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Abstract

In Continuum Light Cone Quantization (CLCQ) the treatmefrgaalar fields
as operator valued distributions and properties of therapamying test func-
tions are recalled. Due to the paracompactness propertyedtclidean man-
ifold these test functions appear as decomposition of uriitye approach is
extended to QED Dirac fields in a gauge invariant way. Withhstest func-
tions the usual triangle anomalies are calculated in a sirapt transparent
way.

1. INTRODUCTION

Over the years the interest in Light Cone (LC) formulatiorfield theories keeps growing mainly be-
cause of the varieties of physical processes amenablectct @valuation, as reported in this volume. An
important issue still under debate is the treatment of L@Q@ed infrared (IR) divergencies. Compactifi-
cation in one LC direction, say~ = t — z3, with appropriate boundary conditions, permitsaahhoc
elimination of the problematic zero mode of the field oparaBat it is well recognized by now that it is
precisely this zero mode which carries the important natdpeative informations which, in the equal
time formalism, are present in the existence of a non-trié@uum. For many purposes, in particular
to study critical properties of a given field theory, a nomapact formulation is necessary. It uses the
notion of fields as operator valued distributions (OPVD) esatopped in [1]. These studies focussed on
®* scalar field theory il + 1 dimension. Here we want to extend this approach to gaugeiéisedue

to the paracompactness property of an Euclidean manifolshow that the OPVD formulation permits
a simple and transparent evaluation of the QED triangle atiem

2. FIELDSASOPVD

The Klein-Gordon (KG) equation for the free scalar field irdDaension (0, + m?)p(z) = 0, writes,
after a Fourier transformip? — m?)@(p) = 0. The solution is a distributio(p) = §P) (p? —m?)x(p),

with x(p) arbitrary. The solution of the KG-eqution is therefore asdistribution,ie an OPVD, which
defines a functional with respect to a test functidm), which isC* with compact support,

D(p) =< p,p >= / dPyp(y)p(y). 1)

®(p) is aC-number with the possible interpretation of a more genamttional ®(x, p) evaluated at
x = 0. Indeed the translated functional is a well defined objekcs{2h that

T, ®(p) =< Ty, p >=< ¢, T_yp >= /d(D)ysO(y)p(w —y) ()

Now the test function(x — y) has a well defined Fourier decomposition
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It follows that

(D),
T,0(0) = [ Ghe o0t = mt ) 0) @

Due to the properties of , 7,,®(p) obeys the KG equation and is taken as the physical field wigmgqu
tized form

d(D_l)p 1 + ipx —1ipT
o (7) = / EEirym CIUR R 5)
f(p,w,) acts as regulator with very specific propert¢4]. This expression fop () is particurlarly
useful on the LC because the Haag serie can be used and isefieéidiin terms of products aof; (z;).

3. PARACOMPACT MANIFOLD: TEST FUNCTIONSASDECOMPOSITION OF UNITY

Consider a topological spagef. An open covering [3] ofM is a family of open subspacés, i € I,
with the propertyM = | J,.; €2;. Paracompactness is the property that for eackhere exists &'>
function 3;(x) such that3;(z) = 1if z € w; C Q4,0 < B;(z) < 1inthe boundary regiow; C B; C €,
andg;(xz) = 0 outside(;. For allz € M there is only a finite number gf;(x) # 0. Leta; = zfjﬁj-
Now ¥, 3, is always non zero anll;a; = 1. {a;} is therefore a decomposition of unity o 2. The
important theorem is that: "An Euclidean manifold is pampact” [3]. We shall therefore work in
Euclidean metric. Therf(p) is 1 except in the boundary region where itiS° and goes to zero with all
its derivatives.

4. QED: CONSTRUCTIONAND GAUGE TRANSFORMATION OF THE OPVD FERMIONIC
FIELD

Let ¢)(x) be the Dirac massive free field, thén @ — m)yY(z) = 0 = V(z) =< T, p >=
[ dPy(y)p(y — x). For QED the fermionic field obey& #— A — m)y(z) = 0, and it is clear
that the translation i (x) must be done in a gauge invariant way, that is

Yy
v, (@) = [ dPypty - a)explie [ d: A, (ty) ©)
In a gauge transformatiaf, () — A, (2)+19,A(x))(y) — @y (y) and thenb., (z) — @)W (z).
Due to the presence of the gauge phase factor i# () ) is path dependant. Lef(s) be a parametriza-
tion of the path from: to y, v(0) = z,~v(1) = y. Then

Y 1 1
[ iade = [ asreae) = [d?: ] e @i 66 - 24,

0
= /d(D)z(E“(W;:U,y,z)Au(z) (7)

Itis easy to see th@t'(v; z, y, z) obeys the differential equatiahC,,(v; z,y, z) = d(z — 2) — 6(y — 2),
the solution of which is known only after a choice of path andrary condition on 2. With y — 2 = e,
the OPVD Dirac field is nowt,,(z) = [ dP)ep(e) explie [T dz* A, (2)]¢(z + €). One expects that
if the extent of the ball3(¢), support ofp(e), is "small” the straight path is the good choice. This is
corroborated when evaluating the chany@ () = V.5, (z) — ¥, (x) for a changejy of the path
7. IndeedA W, (z) o< (AYY(s)AYH(s) — Av*(s)AYY(s))F, . (7(s)) ¥ (), which is zero for a straight
pathAy(s) = f(s)(y — x), f(0) = 0, f(1) = 1.

