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Abstract: We show that Gödel-like deformations of AdS3 in heterotic string theory can

be realized as an exact string background. Indeed it appears that this class of solutions

is obtained as an exactly marginal deformation of the conformal field theory describing

the NS5/F1 heterotic background. It can be also embedded in type II superstrings by

Kaluza-Klein reduction. We compute the spectrum of this model as well as the genus one

modular invariant partition function. We discuss the issue of closed timelike curves and

the propagation of long strings. They destabilize completely the background, although we

construct another exact string background that may describe the result of the condensation

of these long strings. Closed timelike curves are avoided in that case.
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1. Introduction

The fate of closed timelike curves (CTC’s) in general relativity is a long standing problem.

There is in particular a conjecture by Hawking [1] – the “Chronology Protection Conjec-

ture” – which states that, in quantum gravity, a causally safe background cannot develop

closed timelikes curves. One of the oldest known nontrivial spacetimes with this pathology

is the Gödel universe [2]. Spacetimes of this kind have been recently embedded in various
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supergravity theories [3] [4] [5], in the hope that string/M theory would cast a new light on

this type of spacetimes. All these works are based on an analysis of the low energy effective

action and therefore do not take into account the full quantum string effects. Nevertheless

some interesting observations were made while considering extended BPS objects (branes

and supertubes) in these spacetimes, which may destabilize the background [6]. Besides

one type of Gödel universe is T-dual to an exact type IIA pp-waves background. This

opened the door for exact quantization of string probes [7] [8] [5] [9], albeit only in the

lighthcone gauge.

In this note we would like to point out that a one parameter class of spacetimes

interpolating between AdS3 and the Gödel universe constructed in [10] - and recently

discussed in [11] in the context of general relativity - can actually be embedded as an exact

heterotic string background. It turns out that it is obtained as an asymmetric deformation of

the SL(2, R)L ·SL(2, R)R conformal field theory (all the left-right symmetric deformation

have been considered in a previous paper [12]) and of the current algebra of the gauge

group. If we want to consider type II superstrings – and in that case the background will

be supersymmetric – we can choose an internal compact U(1) instead. The CFT description

of this background allows us to compute the exact string spectrum and partition function.

We can also trace back the different kind of states which appear in the spectrum in terms of

SL(2, R) representations, and show that the no-ghost theorem for SL(2, R) can be extended

to the deformed theory.

Then we discuss long string states to see if something special happens due to the

closed timelike curves around which they can wind. We will show explicitly that the

long strings seems to destabilize the background, because their spectrum becomes highly

tachyonic. We propose a mechanism to solve the causality problem, by the condensation of

a ring of fundamental strings, akin to the enhancon mechanism [13]. The endpoint of this

condensation can also be realized as an exact conformal field theory, which does not contain

instabilities as we shall see. This can be interpreted as a stringy chronology protection.

The paper is organized as follows. In section 2, we study the sigma model corresponding

to the Gödel/AdS3 solution, i.e. the solution for the background fields. In section 3

we compute the spectrum for all the string excitations in this background, and then the

modular invariant partition function at genus one. In section 4 we consider the long string

solutions, classically and at the level of the exact string background. We propose a scenario

in section 5 to solve the instability by condensing fundamental strings. Finally in section 6

we summarize the main results of the paper and discuss holography. Appendix A is a short

review of the spectrum and partition function for AdS3; in appendix B we give several

coordinate systems on the Gödel/AdS3 spacetime. An outline of the proof of the no-ghost

theorem is given in appendix C.

2. The Gödel/AdS3 solution

2.1 The worldsheet conformal field theory

We start with the AdS3 · S3 · K3 background of heterotic string theory. It represents a

configuration of wrapped NS5-branes and fundamental strings [14] [15] [16]. The part of
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the worldsheet action which is relevant to discuss the deformation comprises the SL(2, R)k

– AdS3 – part and the worldsheet right-moving current algebra :

S =
1

4̉

∫

d2z
k

2

(

∂r∂̄r − ∂˺∂̄˺ − ∂˻∂̄˻ − 2 cosh r∂˺∂̄˻
)

+ ̀µν̑
µ∂̄̑ν + ̄I∂̄I

(2.1)

Here the ̑µ are the worldsheet fermions of the holomorphic CFT (supersymmetric side),

while the antiholomorphic fermions ̄I are the internal fermions of the gauge sector, with

currents: J̄IJ = i : ̄I(z̄)̄J(z̄) :. We would like to turn on a gauge field by switching on

the operator:

V (z, z̄) =
(

J3 + ȋ+̑−)

J̄a , (2.2)

where

J3 = k (∂˻ + cosh r ∂˺) . (2.3)

Such a deformation is not possible around flat space because the corresponding operator:

Vflat = F a
ij

(

1

2
xi∂xj + ̑ȋj

)

J̄a

is not marginal. However a magnetic deformation of the NS5-branes background has been

studied some years ago [17]. It was first introduced in the context of infrared regularization

of superstrings [18]1.

Our treatment of AdS3 deformation will be close in spirit. Switching on this gauge field in

the bulk, and taking into account the back-reaction on the metric and the other fields, we

obtain the solution of the sigma-model equations:

4

k
ds2 = dr2 − (1 + 2H2 cosh2 r)d˺2 − (1 + 2H2)d˻2 − 2(1 + 2H2) cosh r d˺d˻

B =
k

4
cosh r d˻ ∧ d˺

A = −g
√

kH [cosh r d˺ + d˻] (2.4)

The metric can be also rewritten as a squashed AdS3 geometry, as was first noticed in [19]:

ds2 =
k

4

[

dr2 + sinh2 rd˺2 − (1 + 2H2) (d˻ + cosh r d˺)2
]

(2.5)

The propagation of scalar fields in this spacetime has been recently addressed in [11]. The

“pure” Gödel geometry is obtained for the special value of the deformation parameter:

HGoedel =
1√
2
.

