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FRÉDÉRIC HÉLEIN and PASCAL ROMON

1. Introduction

Hamiltonian stationary Lagrangian surfaces are Lagrangian surfaces of a given
four-dimensional manifold endowed with a symplectic and a Riemannian structure,
which are critical points of the area functional with respect to a particular class of
infinitesimal variations preserving the Lagrangian constraint: the compactly sup-
ported Hamiltonian vector fields. The Euler–Lagrange equations of this variational
problem are highly simplified when we assume that the ambient manifold N is
Kähler. In that case we can make sense of a Lagrangian angle function β along
any simply-connected Lagrangian submanifold Σ ⊂ N (uniquely defined up to the
addition of a constant). And as shown in [19] the mean curvature vector of the
submanifold is then ~H = J ∇β, where J is the complex structure on N and ∇β is
the gradient of β along Σ. It turns out that Σ is Hamiltonian stationary if and only
if β is a harmonic function on Σ.

A particular subclass of solutions occurs when β is constant: the Lagrangian sub-
manifold is then simply a minimal one. In the case where N is a Calabi–Aubin–
Yau manifold, such submanifolds admit an alternative characterization as special
Lagrangian, a notion which has been extensively studied recently because of its
connection with string theories and the mirror conjecture, see [21].

An analytical theory of two-dimensional Hamiltonian stationary Lagrangian sub-
manifolds was constructed by R. Schoen and J. Wolfson [19], proving the existence
and the partial regularity of minimizers. In contrast our results in the present paper
rest on the fact that, for particular ambient manifolds N , Hamiltonian stationary
Lagrangian surfaces are solutions of an integrable system. This was discovered first
in the case when N = C2 in [10] and [9]. In a subsequent paper [11] we proved
that the same problem is also completely integrable if we replace C2 by any two-
dimensional Hermitian symmetric space. Among these symmetric spaces one very
interesting example is CP 2, because any simply-connected Lagrangian surface in
CP 2 can be lifted into a Legendrian surface in S5. Furthermore the cone in C3

over this Legendrian surface is actually a singular Lagrangian three-dimensional
submanifold in C3; and the cone in C3 is Hamiltonian stationary if and only if the
surface in CP 2 is so.

A similar correspondence has been remarked and used in [12], [16] and [7] in the
case of minimal Lagrangian surfaces in CP 2 and allows these Authors to connect
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results on minimal Lagrangian surfaces in CP 2 [20] to minimal Legendrian surfaces
in S5 [13] and special Lagrangian cones in C3.

Our aim in this paper is the following:

– to expound in details the correspondence between Hamiltonian stationary La-
grangian surfaces in CP 2 and Hamiltonian stationary Legendrian surfaces in
S5 and a formulation using a family of curvature free connections of this inte-
grable system (theorem 2.6). We revisit here the formulation given in [11], us-
ing twisted loop groups. Roughly speaking it rests on the identifications CP 2 ≃
SU(3)/S(U(2)×U(1)) and (S5, contact structure) ≃

(
U(3)/U(2)× U(1), A3

3 = 0
)
,

where A3
3 is a component of the Maurer–Cartan form. We also show that this

problem has an alternative formulation, analogous to the theory of K. Uhlen-
beck [23] for harmonic maps into U(n), using based loop groups.

– to define the notion of finite type Hamiltonian stationary Legendrian surfaces in
S5: we give here again two definitions, in terms of twisted loop groups (which is
an analogue to the description of finite type harmonic maps into homogeneous
manifolds according to [2]) and in terms of based loop groups (an analogue to
the description of finite type harmonic maps into Lie groups according to [3]).
We prove the equivalence between the two definitions because we actually need
this result for the following. We believe that this fact should be well known
to some specialists in the harmonic maps theory, but we did not find it in the
literature.

– we prove in theorem 4.1 that all Hamiltonian stationary Lagrangian tori in
CP 2 (and hence Hamiltonian stationary Legendrian tori in S5) are of finite
type. This is the main result of this paper. Our proof focuses on the case of
Hamiltonian stationary tori which are not minimal, since the minimal case
has been studied by many authors ([3], [20], [13], [7], [14],[15], [16], [12]).
The method here is adapted from the similar result for harmonic maps into
Lie groups in [3]. However the strategy differs slightly: we use actually the
two existing formulations of finite type solutions, using twisted or based loop
groups. One crucial step indeed is the construction of a formal Killing field,
starting from a given torus solution. This step can be slightly simplified here
in the twisted loop groups formulation, because the semi-simple element we
start with is then just constant. However proving that the formal Killing field
is adapted requires more work in the twisted loop groups formulation (actually
we were not able to do it directly) than in the based loop groups formulation;
here we take advantage from the two formulations to avoid the difficulties and
to conclude.

– lastly we give some examples of Hamiltonian stationary Legendrian tori in
S5: we construct in theorem 5.1 a family of solutions which are equivariant in
some sense under the action of the torus, that we call homogeneous Hamiltonian
stationary tori. These are the simplest examples that one can build.

Let us add that the structure of the integrable system studied here fits in a clas-
sification of elliptic integrable systems proposed by C.L. Terng [22], as a 2nd
(U(3), σ, τ)-system†, where σ is an involution of U(3) such that its fixed set is

†We have here exchanged the notations σ and τ with respect to [22] in order to be consistent
with our notations in [11].
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U(3)σ ≃ U(2) × U(1) and U(3)/U(2)σ ≃ CP 2 and τ is a 4th order automorphism
(actually τ2 = σ) which encodes the symplectic structure on CP 2 or the Legendrian
structure on S5.

Notations — For any matrix M ∈ GL(n, C), we denote by M † := tM .