(p) is alsoC"> with fast decrease in the sense of L. Schwartz [2].

2An explicit construction involves the characteristic ftion Xw, (z) = 1(0) if 2 € (¢) w; and Schwartz's test function
pe(z) inthe ballB(e) , B (z) = j Xw, (t)pe(x — t)dt.

®Solution of the form [4B* (v; z,y, z) = d"c(v; x, vy, 2) are excluded, for theif dP)2(8%¢c)A,, = — [ dP)2c(d4A,)
which would be zero in the Lorentz gauge.




5. QED ANOMALIES

We consider the usual QED triangle diagrams with Ryder'sseption [5] and Euclidean metric. Let

I ; A andlim ,, be the direct and exchange contributions respectively.difieet axial current contribu-

tion writes, after performing the traces ga-matrices

01+ 22 T = i [ [ b ] FO2) (4 ) = )
1 2 Ky b o,\,0,K (277)4 (k n p2)2k2 kQ(k _ p1)2 2 1 )
(8)
where thef’s factors come from the test fuctions present in the ferigigmopagators to lowest order
in e ande,.» 5, IS the usual antisymmetric tensor. The exchange axial ibomitsn is obtained with the
changegx < A), (pl < p2). Due to thef’s the integrals are finite: one may chang® k — p; in the

first integral and: to k£ + po in the second. Regrouping terms the total axial contrilousonow

d'k K° i
(1 + 02 iy + By = Acanin / G ey [ (= 1= p2) = f((k o+ 22)?)|

o2y Pa 2y . 2 2 2
P =) = G [F( 4 ot p2)?) = £ = 9] £+ 2)) }1G).9)
It is seen that iff = 1 everywhere the axial contribution would be zero, but theéaide change
in this case is not legitimate for the integrals are lineatiyergent. Howeverf = 1 almostev-
erywhere except in the vicinity of the boundary of its suppotts generic shape in thg; direc-
tion (in dimensionless units) is shown in FIG.1. Clearly 8imiation of interest is the larg& limit
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FIG. 1 Generic shape of(k) as a function of. FIG. 2 DomainD whereAf # 0

and we can look at cases wherg p» <« A and all f's shrink to step functions.Then Eq.(9)
reduces to
dk K

01+ 22 (I + B ) = AP [ il EO{ 70 = p2)%) = (k492

o8 [F((k+2)2) = F((k = p1)D)] }. 10)

Consider the quantith f = f2(k?) [f((k: —p2)?) — f((k +p2)2)} in the direction ofk;. The situation
is depicted in FIG.2A f is different from zero in the shaded arPeof amplitude(p,);, VA. Hence

Ao @tk KO 2p? M ks 1 M
/ 171 = - 1 / dk=> = o5 dks = (pz)zg, (11)
(A-po)s 2P R 2m)t Japys K 8T Ja—pn)s 8

and we have the resulpy + p2)*(I., , + I3, ) = i | DTS+ pgpﬂ = 0, because of the

antisymmetry ofe; 5 5. The axial current is therefore conserved. Consider now#éutor current.



After tracing over they—matrices the potentially divergent contribution is

d*k kK
P+ B) =~ e [ s i fO) £ = p)D (4 p2)?)

—f(k+p)?f((k=p2))].  (2)

DenoteA f the test function factor and let (v, ¢x, 0) = & = {sin(¢x) sin(ey) cos(6y), etc} Per-
forming the analysis ofA f in terms of step functions gives, usirgs6y,, = pYe,/pi, [dkAf =
2(p1 cos Vgp, — P2 €08 Vgp, ) = 2(p1 — p2)ew (Y, ¢k, 0x). The integral ovet(,, is now straightforward
with the resultpf(I;,A’H + Iiw) = %eﬁ)\%ap’fp%. The vector current (charge) conservation is there-
fore restored with the correctiafl,, » , = %em,u,a(pl —p2)®, resulting in the standard axial anomaly

2
(p1 + p2)M(I/1,)\“u + Ii’ﬁ# + 5Iﬁ,>\,u) = ;?GK,A,M,QPSP%-

6. CONCLUSIONS

Treating scalar fields as OPVD gives a consistent LCQ in thirmoum which permits the study of
critical properties. Itis achieved because IR-induceeémjgnces are handled by the test function present
in the regularized field which, in the limit™ — 0, goes to zero faster than any inverse powetof An
essential feature is also the possible use of the Haag &arits construction is well defined in terms of
the regularized scalar field. In going to gauge theories #imition of the regularized fermionic field
from its OPVD counterpart faces the problem of gauge inmaga Taking into account the necessity that
the original OPVD fermionic field must be translated in a gaimyariant manner leads to a regularization
scheme which does not suffer the general illness of a straigimentum cut-off. It is examplified
in the field equationp, F*(z) = j*(z) = ¥, (z)y"¥,(x), since by construction the regularized
fermionic field renders the currerit (z) gauge invariant. The important property of paracompastnes
of the Euclidean manifold permits using test functions whéce decomposition of unity. They lead
to a transparent analysis of the QED anomalies, in complgement with the standard results. This
is a strong incitation to pursue further the investigatiomsthe merits and possible illnesses of this
regularisation scheme in the context of the LC formalismeltiftheories.
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