The relation with AdS3 in global coordinates becomes more obvious after the change

of coordinates:

˺ = t + ̏ , ˻ = t − ̏ , r = 2̊

1Other magnetic backgrounds for the heterotic string have been constructed in [8].
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Then we obtain the solution:

1

k
ds2 = d̊2 − cosh2 ̊ dt2 + sinh2 ̊ d̏2 − 2H2

(

cosh2 ̊ dt + sinh2 ̊ d̏
)2

B =
k

2
cosh 2̊ d̏ ∧ dt

F = dA = g
√

kH sinh 2̊ (dt + d̏) ∧ d̊ (2.6)

By construction, the isometry group of this spacetime is SL(2, R) · U(1).

2.2 Causal structure

This section is a short review of the results of [19] [11] that we give for completeness. The

striking feature of the class of backgrounds (2.5) is that there are closed timelike curves

spanned by the coordinate ̏ above the critical radius:

Gφφ = k sinh2 ̊c(1 − 2H2 sinh2 ̊c) = 0 ջ ̊c = arcsinh
1√
2H

(2.7)

These closed timelike curves are contractible, hence the spacetime is topologically trivial.

Since the spacetime is homogeneous, they are closed timelike curves going through each

point of the manifold. Although translation in the coordinate t corresponds to a globally

defined timelike Killing vector, we cannot globally define a time function because the

sections of the spacetime at constant t are not spacelike hypersurfaces, due to the closed

timelike curves. The Cauchy problem is not well-defined in this spacetime.

The analysis of the geodesics in these backgrounds has been made in hyperbolic coor-

dinates, see appendix B. The authors of [11] observed that the null and timelike geodesics

projects onto full circles of arbitrary center. For the spacelike geodesics it is true only for

those with ̊ > ̊c, i.e. those projecting onto closed timelike curves. In AdS3, it has been

shown [22] that the action of spectral flow on spacelike geodesics produces long strings

that can reach the boundary of Anti de Sitter and wind around the ̏-coordinate ; in the

Gödel-deformed background, as we will see, these long string states are still present, and

can wind around the closed timelike curves, causing a potential instability.

2.3 Conformal invariance

We now have to show that the deformation of the conformal field theory is truly marginal

to all orders in the deformation. We bosonize the right-moving gauge current used for the

deformation as: J̄a = i∂̄Y . We will work in bosonic strings for simplicity; in that case J̄a

has a left-moving partner. Then Y (z, z̄) can be viewed as an internal coordinate, and the

background will be obtained by a Kaluza-Klein reduction. We write the relevant part of

the sigma-model for the deformed geometry in the Kaluza-Klein form as:

Sdef =
1

4̉

∫

d2z
k

2

{

∂r∂̄r − ∂˺∂̄˺ − ∂˻∂̄˻ − 2 cosh r∂˺∂̄˻

−2H2
[

cosh2 r∂˺∂̄˺ + ∂˻∂̄˻ + cosh r
(

∂˺∂̄˻ + ∂˻∂̄˺
)]}

+
[

∂Y −
√

kH (cosh r∂˺ + ∂˻)
] [

∂̄Y −
√

kH
(

cosh r∂̄˺ + ∂̄˻
)

]

(2.8)
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To prove conformal invariance, we note, as in [17] that one may rewrite the action as:

SSL(2,R)(r, ˺, ˻) +
1

4̉

∫

d2z ∂Y ∂̄Y −
√

kH

2̉

∫

d2z (∂˻ + cosh r ∂˺) ∂̄Y

= SSL(2,R)

(

r, ˺, ˻ +
2H√

k
Y

)

+
1 + 2H2

4̉

∫

d2z ∂Y ∂̄Y (2.9)

where we have dropped out a total derivative:

2
√

kH

∫

d2z
(

∂Y ∂̄˻ − ∂̄Y ∂˻
)

;

this term will however give rise to topological contributions to the spectrum. It turns

out that the last expression (2.9) is exactly the same as the sigma-model of the deformed

background, eqn. (2.8). The conclusion is that this background is an exactly conformal

invariant sigma-model, to all orders in ˺′. In section 3 we will compute explicitely the

spectrum for the heterotic background. We get also from eqn. (2.9) the modified expression

for the J3 current:

J3
d = k (∂˻ + cosh r∂˺) + 2H

√
k∂Y , (2.10)

and the SL(2, R)L symmetry is broken down to U(1). Of course, the SL(2, R)R is preserved

by the deformation.

2.4 Target-space supersymmetry

The supersymmetry variations for the gaugino, the dilatino and the gravitino are:

˽̐ = Fab˼
ab ǫ

˽̄ =

(

˼a∂ȁ − 1

6
Habc˼

abc

)

ǫ

˽Ψa =

[

∂a +
1

4

(

̒bc
a − Hbc

a

)

˼ab

]

ǫ (2.11)

From the dilatino variation we obtain:

[

Γ3Γ4Γ5 − 1√
1 + 2H2

Γ0Γ1Γ2

]

ǫ = 0 (2.12)

where 0,1,2 are the tangent space indices for AdS3 and 3,4,5 those of S3. Thus, the su-

persymmetry is completely broken by the deformation. The analysis of the gaugino and

the gravitino equations would lead to the same conclusion. However for the consistency

of the string theory one still has to perform the GSO projection; the possible appearance

of tachyonic modes will be addressed in section 4. If this solution is embedded in type II

superstrings, as a Kaluza-Klein reduction - see eqn. (2.8) - the background is a supersym-

metric solution of the corresponding Kaluza-Klein supergravity, as in [20]. It will be shown

in sect. 3.
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3. The string spectrum and one-loop partition function

The partition function for type IIB superstring theory on AdS3 · S3 · K3 was obtained

in [12]. The extension to heterotic case is straightforward, by using the heterotic map [21].