2. Geometrical description of Hamiltonian stationary Lagrangian surfaces in
CPn

2.1. The Lagrangian angle

The complex projective space CPn can be identified with the quotient manifold
S2n+1/S1. It is a complex manifold with complex structure J . We denote by π :
S2n+1 −→ CPn the canonical projection a.k.a. Hopf fibration, and equip CPn with
the Fubini-Study Hermitian metric, denoted by 〈·, ·〉CP n = 〈·, ·〉 − iω(·, ·), where
〈·, ·〉 is a Riemannian metric and ω is the Kähler form†. For each z ∈ S2n+1 we let
Hz be the complex n-subspace in TzS

2n+1 ⊂ Cn+1 which is Hermitian orthogonal
to z (and hence to the fiber of dπz). By construction of the Fubini-Study metric,
dπz : Hz −→ Tπ(z)CPn is an isometry between complex Hermitian spaces. We call
the subbundle H := ∪z∈S2n+1Hz of TS2n+1 the horizontal distribution. It defines in
a natural way a connection ∇Hopf ≃ ∇H on the Hopf bundle π : S2n+1 −→ CPn,
whose curvature is 2iω. As a consequence [18]:

Proposition 2.1. Let Ω be a simply connected open subset of Rn and u : Ω −→
CPn be a smooth Lagrangian immersion, i.e. such that u∗ω = 0. Then there exists
a lift

S2n+1

π

��
Ω

û

<<yyyyyyyyy u // CPn

such that
(
u∗∇H

)
û = 0 (where u∗∇H is the pull-back by u of the connection ∇H).

This lift is unique up to multiplication by a unit complex number. Moreover the pull-
back by û of the symplectic form ω on Cn+1 vanishes; we say that û is Legendrian.

Taking u, û as above, we define, for any orthonormal framing (e1, . . . , en) of TΩ,
the Lagrangian angle β by

eiβ = dz1 ∧ . . . ∧ dzn+1
(
û, dû(e1), . . . , dû(en)

)
.

which makes sense because (û, dû(e1), . . . , dû(en)) is a Hermitian-orthonormal frame,
for any x ∈ Ω. Furthermore, the result is independent from the choice of the fram-
ing, and depends on the choice of the lift û only through multiplication by a unit
complex constant. Hence β is defined up to an additive constant and dβ is always
well-defined along any Lagrangian immersion u. Another characteristic property of

†note that the sign convention may vary in the literature, e.g. some Authors use 〈·, ·〉CP n =
〈·, ·〉 + iω(·, ·).
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the Lagrangian angle relates it to the mean curvature vector field ~H along u:

~H =
1

n
J∇β (2.1)

or equivalently dβ = − ~H ω (see [1, 4] for details).

2.2. Hamiltonian stationary Lagrangian submanifolds

A Hamiltonian stationary Lagrangian submanifold Σ in CPn is a Lagrangian
submanifold which is a critical point of the n-volume functional A under first vari-
ations which are Hamiltonian vector fields with compact support. This means that
for any smooth function with compact support h ∈ C∞

c (CPn, R), we have

δAξh
(Σ) :=

∫
Σ

〈
~H, ξh

〉

E
dvol = 0,

where ξh is the Hamiltonian vector field of h, i.e. satisfies ξh ω + dh = 0 or
ξh = J∇h. We also remark that if f ∈ C∞

c (Σ, R), then there exist smooth extensions
with compact support h of f , i.e. functions h ∈ C∞

c (CPn, R) such that h|Σ = f ,
and moreover the normal component of (ξh)|Σ does not depend on the choice of
the extension h (it coincides actually with J∇f , where ∇ is here the gradient with
respect to the induced metric on Σ). So we deduce from above that δAξh

(Σ) =
1
n

∫
Σ
〈∇β,∇f〉E dvol. This implies the following.

Corollary 2.2. Any Lagrangian submanifold Σ in CPn is Hamiltonian sta-
tionary if and only if β is a harmonic function on Σ, i.e.

∆Σβ = 0.

This theory extends to non simply connected surfaces Σ with the following restric-
tions. Let γ be a homotopically non trivial loop. The Legendrian lift of γ needs not
close, so that in general its endpoints p1, p2 ∈ S2n+1 are multiples of each other by a
factor eiθ. The same holds for the Lagrangian angle: β(p2) ≡ β(p1)+(n+1)θ mod 2π
(since the tangent plane is also shifted by the Decktransformation z 7−→ eiθz). In
particular β is not always globally defined on surfaces in CPn with non trivial
topology, unless the Legendrian lift is globally defined in S2n+1/Zn+1 (here Zn+1

stands for the n + 1-st roots of unity in SU(n + 1)).

2.3. Conformal Lagrangian immersions into CP 2

We now set n = 2. We suppose that Ω is a simply connected open subset of
R2 ≃ C and consider a conformal Lagrangian immersion u : Ω −→ CP 2. This
implies that we can find a function ρ : Ω −→ R and two sections E1 and E2

of u∗TCP 2 such that ∀(x, y) ∈ Ω, (E1(x, y), E2(x, y)) is an Euclidean orthogonal
basis over R of Tu(x,y)u(Ω) and

du = eρ (E1dx + E2dy) .

We observe that, due to the fact that u is Lagrangian, (E1, E2) is a also a Hermitian
basis over C of Tu(x,y)CP 2.
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Let Ω
û //

u

!!CC
CC

CC
CC

S5

π

��
CP 2

be a parallel lift of u as in Proposition 2.1 and (e1, e2) be the

unique section of û∗H× û∗H which lifts† (E1, E2). Then we have

dû = eρ (e1dx + e2dy) . (2.2)

Note that ∀(x, y) ∈ Ω, (e1(x, y), e2(x, y)) is a Hermitian basis of Hû(x,y), which is
Hermitian orthogonal to û(x, y). Hence ∀(x, y) ∈ Ω, (e1(x, y), e2(x, y), û(x, y)) is
a Hermitian basis of C3. Thus this triplet can be identified with some F̂ (x, y) ∈
U(3). We hence get the diagram U(3)

(··∗)

��
Ω

F̂

=={{{{{{{{ û //

u

!!C
CC

CC
CC

C S5

π

��
CP 2

, where (· · ∗) is the mapping

(e1, e2, e3) 7−→ e3.

We define the Maurer–Cartan form Â to be the 1-form on Ω with coefficients in
u(3) such that dF̂ = F̂ · Â. Then we remark that the horizontality assumption
〈dû, û〉C3 = 0 exactly means that

Â3
3 = 0. (2.3)

Moreover the Lagrangian angle function βû along û can be computed by

eiβû = dz1 ∧ dz2 ∧ dz3(e1, e2, û) = det F̂ .

