆(x) = j̆(x) = Ψ̄˼(x)˼̆Ψ˼(x), since by construction the regularized
fermionic field renders the currentj̆(x) gauge invariant. The important property of paracompactness
of the Euclidean manifold permits using test functions which are decomposition of unity. They lead
to a transparent analysis of the QED anomalies, in complete agreement with the standard results. This
is a strong incitation to pursue further the investigationson the merits and possible illnesses of this
regularisation scheme in the context of the LC formalism of field theories.
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