For concreteness, we consider an E8 · E8 ջ E8 · E7 · SU(2) · U(1)4 compactification:

Z(̍) =
Im̍

̀2 ¯̀14
ZSU(2)ZSL(2,R)

1

2

1
∑

h,g=0

Z4,4

[

h

g

]

·1

2

1
∑

a,b=0

(−)a+b ̚2

[

a

b

]

̚

[

a + h

b + g

]

̚

[

a − h

b − g

]

· Γ̄E8 ·
1

2

1
∑

γ,δ=0

¯̚
[

˼ + h

˽ + g

]

¯̚
[

˼ − h

˽ − g

]

¯̚6

[

˼

˽

]

, (3.1)

The twisted torus conformal blocks are:

Z4,4

[

h

g

]

=
Γ4,4

̀4 ¯̀4
for h = g = 0, and Z4,4

[

h

g

]

16̀2 ¯̀2

∣

∣

∣̚
[

1−h
1−g

]

(0|̍)
∣

∣

∣

4 otherwise. (3.2)

The SU(2)k bosonic conformal block is chosen to be the standard diagonal invariant:

ZSU(2) =
k

∑

l=0

̐l
k ¯̐l

k ,

and the SL(2, R)k+4 partition function is given in appendix A.

3.1 Exact string spectrum in the Gödel /AdS spacetime

Now we would like to perform the marginal deformation (2.2) in this CFT heterotic back-

ground. As it is known generically for conformal field theories based on affine algebras, the

deformation will act on the weight lattice of the subgroup along which the deformation is

performed (see [23] for a recent discussion):

• The Abelian elliptic subgroup of the supersymmetric SL(2, R)k+2, generated by J3 +

ȋ+̑−, for the left-movers,

• a U(1) subgroup of the gauge group for the right-movers.

The left and right weights of the relevant lattices are:

L0 = − 1

k + 4

(

m̃ +
k + 4

2
w+

)2

+
1

2

(

n +
a

2

)2

= − 1

k + 2

(

m̃ +
k + 4

2
w+ + n +

a

2

)2

+
k + 4

2(k + 2)

(

n +
a

2
− w+ − 2m̃

k + 4

)2

(3.3)

L̄0 = − 1

k + 4

(

¯̃m +
k + 4

2
w+

)2

+
1

2

(

n̄ +
˼

2

)2
(3.4)
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Here n+a/2 corresponds to the charges of the left fermionic current ̑+̑−, and a = 0, 1 are

respectively the NS and the R sector, as in the partition function. Also n̄+˼/2 corresponds

to the weights lattice of the gauge current which is picked out by the deformation. In the

expression for L0, eqn. (3.3), we have explicitely factorized the supersymmetric weights of

SL(2, R)k+2. Then the deformation acts as a O(2) rotation between these weights and the

right weights of the U(1) gauge field2, parameterized by the angle ˿; we obtain then:

Ldef
0 = −

[

cos ˿√
k + 2

(

m̃ +
k + 4

2
w+ + n +

a

2

)

+
sin ˿√

2

(

n̄ +
˼

2

)

]2

+
k + 4

2(k + 2)

(

n +
a

2
− w+ − 2m̃

k + 4

)2

(3.5)

L̄def
0 = − 1

k + 4

(

¯̃m +
k + 4

2
w+

)2

+

[

cos ˿√
2

(

n̄ +
˼

2

)

− sin ˿√
k + 2

(

m̃ +
k + 4

2
w+ + n +

a

2

)]2

(3.6)

where the relation between this parameterization and the vev of the gauge field is:

cos2 ˿ =
1

1 + 2H2
(3.7)

Note that there is no maximal value for the gauge field, unlike the magnetic NS5-brane

background [17].

In the type II superstrings (Kaluza-Klein reduction), we replace the lattice from the right-

moving heterotic gauge sector by the right lattice of a compact internal coordinate. In

this case it is obvious that the deformation preserves 8 supercharges coming from the

right-moving fermionic sector, left untouched by the deformation.

3.2 One-loop vacuum amplitude

To compute the partition function for heterotic strings on Gödel/AdS3·S3·K3 one simply

has to combine the previous analysis of the spectrum with the remaining ingredients. Then

2it is of course the analytic continuation of the usual O(1, 1) transformation of toroidal lattices, but here

the lattice of J3 is timelike

– 7 –



the partition function of the deformed model reads (see appendix A):

ZGoedel(̍) =
Im̍

̀3 ¯̀15
ZSU(2)

1

2

1
∑

h,g=0

Z4,4

[

h

g

]

·1

2

1
∑

a,b=0

(−)a+b ̚

[

a

b

]

̚

[

a + h

b + g

]

̚

[

a − h

b − g

]

· Γ̄E8 ·
1

2

1
∑

γ,δ=0

¯̚
[

˼ + h

˽ + g

]

¯̚
[

˼ − h

˽ − g

]

¯̚5

[

˼

˽

]

·
∫

d2t Zcigar

[−t1
−t2

]

∑

N,W,n,n̄∈Z

eiπ(2Nt2+b(n+a
2
)−δ(n̄+ γ

2
))

· q
−

h

cos ζ√
k+2

(N+ k+4
2

W+n+a
2 )+

sin ζ√
2
(n̄+ γ

2 )
i2

+ k+4
2(k+2)(n+a

2
−W− 2N

k+4)
2

· q̄
− 1

k+4(N− k+4
2

W)
2
+

h

cos ζ√
2

(n̄+ γ
2 )− sin ζ√

k+2
(N+ k+4

2
W+n+a

2 )
i2

(3.8)

This partition function is modular invariant by construction since it is obtained as an

O(2, 2, R) rotation of an even self-dual lattice. Due to the mixing between the fermionic

characters and the lattice of J3, it is not possible to use a Jacobi identity to prove target

space supersymmetry; all the supersymmetry is broken in this background, as expected

from the target space analysis.

4. The fate of long strings

The long strings, corresponding to the continuous representations of SL(2, R) are the nat-

ural probes for the closed timelike curves since they can wind around the coordinate ̏ and

become macroscopic. Such long strings in Gödel universe T-dual to pp-waves have been

considered recently in [9]. Another analysis for M2-branes in M-theory Gödel universes

has been made in [24].