As in [10] we consider a larger class of framings of u as follows.

Definition 2.3. A Legendrian framing of u along û is a map F : Ω −→ U(3)
such that

– (· · ∗) ◦ F = û
– detF = eiβû .

It is easily seen that the first condition is equivalent to the fact that there exists
a smooth map G : Ω −→ U(3) (a gauge transformation) of the type

G(x, y) =

(
g(x, y) 0

0 1

)
, where g : Ω −→ U(2)

such that

F (x, y) = F̂ (x, y) · G−1(x, y).

And then the second one is equivalent to say that g takes values in SU(2).

†recall that the condition that v ∈ (û∗H)(x,y) means that v is in the horizontal subspace Hû(x,y)
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2.4. A splitting of the Maurer–Cartan form of a Legendrian framing

Using (2.2) and (2.3) one obtains the following decomposition of Â:

Â = Âu(1) + Âsu(2) + ÂC2 ,

with the notations

Âu(1) =

(
α̂u(1) 0

0 0

)
, Âsu(2) =

(
α̂su(2) 0

0 0

)
,

and ÂC2 = eρ

(
0 ǫdz + ǫdz̄

− t(ǫdz + ǫdz̄) 0

)
,

where α̂u(1) is a 1-form on Ω with coefficients in u(1) ≃ R

(
i 0
0 i

)
, α̂su(2) a 1-

form on Ω with coefficients in su(2), ǫ := 1
2

(
1
−i

)
and ǫ := 1

2

(
1
i

)
(so that

ǫdz + ǫdz̄ =

(
dx
dy

)
). Note that detF = eiβû implies α̂u(1) = dβû

2

(
i 0
0 i

)
.

Now we let F : Ω −→ U(3) be a Legendrian framing and A := F−1 · dF . The
relation F = F̂ · G−1 implies that A = G · Â · G−1 − dG · G−1. Hence

A = Au(1) + Asu(2) + AC2 ,

where, using the fact that u(1) commutes with su(2),

Au(1) =

(
αu(1) 0

0 0

)
=

(
α̂u(1) 0

0 0

)
=




idβû

2 0 0

0 idβû

2 0
0 0 0



 ,

Asu(2) =

(
αsu(2) 0

0 0

)
=

(
g · α̂su(2) · g−1 − dg · g−1 0

0 0

)

and

AC2 = eρ

(
0 g · (ǫdz + ǫdz̄)

− (g · (ǫdz + ǫdz̄))
†

0

)
.

We can further split the last term AC2 along dz and dz̄ as AC2 = A′
C2 + A′′

C2 where

A′
C2 := eρ

(
0 g · ǫ

− (g · ǫ)† 0

)
dz and A′′

C2 := eρ

(
0 g · ǫ

− (g · ǫ)† 0

)
dz̄.

2.5. Interpretation in terms of an automorphism

As expounded in [10] and [11] the key point in order to exploit the structure of an
integrable system is to observe that the splitting A = Au(1)+Asu(2)+A′

C2 +A′′
C2 cor-

responds to a decomposition along the eigenspaces of the following automorphism



hamiltonian stationary tori in the complex projective plane 7

in u(3)C, the complexification† of u(3). We let J :=

(
0 −1
1 0

)
and

τ : u(3)C −→ u(3)C

M 7−→ −
(

−J 0
0 1

)
· tM ·

(
J 0
0 1

)
.

It is then straightforward that τ is a Lie algebra automorphism, that u(3) is stable
by τ and that τ4 = Id. Hence we can diagonalize the action of τ over u(3)C and in
the following we denote by u(3)C

a the eigenspace of τ for the eigenvalue ia, for a =
−1, 0, 1, 2. We first point out that the eigenspaces u(3)C

0 and u(3)C
2 , with eigenvalues

1 and −1 respectively, are the complexifications of u(3)0 and u(3)2 respectively,
where

u(3)0 :=

{(
g 0
0 0

)
/g ∈ su(2)

}
and u(3)2 :=









λi 0 0
0 λi 0
0 0 µi



 /λ, µ ∈ R




 .

This can be obtained by first computing that

τ

(
A X

− tY d

)
=

(
J tAJ −JY
− tXJ −d

)
, ∀A ∈ M(2, C), ∀X, Y ∈ C

2, ∀d ∈ C,

and by using the fact that ∀A ∈ sl(2, C), J tAJ = A. Similarly the eigenspaces
u(3)C

1 and u(3)C
−1, with eigenvalues i and −i respectively, are found to be

u(3)C

1 =

{(
0 X

− tY 0

)
/X, Y ∈ C

2, JY = −iX

}

and

u(3)C

−1 =

{(
0 X

− tY 0

)
/X, Y ∈ C

2, JY = iX

}
.

Now we have the following

Lemma 2.4. The eigenspaces u(3)C
1 and u(3)C

−1 can be characterized by

u(3)C

1 =

{
λ

(
0 h · ǫ

− (h · ǫ)† 0

)
/λ ∈ [0,∞), h ∈ SU(2)

}

and

u(3)C

−1 =

{
λ

(
0 h · ǫ

− (h · ǫ)† 0

)
/λ ∈ [0,∞), h ∈ SU(2)

}
.

Proof. This can be proved either by adapting the argument in section 2.4 of
[10] or by a straightforward computation which exploits the fact that ∀h ∈ SU(2),
hJ = Jh, Jǫ = iǫ and Jǫ = −iǫ.

We conclude that if, using u(3)C = u(3)C
−1 ⊕ u(3)C

0 ⊕ u(3)C
1 ⊕ u(3)C

2 , we decompose

†we can define u(3)C as the set M(3, C) with its standard complex structure and with the conju-
gation mapping c : M 7−→ −M†; clearly c is a Lie algebra automorphism, an involution and the
set of fixed points of c is u(3).
Similarly the complexification U(3)C is the set GL(3, C) with its standard complex structure and

the conjugation map C : G 7−→
(
G†
)−1

.
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A as

A = A−1 + A0 + A1 + A2,

where each Aa is a 1-form with coefficients in the u(3)C
a , then we recover the previous

splitting by setting A0 = Asu(2), A2 = Au(1), A−1 = A′
C2 and A1 = A′′

C2 . Note that
the two last conditions actually reflects the conformality of u.