4.1 Classical analysis

We would like to understand the behavior of simple long strings solutions. We will consider

classical solutions to the Nambu-Goto action:

S = −T1

∫

d2̇
√

G + T1

∫

B[2] (4.1)

4.1.1 Long strings in AdS3

In the undeformed AdS3 geometry, we parameterize a long string wrapping w times the ̏

coordinate, without angular momentum, as:










t = w+̍

̏ = w+̌

̊ = ̊(̍)

(4.2)
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where we have used the static gauge for the time coordinate. So the classical Nambu-Goto

action for a F1-string probe is:

S = −̉kw+T1

∫

d̍

(

sinh ̊
√

w2
+ cosh2 ̊ − ˙̊2 − w+ cosh2 ̊

)

(4.3)

with the equation of motion:

− d

d̍

˙̊ sinh ̊
√

w2
+ cosh2 ̊ − ˙̊2

=
w2

+ cosh 2̊ − ˙̊2
√

w2
+ cosh2 ̊ − ˙̊2

cosh ̊ − w+ sinh 2̊

We have a long string solution:

̊ = w+|̍ | ;

so the long string reach the boundary of AdS3 for t = �∞. Qualitatively this behavior

appears because the attractive force due to the string tension and the repulsive force due

to the NS-NS two-form cancel. Adding a momentum k along other coordinates, we find

solutions with ̊(̍) = (w2
+ + k2)1/2|̍ |. More general solutions have being obtained using a

group manifold approach in [22].

4.1.2 Long strings in AdS3/Gödel

Now we would like to examine long string solutions in the AdS/Gödel space. The crucial

feature is to check if such long strings can reach the critical radius and then wrap closed

timelike curves. We consider classical macroscopic strings which are uncharged under the

gauge group for simplicity. As in the previous case, we are looking for solutions winding

around ̏, without angular momentum, eqn. (4.2). Then the Nambu-Goto action is given

by:

S = −̉kw+T1

∫

d̍

(

sinh ̊
√

(1 + 2H2)w2
+ cosh2 ̊ − (1 − 2H2 sinh2 ̊) ˙̊2 − w+ cosh2 ̊

)

(4.4)

So we obtain the equation of motion for ̊(̍):

− d

d̍

(1 − 2H2 sinh2 ̊) sinh ̊ ˙̊
√

(1 + 2H2)w2
+ cosh2 ̊ − (1 − 2H2 sinh2 ̊) ˙̊2

=

(1 + 2H2)w2
+ cosh ̊

(

cosh2 ̊ + sinh2 ̊
)

+
(

4H2 sinh2 ̊ − 1
)

cosh ̊ ˙̊2
√

(1 + 2H2)w2
+ cosh2 ̊ − (1 − 2H2 sinh2 ̊) ˙̊2

cosh ̊ − w+ sinh 2̊

We still have also long string solutions with:

̊(̍) =
√

1 + 2H2 w+|̍ | (4.5)

The radius of the worldsheet of these long strings grows linearly with time, until they even-

tually wrap the closed timelike curves. We conclude that the Gödel deformation changes

the on-shell values of the momenta, but otherwise leads to the same qualitative behavior

of the long string solutions as in AdS3: long strings can escape to infinity with a finite

energy.
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4.2 Unitarity of the physical spectrum

Naively, we would expect that the string spectrum would contain ghosts for long string

solutions. In fact, the kinetic term for the field ̏(z, z̄) in the Polyakov action is:

L ∼ k sinh2 r(1 − 2H2 sinh2 r)∂̏∂̄̏,

so, for r > rc it seems that the sign of the kinetic term for the fluctuations of ̏ become

negative. But the off-diagonal term between ̏(z, z̄) and t(z, z̄) makes the analysis more

subtle; indeed, the determinant of the metric of the deformed spacetime is:

−g = (1 + 2H2)

(

k

4

)3

sinh2 r,

which is always of the same sign.

To have a precise answer to this crucial issue, we will adapt the no-ghost theorem for

SL(2, R) , to the case of the Gödel-deformed SL(2, R). We would like to see if the modifi-

cation of the structure of the zero modes changes the conclusion about the suppression of

negative-norm states by the Virasoro conditions. A outline of the no-ghost theorem proof

is given in appendix C. The conclusion is: the spectrum doesn’t contain negative-norm

states.

4.3 Long strings spectrum

Now we consider the exact string spectrum. We would like to see if the spectrum contains

tachyons, i.e. on-shell states with an imaginary value for the energy3:

E = J3
0 + J̄3

0 = m̃ + ¯̃m + (k + 2)w+.

The mass-shell condition for the continuous representations reads:

L0 =
s2 + 1/4

k + 2
− w+

(

m̃ + ñ +
a

2

)

− k + 2

4
w2

+ +
1

2

(

ñ +
a

2

)2

+
sin ˿

k + 2

{[

(

m̃ +
k + 2

2
w+ + ñ +

a

2

)2

− k + 2

2

(

n̄ +
˼

2

)2
]

sin ˿

−
√

2(k + 2)

(

m̃ +
k + 2

2
w+ + ñ +

a

2

)

(

n̄ +
˼

2

)

cos ˿

}

+ N + hother −
1

2
= 0

(4.6)

L̄0 =
s2 + 1/4

k + 2
− w+

¯̃m − k + 4

4
w2

+ +
1

2

(

n̄ +
˼

2

)2

+
sin ˿

k + 2

{[

(

m̃ +
k + 2

2
w+ + ñ +

a

2

)2

− k + 2

2

(

n̄ +
˼

2

)2
]

sin ˿

−
√

2(k + 2)

(

m̃ +
k + 2

2
w+ + ñ +

a

2

)

(

n̄ +
˼

2

)

cos ˿

}

+ N̄ + h̄other − 1 = 0

(4.7)
3As we have seen there is no globally defined notion of energy in this spacetime. At any rate, we will

take the same definition as in AdS3 – the conjugate to the t translations – since the corresponding isometry

is unbroken by the deformation.
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In a supersymmetric WZW model, the spectral flow must act also on the fermions, so

n = ñ − w+ in the w+-flowed sector (see [25]); it amounts to redefining the vacuum. We

also have to act with the spectral flow in the gauge sector, in order to satisfy the matching

condition L0 = L̄0. At this point we have to decide if we act on the U(1) along which we

switch on a field strength - choice (i) - or an other unbroken Cartan generator - choice (ii).

Since we have constructed the deformation such that it preserves L0 − L̄0, both choices are

equally acceptable. However the spectrum is slightly different. In both cases, the matching

condition will be satisfied, provided that:

w (m̃ − ¯̃m) = wℓ = hother − h̄other,

where ℓ is the angular momentum.

We take for example the “massless” state:

• left : |s, p〉 ⊗ ̑other
−1/2 |0〉NS

• right: ¯˺other
−1 |s, p̄〉 ⊗ |0〉NS

Then we have, with the embedding of the spectral flow (ii):

L
(ii)
0 =

s2 + 1/4 + m̃2 sin2 ˿

k + 2
− k + 2

4
w2

+ cos2 ˿ − w+m̃ cos2 ˿ +
1

2
p2 (4.8)

So we have the mass-shell condition for the state under consideration:

s2 + 1/4

k + 2
+

k + 2

4
w2

+ − w+
E

2
+

sin2 ˿

4(k + 2)
E2 +

1

2
p2 = 0 (4.9)

And

E =
k + 2

sin2 ˿



w+ �
√

w2
+ cos2 ˿ − 4 sin2 ˿

k + 2

(

s2 + 1/4

k + 2
+

1

2
p2

)



 .

If the momenta are large, the state will become tachyonic. This strange behavior is due to

the quadratic term in the energy with a positive sign. The critical value is:

s(ii) 2 + 1/4

k + 2
+

1

2
p2 =

k + 2

4
w2

+cotan2˿.

For a more general state with oscillators, the same statement holds. An infinite number of

massive long string states will become tachyonic when the Gödel deformation is turned on

(other tachyonic instabilities in magnetic fields have been discussed in [8]); these instabili-

ties are likely due to the wrapping of closed timelike curves.

For the other embedding of spectral flow - choice (i) - we have instead:

L
(i)
0 =

s2 + 1/4 + m̃2 sin2 ˿

k + 2
− 1

2

(
√

k + 2

2
cos ˿ + sin ˿

)2

w2
+

− cos ˿

(

cos ˿ +

√

2

k + 2
sin ˿

)

w+m̃ +
1

2
p2 (4.10)
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and we find a correction to the critical value of momenta:

s(i) 2 + 1/4

k + 2
+

1

2
p2 =

k + 2

4
w2

+

[

cotan ˿ +

√

2

k + 2

]2

,

but otherwise the conclusions are the same.

Behavior of short strings

Since the discrete representations correspond to strings trapped in the center of the space-

time (around r = 0), we expect that the corresponding spectrum is well-behaved. For the

discrete representations, we have:

is =
1

2
− j̃,

and also a relation between the spin j̃ and the J̃3 eigenvalue: m̃ = j̃ + q, with q ∈ N, for

the primaries of the lowest weight representations. The spin is also restricted for unitarity

to

1/2 < j̃ < (k + 2)/2 (4.11)

We can solve the mass-shell condition for j̃:

LD+

0 = − j̃(j̃ − 1)

k + 2
− k + 2

4
w2

+ cos2 ˿ − w+(j̃ + q) cos2 ˿ +
sin2 ˿

k + 2
(j̃ + q)2 + hint = 0, (4.12)

and find:

j̃ =
1

2 cos2 ˿
− k + 2

2
w+ + q tan2 ˿

+
1

cos2 ˿

√

1

4
+ (k + 2)

(

Nw + hint −
w+

2

)

cos2 ˿ + q(q + 1) sin2 ˿, (4.13)

where Nw ≡ N −wq is the level of the algebra after spectral flow. We observe that the fact

that j̃ is real or not is not affected by the deformation, hence we don’t have an instability

such as for the long strings. However the range of values for the spin allowed by the

unitary bound (4.11) will impose different constraints on the internal weights. It would

be interesting to relate this short string spectrum with the analysis of energy levels for a

point particle in [11].

5. Can gravitational deformation cure the pathology ?

We have seen that the Gödel deformation of AdS3, supersymmetric or not, completely

destabilizes the background. Then we expect some kind of closed tachyon condensation; the

description of this process is out of reach at present, but we can try to find the background

that would correspond to the endpoint of the tachyon decay.
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5.1 Switching on more background fields

There is an additional deformation of the background which is exactly marginal, generated

by the bilinear of the unbroken currents

Vg ∼ (J3 + ȋ+̑−)(J̄3 − i ¯̑+ ¯̑−).

We would like to check if such a deformation can eliminate the closed timelike curves. This

deformation have been studied in [12] around the SL(2, R) point. Here we would like to

perform this deformation in combination with Gödel deformation. This is possible since

each deformation preserves the U(1)L · U(1)R symmetry generating the other one. The

solution of the sigma-model equations gives (see [17]):

4

k
ds2 = dr2 − (̄2 + 1)2 + (8H2̄2 − (̄2 − 1)2) cosh2 r

(̄2 + 1 + (̄2 − 1) cosh r)2
d˺2

−(̄2 + 1)2 + 8H2̄2 − (̄2 − 1)2 cosh2 r

(̄2 + 1 + (̄2 − 1) cosh r)2
d˻2

−2
4̄2(1 + 2H2) cosh r − (̄4 − 1) sinh2 r

(̄2 + 1 + (̄2 − 1) cosh r)2
d˺d˻

B =
k

4

̄2 − 1 + (̄2 + 1) cosh r

̄2 + 1 + (̄2 − 1) cosh r
d˻ ∧ d˺

A =
2g

√
kH̄

̄2 + 1 + (̄2 − 1) cosh r
(d˻ + cosh rd˺)

e2Φ =
(̄ − 1)e2Φ0

̄2 + 1 + (̄2 − 1) cosh r
(5.1)