Remark. Note that by the automorphism property [u(3)a, u(3)b] ⊂ u(3)a+b mod 4.

2.6. Legendrian framings of Hamiltonian stationary Lagrangian immersions

Given the Legendrian framing F of a conformal Lagrangian immersion u in CP 2, we
define the family of deformations Aλ of its Maurer–Cartan form A, for λ ∈ S1 ⊂ C∗

by

Aλ := λ−2A′
2 + λ−1A−1 + A0 + λA1 + λ2A′′

2 , (2.4)

where A′
2 := A2(∂/∂z)dz and A′′

2 := A2(∂/∂z̄)dz̄. We then have the following:

Theorem 2.5. Given a conformal Lagrangian immersion u : Ω −→ CP 2 and
a Legendrian framing F of u, the Maurer–Cartan form of F satisfies

A−1 = A′
−1 = A′

C2 and A1 = A′′
1 = A′

C2 . (2.5)

Furthermore u is Hamiltonian stationary if and only if, defining Aλ as in (2.4),

dAλ + Aλ ∧ Aλ = 0, ∀λ ∈ S1. (2.6)

Remark. For λ = 1, A1 = A and equation (2.6) is a consequence of its defini-
tion A := F−1 · dF .

Proof. See [10] and [11].

We remark that all the conditions that have been collected about the components
Aa can be encoded by the following twisting condition on Aλ:

∀λ ∈ S1, τ(Aλ) = Aiλ.

Thus we are led to define the following twisted loop algebra

Λu(3)τ := {S1 ∋ λ 7−→ ξλ ∈ u(3)/∀λ ∈ S1, τ(ξλ) = ξiλ},
and Aλ is a 1-form on Ω with coefficients in Λu(3)τ .

Actually Λu(3)τ is the Lie algebra of the following twisted loop group

ΛU(3)τ := {S1 ∋ λ 7−→ gλ ∈ U(3)/∀λ ∈ S1, τ(gλ) = giλ},
where the Lie algebra automorphism τ : u(3)C −→ u(3)C has been extended to the
Lie group automorphism by

τ : U(3)C −→ U(3)C

M 7−→
(

−J 0
0 1

)
· tM−1 ·

(
J 0
0 1

)
.

Now if we assume that Ω is simply connected, then relation (2.6) allows us to
integrate Aλ, i.e. to find a map Fλ : Ω −→ U(3) for any λ ∈ S1 such that dFλ =
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Fλ · Aλ. Moreover if we choose some base point z0 ∈ Ω, then by requiring further
that Fλ(z0) = Id, Fλ is unique. A key observation is then that τ(Aλ) = Aiλ implies
τ(Fλ) = Fiλ, ∀λ ∈ S1. Hence, a conformal Lagrangian immersion u : Ω −→ CP 2 is
Hamiltonian stationary if and only if any Legendrian lift F of it can be deformed
into a map Fλ : Ω −→ ΛU(3)τ , such that F−1

λ ·dFλ has the form (2.4). Summarizing
this result with the observations in the previous section we have:

Theorem 2.6. Given a simply connected domain Ω ⊂ C and a base point
z0 ∈ Ω, the set of Hamiltonian stationary conformal Lagrangian immersions u :
Ω −→ CP 2 such that u(z0) = [0 : 0 : 1] is in bijection with the set of maps
Fλ : Ω −→ ΛU(3)τ , such that Fλ(z0) = Id and the Fourier decomposition of
Aλ := F−1

λ · dFλ, Aλ =
∑

k∈Z
Âkλk satisfies

∀k ∈ Z, k ≤ −3 =⇒ Âk = 0, (2.7)

Â−2 = a(z)dz




i 0 0
0 i 0
0 0 0



 , where a ∈ C∞(Ω, C), (2.8)

Â−1 = Â−1(∂/∂z)dz, i.e. Â−1(∂/∂z̄) = 0. (2.9)

Proof. For any conformal Lagrangian Hamiltonian stationary immersion u the
existence of Fλ and the properties (2.7), (2.8) and (2.9) are immediate consequences
of Theorem 2.5. Conversely for any map Fλ, conditions (2.7), (2.8) and (2.9) and
the reality condition Aλ = Aλ imply that Aλ must satisfy (2.4). In particular we
remark that condition (2.8) is a reformulation of (2.3). Thus by theorem 2.5 we
deduce that F1 is the Legendrian lift of some Hamiltonian stationary conformal
Lagrangian immersion.

Remark. ¿From the analysis of the Maurer–Cartan form of a Legendrian lift
we know that actually the function a in (2.8) is 1

2∂β/∂z, where β is the Lagrangian
angle function. In particular since u is Hamiltonian stationary β is harmonic and
hence a is holomorphic.

2.7. An alternative characterization

We introduce here another construction using based loop groups for characteriz-
ing Hamiltonian stationary Lagrangian conformal immersions. Consider

Eλ := Fλ · F−1.

We can observe that Eλ is a map with values in the based loop group

ΩU(3) := {S1 ∋ λ 7−→ gλ ∈ U(3)/gλ=1 = 1},
since Fλ=1 = F . It is easy to check that ΩU(3) is a loop group, the Lie algebra of
which is

Ωu(3) := {S1 ∋ λ 7−→ ξλ ∈ u(3)/ξλ=1 = 0}.
Note that the (formal) Fourier expansion of an element ξλ ∈ Ωu(3) can be written
ξλ =

∑
k∈Z\{0} ξ̂k(λk − 1).
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The Maurer–Cartan form of Eλ is

Γλ := E−1
λ · dEλ

= F ·
(
F−1

λ · dFλ − F · dF
)
· F−1 = F · (Aλ − A) · F−1

= (λ−2 − 1)Γ′
2 + (λ−1 − 1)Γ−1 + (λ − 1)Γ1 + (λ2 − 1)Γ′′

2 ,

where Γ′
2 := F ·A′

2 ·F−1, Γ−1 := F ·A−1 ·F−1, Γ1 := F ·A1·F−1 and Γ′′
2 := F ·A′′

2 ·F−1.
We can observe in particular that

Γ′
2 = iaπ⊥dz, where π⊥ := F ·




1

1
0



 · F−1.