The model without J3J̄3 deformation corresponds to ̄ = 1. The scalar curvature of this

manifold is given by:

R(H, ̄) = −8

k

5̄2 − 1 − ̄4 − 2H2̄2 + (1 − ̄4) cosh r

(1 + ̄2 + (̄2 − 1) cosh r)2
. (5.2)

We want to check if this spacetime has closed timelike curves. The (̏ − ̏)-component of

the metric is:

Gφφ = k
2̄2(1 + 2H2) cosh r + (1 − ̄2(1 + 2H2)) cosh2 r − (1 + ̄2(1 + 2H2))

(1 + ̄2 + (̄2 − 1) cosh r)2
. (5.3)

We would like to know for which values of ̄ the numerator is always positive. The conclu-

sion is:

No CTC′s ս ̄2 ≤ 1

1 + 2H2
(5.4)

However, in this range, the background (5.1) becomes singular. The scalar curvature,

eqn. (5.2), blows up at:

rsing = arccosh
̄2 + 1

1 − ̄2
.

But the worldsheet conformal field theory is well-defined. This singularity corresponds

to a ring of positive tension objects which are electrically charged under the NS-NS two
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form and charged under the gauge field. To have a more precise picture, we take for ̄ the

limiting value that avoids closed timelike curves: ̄2 = 1/(1+2H2). Then we find that the

singularity is located at:

rsing = 2̊sing = 2 arcsinh
1√
2H

(5.5)

We observe that the locus of the annular singularity corresponds exactly to the critical

radius above which closed timelike curves occurs, eqn. (2.7). Furthermore the long strings

become tachyonic in the Gödel/AdS3 spacetime because they can wind around these closed

timelike curves. Therefore, it is very tempting to interpret this annular singularity as a

ring of condensed fundamental strings, protecting the causally unsafe region, in the same

spirit as the supertubes domain walls considered in [6]. It would be interesting to make

the connection with the D1/D5 black rings of [26].

5.2 Long string spectrum and chronology protection

Now we would like to know the expression of the long string spectrum as a function of the

parameters of deformation H and ̄. By turning on the gravitational deformation ̄, the

mass-shell condition (4.9) becomes (see [12]):

L0 =
s2 + 1/4

k + 2
+

k + 2

4
w2

+ − w+
E

2
+

1

4(k + 2)

(

1 − cos2 ˿

̄2

)

E2 + h = 0 (5.6)

and the energy will be given by:

E = (k + 2)

(

1 − cos2 ˿

̄2

)−1
{

w+ �
√

w2
+

cos2 ˿

̄2
+

4

k + 2

(

cos2 ˿

̄2
− 1

) (

s2 + 1/4

k + 2
+ h

)

}

.

(5.7)

so we find that there are no tachyonic behavior any longer in the spectrum, provided that

̄2 < cos2 ˿.

Comparing with the relation (3.7), this is exactly the same as the condition (5.4) required

to avoid closed timelike curves ! Therefore, we see that there string theory offers a natural

mechanism for chronology protection in Gödel-like universes.

6. Discussion and conclusions

We have studied a class of string backgrounds of the Gödel type, which are homogeneous

and contain closed timelike curves. We have shown that these solutions are in fact exact

conformal field theories obtained by a truly marginal deformation of the SL(2, R) CFT. In

heterotic superstrings, this deformation switches on a non-trivial gauge field in the bulk,

and breaks all the supersymmetry. Embedded in type II superstrings as a Kaluza-Klein

reduction, this background preserves 8 supercharges coming from the right-movers, if we

start with the AdS3·S3·K3 background describing NS5 branes and fundamental strings.

We were able to construct the exact string spectrum for this solution, as well as the modular
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invariant partition function. We showed that the Gödel deformation preserves the unitarity

of the physical spectrum, by proving a no-ghost theorem.

We then discussed the issue of long strings, which can wrap the closed timelike curves,

first by showing that such classical solutions still exists in the deformed background. Then

we studied the long string spectrum, expecting some pathology due to the closed timelike

curves. We found that the spectrum of these long strings is highly tachyonic, for any

nonzero value of the deformation parameter. This statement holds in the type II case as

well, so it is independent of the issue of supersymmetry breaking. We expect that these

tachyonic long strings will destabilize the background. On the contrary, the spectrum of

short strings is not pathologic, as we could infer because they are trapped in the center of

the spacetime.

A possible resolution of the causality problem in this background has been proposed, by

turning on another marginal deformation. It turned out that the closed timelike curves can

be avoided, at the expense of going to a region of the moduli space where the background

becomes singular. We observed that an annular singularity occurred precisely at the radius

where the Gödel/AdS space started developing closed timelike curves, which were the source

of instability for the long string probes. We showed that the spectrum of the resulting

background is well-behaved. Therefore, we have interpreted this curvature, NS-NS two

form and gauge field singularity as the result of the condensation of a ring of fundamental

heterotic strings, in the same spirit as the supertubes of [6]. The proper description of this

process would require a second-quantized framework – closed string field theory. If this

is indeed the proper interpretation, it would be the first example of a stringy chronology

protection in an exact string theory framework.

Since this background is continuously connected to AdS3 · S3 · K3 – the NS5/F1

background – we can expect some holographic interpretation. This issue have already

been discussed in [4]. The authors showed that if one applies the covariant prescription of

Bousso [27], on finds that the holographic screen, which is observer-dependent, encloses a

the causally safe region; they argued that it leads to an “holographic protection” of these

spacetimes. The radius of this cylindrical screen was shown to be:

rscreen = 2 arcsinh
1

2H
. (6.1)

This holographic screen is at finite distance, and the H ջ 0 limit gives the usual holo-

graphic screen of AdS3 at infinity. It is difficult to interpret the Gödel deformation of

AdS3 in terms of the boundary theory. In fact, in AdS3, the currents are non-normalizable

operators and thus marginal current-current deformations corresponds to IR irrelevant de-

formations of the dual CFT. Nevertheless, one might hope to understand the instability

of the Gödel/AdS spacetime due to long string states as some instability in the boundary

theory, triggered by some irrelevant operator, and then have an holographic picture of the

bulk tachyon condensation. It have been shown [28] on a related example (BMPV black

hole), that if we allow closed timelike curves in the bulk by increasing the rotation of the

black hole, the states of the dual CFT will violate the unitarity bound. Since the spacetime

we obtain after the condensation of the ring of fundamental strings seems stable, it would
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be really interesting to understand holography in this background, if any. We will address

this problem in a future work.
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A. The SL(2, R) partition function

The computation of the one-loop vacuum amplitude have been done in [12], using a mixture

of path integral and algebraic techniques. The result is, for SL(2, R) at level k + 4:

ZSL(2,R)(̍) =
4(k + 4)

√
k + 2

̍
1/2
2

∑

n,w,N,W

∫ 1

0
ds1ds2dt1dt2

e
2π
τ2

(Im(s1τ−s2))2

|̚1 (s1̍ − s2|̍)|2

· e
− (k+4)π

τ2
|(s1−t1+w)τ−(s2−t2+n)|2

e
(k+4)π

τ2
|(t1+W )τ−(t2+N)|2

(A.1)

The integration over the constraints s1 and s2 gives the spectra for all the flowed and

unflowed representations (see [12] for details). The spectrum of primary states gives:

• Discrete representations representing strings trapped in the center of AdS3; they

appear in the range 1
2 < j̃ < k+2

2 . Their conformal weights are:

L0 = − j̃(j̃ − 1)

k + 2
+ w+

(

−m̃ − k + 4

4
w+

)

• Continuous representations with j̃ = −1
2 + is, s ∈ R+. They correspond to long

strings that can reach the boundary of AdS3. The spectral flow quantum number

w+ = w+W represents their winding around the center near the boundary [22]. The

weights are:

L0 =
s2 + 1/4

k + 2
+ w+

(

−m̃ − k + 4

4
w+

)

The relation between the unflowed and flowed eigenvalues follows from:

J̃3
n = J3

n − k

2
w+˽n,0,

and the spacetime energy is given by:

2E = m̃ + ¯̃m + (k + 4)w+ = k(W + t1).

For latter convenience, it is useful to rewrite the SL(2, R) partition function as a twisted

product of the coset SL(2, R)/U(1) (the “cigar” 2d Euclidean black hole) and a timelike
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U(1) :

ZSL(2,R) =
1

̀ ¯̀

∫

d2t Zcigar

[−t1
−t2

]

∑

N,W

q
− 1

2

„

N√
2(k+4)

+
q

k+4
2

(W+t1)

«2

q̄
− 1

2

„

N√
2(k+4)

−
q

k+4
2

(W+t1)

«2

e−2iπNt2 ,

(A.2)

where, (see [35]):

Zcigar

[−t1
−t2

]

= 4
√

(k + 2)(k + 4)
∑

m,w

∫

d2s
̀ ¯̀ e

2π
τ2

(Im(s1τ−s2))2

|̚1 (s1̍ − s2|̍)|2

· e
− (k+4)π

τ2
|(s1−t1+w)τ−(s2−t2+m)|2

.

B. Coordinate systems and geodesics

In cylindrical coordinates, the metric of the AdS/God̈el form is (see eqn. (2.5):

ds2 = dr2 + sinh2 rd˺2 −
(

d̍ + 4Ω sinh2(r/2)d˺
)2

with 2Ω =
√

1 + 2H2

One can go to Cartesian coordinates by the coordinate transformation:



















e2x = cosh(2r) + cos
(

φ+τ
Ω

)

sinh r

ye2x = Ω
2 sinh(2r) sin

(

φ+τ
Ω

)

tan
(

T+(φ−τ)/2
Ω

)

= e−2r tan
(

φ−τ
2Ω

)

Then the metric reads:

ds2 = dx2 +
1

2
e2xdy2 −

(

dT +
√

2Ωexdy
)2

.

The last useful coordinate system corresponds to the hyperbolic coordinates. It is obtained

by:

x = − lnX , y =
√

2Y

Then one obtains:

ds2 =
dX2 + dY 2 −

(

X2dT + 2ΩdY
)2

X2

In these coordinates, the geodesic equation gives [11]:

Ṫ = (1 + 2H2)E −
√

1 + 2H2Xpx

Ẋ = pxX(Y − Y0)

Ẏ = −
√

1 + 2H2EX + pxX2

where the energy E is the charge associated to the Killing vector ∂T , and px the momentum

associated to the Killing vector ∂x.
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C. No-ghost theorem for string theory on Gödel/AdS3: sketch of a proof

Here we would like to outline the main steps of the no-ghost theorem for strings on AdS3

and check whether it is still valid or not, in the case of the Gödel deformation. Unitarity for

a theory living in a spacetime containing closed timelike curves is maybe not a well-defined

concept. Nevertheless, we would like to know if, as in AdS3, the Virasoro constraints are

able to remove all the negative-norm states from the worldsheet conformal field theory.

We will follow [29] [30] [31] and the appendix A of [22]4. We consider string theory on

(deformed) SL(2, R) times a unitary “internal” CFT. The important observation is: writing

the action for the deformed model as eqn. (2.9), we see that, with a field redefinition, the

actions of the deformed and the undeformed model are the same, except that the structure

of the zero modes is different. The mixing in the zero modes have been given in eqns. (3.5)

and (3.6). Note that the part of the CFT corresponding to the coset CFT SL(2, R)k/U(1)

is left untouched. Here we consider for simplicity the case of bosonic strings, and the

Gödel deformation is constructed as a Kaluza-Klein reduction along a coordinate Y (z, z̄)

compactified at the fermionic point5:

Q2
y =

1

2

(

p − q

2

)2
, Q̄2

y =
1

2

(

p +
q

2

)2
.