Note that π⊥ is the Hermitian orthogonal projection in C3 onto the plane û⊥ (more-
over π⊥ is actually independent of the lift û chosen for u).

Lastly we point out the following equivariance property with respect to the auto-
morphism τu defined† by

τu(M) = F · τ(F−1 · M · F ) · F−1.

We have obviously τ4
u = 1. Moreover, setting

γλ := λ−2Γ′
2 + λ−1Γ−1 + λΓ1 + λ2Γ′′

2

= F ·
(
λ−2A′

2 + λ−1A−1 + λA1 + λ2A′′
2

)
· F−1

and γ := γλ=1 = F · (A′
2 + A−1 + A1 + A′′

2 ) · F−1, so that Γλ = γλ − γ, we have

τu(γλ) = γiλ.

3. Finite type solutions

In [11] we showed how Theorem 2.6 allows us to adapt the theory of J. Dorfmeister,
F. Pedit and H.Y. Wu [5], in order to build a Weierstrass type representation
theory of all conformal Lagrangian Hamiltonian stationary immersions, i.e. using
holomorphic data. Here we want to exploit Theorem 2.6 in order to construct a
particular class of examples of solutions: the finite type ones.

3.1. Definitions

We invite the Reader to consult [3], [6] or [8] for more details. We first observe
that U(3)0 := {g ∈ U(3)/τ(g) = g}, the fixed set of τ , is a subgroup of U(3),
the Lie algebra of which is u(3)0 (same observation about U(3)C

0 ). Actually U(3)0
is isomorphic to SU(2) so that we make the identifications U(3)0 ≃ SU(2) and
u(3)0 ≃ su(2). We will need an Iwasawa decomposition of SU(2)C for our purpose: it
will be a pair (SU(2), B) of subgroups of SU(2)C, such that ∀g ∈ SU(2)C, ∃!(f, b) ∈

†We can remark that the definition of τu is independent from the choice of the Legendrian
framing F of u, and depends only on u. This means that for any pair of Legendrian framings F

and F̂ such that F̂ = F · G, where G =

(
g

1

)
and g : Ω −→ SU(2), we have F̂ · τ(F̂−1 · M ·

F̂ ) · F̂−1 = F · τ(F−1 · M · F ) · F−1. This can be checked by a computation using the fact that(
±J

1

)
· G = G ·

(
±J

1

)
.
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SU(2) × B with g = f · b, a property that we summarize by writing SU(2)C =
SU(2) · B. Moreover B is a solvable Borel subgroup. We can choose for example

B :=

{(
T 1

1 0
T 2

1 T 2
2

)
/T 1

1 , T 2
2 ∈ (0,∞), T 2

1 ∈ C, T 1
1 T 2

2 = 1

}
.

We denote by b the Lie algebra of B. The Iwasawa decomposition SU(2)C = SU(2)·
B immediately implies the vector space decomposition su(2)C = su(2) ⊕ b, which
leads to the definition of the two projection mappings (·)su : su(2)C −→ su(2) and
(·)b : su(2)C −→ b such that

∀ξ ∈ su(2)C, ξ = (ξ)su + (ξ)b with (ξ)su ∈ su(2) and (ξ)b ∈ b.

Then we define the following twisted loop algebras

Λu(3)C

τ := {S1 ∋ λ 7−→ ξλ ∈ u(3)C/∀λ ∈ S1, τ(ξλ) = ξiλ},

Λ+
b
u(3)C

τ := {[λ 7−→ ξλ] ∈ Λu(3)C

τ /∀k ∈ Z, k ≤ −1 =⇒ ξ̂k = 0 and ξ̂0 ∈ b},
where we use the Fourier decomposition ξλ =

∑
k∈Z

ξ̂kλk.

The decomposition su(2)C = su(2)⊕ b can be extended to loop algebras, i.e. to the
splitting Λu(3)C

τ = Λu(3)τ ⊕ Λ+
b
u(3)C

τ . This can be checked by using the Fourier
expansion of an element ξλ ∈ Λu(3)C

τ :

∑

k∈Z

ξ̂kλk =

(
∑

k<0

ξ̂kλk + (ξ̂0)su −
∑

k>0

(
ξ̂−k

)†
λk

)
+

(
(ξ̂0)b +

∑

k>0

(
ξ̂k +

(
ξ̂−k

)†)
λk

)
.

We will denote the corresponding projection mappings by (·)Λsu
: Λu(3)C

τ −→
Λu(3)τ and (·)Λ+

b

: Λu(3)C
τ −→ Λ+

b
u(3)C

τ .

We also introduce the following finite dimensional subspaces of Λu(3)τ : for any
p ∈ N we let

Λ2+4pu(3)τ :=




[λ 7−→ ξλ] ∈ Λu(3)τ/ξλ =

2+4p∑

k=−2−4p

ξ̂kλk




 .

We can now define a pair of vector fields X1, X2 : Λ2+4pu(3)τ −→ Λu(3)τ by

X1(ξλ) := [ξλ, (λ4pξλ)Λsu
], X2(ξλ) := [ξλ, (iλ4pξλ)Λsu

]. (3.1)

Note that λ4pξλ belongs to Λu(3)C
τ , so that (λ4pξλ)Λsu

is well defined.

Lemma 3.1. Let p ∈ N and X1 and X2 defined by (3.1). Then
– ∀ξλ ∈ Λ2+4pu(3)τ , X1(ξλ), X2(ξλ) ∈ Tξλ

Λ2+4pu(3)τ ≃ Λ2+4pu(3)τ , so that X1

and X2 are tangent vector fields to Λ2+4pu(3)τ .
– |ξλ|2 is preserved by X1 and X2. Hence the flow of these vector fields are defined

for all time
– The Lie bracket of X1 and X2 vanishes:

[X1, X2] = 0. (3.2)

Proof. This result follows by a straightforward adaptation of the analogous re-
sults for harmonic maps in [3] (see e.g. [6] and [8]). Note that the proof of (3.2) rests
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upon the crucial property that Λu(3)τ and Λ+
b
u(3)C

τ are Lie algebras (see e.g. [2],
[8]).