The extension to heterotic or type II superstrings is straightforward. Since only the zero

mode structure differs from the SL(2, R) · U(1) · CFTinternal, given a representation of

the zero modes, the structure of the Verma modules and the affine representations are

the same, provided that no new null vectors appear. For convenience we will include the

spectral flow quantum number in the parafermionic theory6, writing, for the undeformed

SL(2, R)k:

L̃
SL(2,R)
0 = L̃

SL(2,R)/U(1)
0 − L

(3)
0 ≡ c2

k − 2
+

1

k

(

m − k

2
w+

)2

− m2

k
(C.1)

where c2 is the second Casimir of the group, and:

L(3)
n ≡ − 1

2k

∑

m

: J3
mJ3

n−m :

The proof of the no-ghost theorem can be carried out in three steps.

Step one: we define F as the subspace of the Hilbert space H consisting in states |f〉 ∈ F
such that:

Ln|f〉 = J3
n|f〉 = 0 for n > 0.

Then we have to show that the states of the form

L−n1 ⋅ ⋅ ⋅L−nN
J3
−m1

⋅ ⋅ ⋅J3
−mM

|f〉 with n1 ≥ ⋅ ⋅ ⋅ ≥ nN , m1 ≥ ⋅ ⋅ ⋅ ≥ mM , (C.2)

4It is also possible to use BRST methods, see [32] and [33].
5we have set α′ = 2
6Usually the spectral flow is embedded in the J3J̄3 lattice, by expressing the spectrum in terms of m̃

rather than in terms of m. Nevertheless, our expression of the spectrum of the coset looks like in [34]

and [35].
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form a basis of H. First, to prove that these states are linearly independent, we use an

orthogonal decomposition of the Virasoro generators: Ln = Lc
n − L

(3)
n , and the fact that

the states (C.2) are in one to one correspondence with the similar states constructed with

the Lc
n’s. The Virasoro algebra corresponding to the Lc

n’s has a central charge cc = 25,

and therefore the associated Verma modules will contain no null states, provided that the

conformal weights are strictly positive. The conformal weights for the “parafermionic”

theory are, from eqns (3.5) and (3.6):

Lc
0 = L

SL(2,R)/U(1)
0 +

1

2
Q2 + Ny + hinternal,

L̄c
0 = L̄

SL(2,R)/U(1)
0 +

1

2

(

Q̄ cos ˿ −
√

2

k
m sin ˿

)2

+ N̄y + h̄internal,

and it is known that the coset theory SL(2, R)k/U(1) is unitary and the weights are strictly

positive, provided that the spin of the discrete representations is restricted to: 0 < j < k/2.

So the states (C.2) are linearly independent and form a basis of H.

Step 2: We have to show that a physical state can be chosen such that it can be written

as (C.2) with no L−n.

Using the basis (C.2), we write any state |̑〉 of H as:

|̑〉 = |sp〉 + |̞〉,

where |sp〉 is a spurious state, i.e. with some ni’s non zero, and |̞〉 has all its ni’s being

zero. Then we use the fact that, for a critical string background (c = 26), if we act on a

on-shell (i.e. L0 = 1) spurious state with Ln>0, we obtain again a spurious state. So we

can map every physical state to a state |̏〉 such that Ln>0|̏〉 = 0.

Step 3: We have to show that if a physical state |̞〉 can be written as (C.2) with no

L−n, then J3
n>0|̏〉 = 0. First, this implies that

L
(3)
n>0|̞〉 = 0. (C.3)

We want to show that the states (C.3) are such that: J3
n>0|̞〉 = 0. It will be true if there

are no null states in the Virasoro descendents of L(3) for the left-movers, and L̄(3) for the

right-movers. The weights of this c = 1 conformal field theory are:

L
(3)
0 = −1

k

(

m cos ˿ +

√

k

2
sin ˿ Q̄

)2

L̄
(3)
0 = −1

k
m̄2

So, this statement would be true if L
(3)
0 6= 0 and L̄

(3)
0 6= 0 for all on-shell states. What

remains to do is to examine separately the states with J
(3)
0 = 0 or J̄

(3)
0 = 0.
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• For the right algebra, the mass-shell condition (4.7) for m̄ = 0 reads:

L̄0 =
c2

k − 2
+

k

4
w2 + N̄coset +

cos ˿

2
Q̄2 + N̄3 + h̄internal = 1

where N̄coset is the grade of the state with respect to the currents J̄� and N̄3 is

the grade w.r.t. the current J̄3. So, since h̄internal > 0 there are no on-shell states

obtained by the action of J̄3
−n (i.e. with N̄3 6= 0) for the continuous representations.

It is also true for the discrete representations, provided that 0 < j̃ < k/2, as in the

undeformed SL(2, R).

• For the left algebra, we are looking for states with

m cos ˿ +
√

k/2 sin ˿ Q̄ = 0. (C.4)

We have the corresponding on-shell condition:

L0 =
c2

k − 2
+ Ncoset +

1

k

(

m − k

2
w+

)2

+ N3 +
1

2
Q2 + N + hinternal = 1

In a representation D+
j̃

, we have m̃ = j̃ + q, q ∈ Z, and, if q is negative:

−q ≤ Ncoset. (C.5)

So we have for the weights of the coset part:

Lcoset
0 =

−j̃(j̃ − 1)

k − 2
+

m̃2

k
+ Ncoset

=
q2

k
+

j̃

k − 2

[

1 − 2j̃

k

]

+
2

k
j̃q + Ncoset

If j̃ is taken in the range 0 < j̃ < k/2, then with the inequality (C.5) we obtain that

Lcoset
0 > 0. So there are no on-shell states with N3 ≥ 1.

This completes the proof of the no-ghost theorem.
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