This result allows us to integrate simultaneously X1 and X2. So for any ξ0
λ ∈

Λ2+4pu(3)τ there exists a unique map ξλ : R2 −→ Λ2+4pu(3)τ such that ξλ(z0) = ξ0
λ

and
∂ξλ

∂x
(x, y) = X1 (ξλ(x, y)) and

∂ξλ

∂y
(x, y) = X2 (ξλ(x, y)) . (3.3)

Denoting by z = x + iy ∈ C, the system (3.3) can be rewritten

dξλ =
[
ξλ,
(
λ4pξλ

)
Λsu

dx +
(
iλ4pξλ

)
Λsu

dy
]

=
[
ξλ,
(
λ4pξλdz

)
Λsu

]
.

Let us denote by Aλ := (λ4pξλdz)Λsu
. Since the system (3.3) is overdetermined, Aλ

should satisfy a compatibility condition. Indeed one can check that

dAλ + Aλ ∧ Aλ = 0. (3.4)

This relation can be proved by a method similar to the proof of (3.2) (see [8]). It
implies that there exists a map Fλ : C −→ ΛU(3)τ such that

dFλ = Fλ · Aλ. (3.5)

Now observe that λ4pξλ =
∑8p+2

k=−2 ξ̂k−4pλ
k implies

Aλ = λ−2ξ̂−4p−2dz+λ−1ξ̂−4p−1dz+
(
ξ̂−4pdz

)

su

−λ
(
ξ̂−4p−1

)†
dz̄−λ2

(
ξ̂−4p−2

)†
dz̄.

We recall that ξ̂−4p−2 ∈ u(3)C
2 and so has the form diag(ia, ia, ib). Moreover we

have the following result.

Lemma 3.2. If ξλ −→ Λ2+4pu(3)τ and Aλ := (λ4pξλdz)Λsu
are solutions of

dξλ = [ξλ, Aλ], then ξ̂−4p−2 is constant.

Proof. The relevant term in the Fourier expansion of dξλ = [ξλ, Aλ] gives

dξ̂−4p−2 =
[
ξ̂−4p−2,

(
ξ̂−4pdz

)

su

]
+
[
ξ̂−4p−1, ξ̂−4p−1

]
dz +

[
ξ̂−4p, ξ̂−4p−2

]
dz

=
[(

ξ̂−4pdz
)

b

, ξ̂−4p−2

]
.

But since the coefficients of
(
ξ̂−4pdz

)

b

are in u(3)C
0 and ξ̂−4p−2 takes values in u(3)2

we deduce that dξ̂−4p−2 = 0, because u(3)C
0 and u(3)C

2 commute.

We deduce from this result that if we choose the initial value ξ0
λ of ξλ to be such

that ξ̂0
−4p−2 = diag(ia, ia, 0) then ξ̂−4p−2 is equal to that value for all (x, y). So in

this case the map Fλ obtained by integrating Aλ satisfies all the requirements of
Theorem 2.6. It implies that Fλ represents a (conjugate family) of Hamiltonian sta-
tionary conformal Lagrangian immersion(s). The category of such Fλ’s are exactly
characterized by the following definition.

Definition 3.3. Let Fλ be a family of Hamiltonian stationary conformal La-
grangian immersions and let Aλ := F−1

λ · dFλ. Then Fλ is called a family of finite
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type solutions if and only if there exists p ∈ N and a map ξλ : C −→ Λ2+4pu(3)τ

such that ξ̂−4p−2 = diag(ia, ia, 0), for some constant a ∈ C, and

dξλ = [ξλ, Aλ] (3.6)

(λ4pξλdz)Λsu
= Aλ. (3.7)

We also need the following definition in which we introduce an a priori weaker
notion of finite type solution.

Definition 3.4. Let Fλ be a family of Hamiltonian stationary conformal La-
grangian immersions and let Aλ := F−1

λ · dFλ. Then Fλ is called a family of quasi-
finite type solutions if and only if it satisfies the same requirements as in definition
3.3 excepted that condition (3.7) is replaced by

∃B ∈ Ω1 ⊗ u(3)C

0 , (λ4pξλdz)Λsu
= Aλ + B. (3.8)

We shall see in Section 3.3 that both definitions are actually equivalent.

3.2. An alternative description of quasi-finite type solutions

We may as well characterize such finite type solutions in terms of Eλ = Fλ ·F−1.
For that purpose we need to introduce the untwisted loop Lie algebra

Λ+u(3)C := {S1 ∋ λ 7−→ ξλ ∈ u(3)C/ξλ =

∞∑

k=0

ξ̂kλk}

and observe that any ξλ =
∑∞

k=−∞ ξ̂kλk ∈ Λu(3)C can be split as

ξλ =

(
−1∑

k=−∞

ξ̂k(λk − 1) − (ξ̂k)†(λ−k − 1)

)
+

(
∞∑

k=0

ξ̂kλk +

∞∑

k=1

ξ̂−k + (ξ̂−k)†(λk − 1)

)

and hence Λu(3)C = Ωu(3) ⊕ Λ+u(3)C. This defines a pair of projection mappings
(·)Ω : Λu(3)C −→ Ωu(3) and (·)Λ+ : Λu(3)C −→ Λ+u(3)C.

Now consider a family Fλ of quasi-finite type, let Aλ := F−1
λ ·dFλ, A := F−1 ·dF

(where F = Fλ=1) and ξλ be a solution of (3.6). We let

ηλ := F · ξλ · F−1 =

2+4p∑

k=−2−4p

F · ξ̂k · F−1λk.

Then (3.6) implies by a straightforward computation that

dηλ = F · (dξλ + [A, ξλ]) · F−1

= F · ([ξλ, Aλ] − [ξλ, A]) · F−1 = [ηλ, Γλ],

where Γλ := E−1
λ · dEλ. Now setting Rλ :=

∑2+4p
k=−4p F · ξ̂k · F−1λk, we have

(
λ4pηλdz

)
Ω

=
(
λ−2F · ξ̂−2−4p · F−1dz + λ−1F · ξ̂−1−4p · F−1dz + λ4pRλdz

)

Ω

= (λ−2 − 1)F · ξ̂−2−4p · F−1dz + (λ−1 − 1)F · ξ̂−1−4p · F−1dz

−(λ − 1)
(
F · ξ̂−1−4p · F−1

)†
dz̄ − (λ2 − 1)

(
F · ξ̂−2−4p · F−1

)†
dz̄.
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But relation (3.8) implies in particular that ξ̂−2−4p = A′
2(∂/∂z) and ξ̂−1−4p =

A−1(∂/∂z). So we deduce that
(
λ4pηλdz

)
Ω

= F · (Aλ − A) · F−1 = Γλ.

Hence Eλ can be constructed by solving a system analogous to (3.6), (3.7), i.e.

dηλ + [Γλ, ηλ] = 0 and Γλ =
(
λ4pηλdz

)
Ω

. (3.9)

Conversely a similar computation shows that a solution of (3.9) gives rise to a quasi-
finite type family of solutions by an inverse transformation, but we shall prove more
in the next section.

Note that system (3.9) can also be interpreted as a pair of commuting ordinary
differential equations in the finite dimensional space Λ2+4pu(3) := {S1 ∋ λ 7−→
ηλ ∈ u(3)/ηλ =

∑2+4p
k=−2−4p η̂kλk}. It is the analogue of the definition of a finite type

solution according to [3].

3.3. Quasi-finite type solutions are actually finite type

We show here the following

Theorem 3.5. For any family Fλ of Hamiltonian stationary Lagrangian confor-
mal immersions of quasi-finite type, i.e. such that there exists ξλ : Ω −→ Λ2+4pu(3)τ

which satisfies (3.6) and (3.8), there exists a gauge transformation Fλ 7−→ FG
λ :=

Fλ ·G, where G ∈ C∞(Ω, U(3)0), such that FG
λ is of finite type. More precisely, de-

noting by AG
λ := G−1 ·Aλ ·G+G−1 ·dG and ξG

λ := G−1 ·ξλ ·G, then dξG
λ +

[
AG

λ , ξG
λ

]
=

G−1 · (dξλ + [Aλ, ξλ]) · G = 0 and (λ4pξG
λ dz)Λsu

= AG
λ .

Proof. We set Eλ := Fλ · F−1, Γλ := E−1
λ · dEλ and ηλ := F · ξλ · F−1 and will

use the results of the previous section.

A constant in Λ2+4pu(3)τ associated to the quasi-finite type family — First (3.9),
which is a reformulation of (3.6), implies

d
(
Eλ · ηλ · E−1

λ

)
= Eλ · (dηλ + [Γλ, ηλ]) · E−1

λ = 0.

Hence

η0
λ := Eλ · ηλ · E−1

λ

is a constant in Λu(3). Moreover

η0
λ = Eλ(z0) · ηλ(z0) · E−1

λ (z0) = ηλ(z0) = F (z0) · ξλ(z0) · F−1(z0) = ξλ(z0),

which proves that η0
λ ∈ Λ2+4pu(3)τ .

An auxiliary map into Λ+U(3)C — We let

Θλ :=
(
λ4pηλdz

)
Λ+ = λ4pηλdz −

(
λ4pηλdz

)
Ω

.

Then using (3.9) we have Θλ = λ4pηλdz − Γλ and so

dΓλ + Γλ ∧ Γλ + dΘλ − Θλ ∧ Θλ = −λ4p (dηλ + [Γλ, ηλ])

(
∂

∂z̄

)
dz ∧ dz̄ = 0.
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But since dΓλ + Γλ ∧ Γλ = 0 this implies that dΘλ − Θλ ∧ Θλ = 0. Hence ∃!Vλ :
Ω −→ Λ+U(3)C such that

dVλ = Θλ · Vλ and Vλ(z0) = 1.

Now, starting from λ4pηλdz = Γλ + Θλ, we deduce that

λ4pη0
λdz = Eλ · Γλ · E−1

λ + Eλ · Θλ · E−1
λ

= dEλ · E−1
λ + Eλ · dVλ · V −1

λ · E−1
λ

= d (Eλ · Vλ) (Eλ · Vλ)−1 ,

which can be integrated into the relation

Eλ · Vλ = eλ4p(z−z0)η
0
λ .

An Iwasawa decomposition of eλ4p(z−z0)η
0
λ — The latter implies

eλ4p(z−z0)η
0
λ = Fλ · F−1 · Vλ.

¿From this relation and the fact that η0
λ and Fλ are twisted we deduce that Wλ :=

F−1 · Vλ is twisted. It is also a map with values in Λ+U(3)C
τ . However it may not

be not in Λ+
B

U(3)C
τ in general, because in the development

F−1 · Vλ = Ŵ0 +

∞∑

k=1

Ŵkλk,

we are not sure that Ŵ0 takes values in B. But it takes values in U(3)C
0 , so by

using the Iwasawa decomposition U(3)C
0 = U(3)0 · B we know that ∃!G ∈ U(3)0,

∃!B̂0 ∈ B, Ŵ0 = G · B̂0. Hence

G−1 · F−1 · Vλ = B̂0 +

∞∑

k=1

G−1 · Ŵkλk

takes values in Λ+
B

U(3)C
τ . So the splitting

eλ4p(z−z0)η
0
λ = (Fλ · G)

(
G−1 · F−1 · Vλ

)

exactly reproduces the Iwasawa decomposition ΛU(3)C
τ = ΛU(3)τ ·Λ+

B
U(3)C

τ proved
in [5].

Conclusion — Let us denote by FG
λ := Fλ · G, AG

λ :=
(
FG

λ

)−1 · dFG
λ = G−1 · Aλ ·

G + G−1 · dG and BG
λ := G−1 · F−1 · Vλ and let us introduce

ξG
λ :=

(
FG

λ

)−1 · η0
λ · FG

λ .

(These definitions imply immediately dξG
λ + [AG

λ , ξG
λ ] = 0.) The first main observa-

tion is that the relation η0
λ = Eλ · ηλ · E−1

λ = Fλ · F−1 · ηλ · F · F−1
λ = Fλ · ξλ · F−1

λ

implies

ξG
λ = G−1 · F−1

λ · η0
λ · Fλ · G = G−1 · ξλ · G. (3.10)

Second, from the relation

λ4pη0
λdz = d

(
eλ4p(z−z0)η

0
λ

)
· e−λ4p(z−z0)η

0
λ

= d
(
FG

λ · BG
λ

)
·
(
FG

λ · BG
λ

)−1

= dFG
λ ·
(
FG

λ

)−1
+ FG

λ · dBG
λ ·
(
BG

λ

)−1 ·
(
FG

λ

)−1
,
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we deduce that

λ4pξG
λ dz =

(
FG

λ

)−1 ·
(
λ4pη0

λdz
)
· FG

λ =
(
FG

λ

)−1 · dFG
λ + dBG

λ ·
(
BG

λ

)−1
.

Hence, since BG
λ takes values in Λ+

B
U(3)C

τ ,

AG
λ =

(
FG

λ

)−1 · dFG
λ =

(
λ4pξG

λ dz
)
Λsu

. (3.11)

And relations (3.10) and (3.11) lead to the conclusion.

4. All Hamiltonian stationary Lagrangian tori are of finite type

The subject of this section is to prove the following:

Theorem 4.1. Let u : C −→ CP 2 be a doubly periodic Hamiltonian stationary
Lagrangian conformal immersion. Then u is of finite type.

We will actually prove a slightly more general result, since we can replace the
doubly periodicity assumption by the hypothesis that the Maurer–Cartan form of
any Legendrian framing of u is doubly periodic. This result of course implies imme-
diately that Hamiltonian stationary Lagrangian tori are of finite type, since they
always can be covered conformally by the plane.

Note also that the study of Hamiltonian stationary Lagrangian tori splits into ex-
actly two subcases: the minimal Lagrangian tori and the non minimal Hamiltonian
stationary Lagrangian ones. The first case occurs when the Lagrangian angle func-
tion along any Legendrian lift is locally constant, the second one when this function
is harmonic and non constant. In the case of minimal Lagrangian surfaces, Theorem
4.1 is a special case of the result in [3], since in this case u is a harmonic map into
CP 2, as discussed in [14], [15], [16] and [12]. The non minimal case however is not
covered by the theory in [3] and is the subject of this section.

Let F : C −→ U(3) be a Legendrian framing of u, A := F−1 ·dF its Maurer–Cartan
form and Aλ the family of deformations of A as defined by (2.4). The first basic
observation is that A2

(
∂
∂z

)
is holomorphic and doubly periodic on C, hence con-

stant. Thus two cases occur: either A2

(
∂
∂z

)
= 0, which corresponds to the minimal

case that we exclude here, or A2

(
∂
∂z

)
is a constant different from 0, the case that

we consider next.

In order to show Theorem 4.1 we need to prove that there exists some p ∈ N and
a map ξλ : C −→ Λ2+4pu(3)τ such that dξλ = [ξλ, Aλ] and Aλ = (λ4pξλdz)Λsu

. But
thanks to Theorem 3.5 it will enough to prove that Aλ − (λ4pξλdz)Λsu

is a 1-form
with coefficients in u(3)0. Our proof here follows a strategy inspired from [3]: a first
step consists in building a formal series Yλ =

∑∞
k=−2 Ŷkλk which is a solution of

dYλ = [Yλ, Aλ]. Such a series is called a formal Killing field. We will also require
Yλ to be quasi-adapted, i.e. is such that

(Yλdz)Λsu
= Aλ + B, where the coefficients of B are in u(3)0. (4.1)

This is achieved through a recursion procedure.
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In a second step we will show that the coefficients of Yλ form a countable collec-
tion of doubly periodic functions satisfying an elliptic PDE and hence, by using a
compactness argument, we conclude that they are contained in a finite dimensional
space. Then we deduce the existence of ξλ using linear algebra.

4.1. Construction of an adapted formal Killing field

We first introduce some notations. We denote by

π⊥
0 :=




1

1
0





and a := 1
2

∂β
∂z

(here a constant different from 0). Then A′
2 = iaπ⊥

0 dz. We will also
set X := A−1

(
∂
∂z

)
and C := A0

(
∂
∂z

)
, so that

Aλ = λ−2iaπ⊥
0 dz + λ−1Xdz + Cdz − C†dz̄ − λX†dz̄ + λ2iaπ⊥

0 dz̄.

We also introduce the linear map adπ⊥
0 : u(3)C −→ u(3)C, acting by ξ 7−→ [π⊥

0 , ξ]†.
We observe that π⊥

0 commutes with the elements in u(3)C
0 and u(3)C

2 . Moreover

∀a, b ∈ C,



π⊥
0 ,




a
b

∓ib ±ia







 =




a
b

±ib ∓ia



 ,

that is adπ⊥
0 maps u(3)C

∓1 to u(3)C
±1. ¿From that we deduce that V := Ker adπ⊥

0

coincides with u(3)C
0⊕u(3)C

2 and V ⊥ := Imad π⊥
0 coincides with u(3)C

−1⊕u(3)C
1 (note

that V ⊥ is actually the orthogonal subspace to V in u(3)C). In our construction we
will use extensively the following properties:

– the map adπ⊥
0

∣∣
V ⊥→V ⊥

is a vector space isomorphism (it is actually a involution

on V ⊥),
– the inclusions V V ⊂ V , V V ⊥ ⊂ V ⊥, V ⊥V ⊂ V ⊥ and V ⊥V ⊥ ⊂ V . These

properties can be checked by a direct computation using the fact that matrices
in V are diagonal by blocks and the matrices in V ⊥ are off-diagonal by blocks.
(The three first properties can also be deduced from the definition of V and
V ⊥ and the fact that ad is a derivation).

We look for a formal Killing field Yλ, i.e. a solution of the equation

dYλ = [Yλ, Aλ], (4.2)

of the form Yλ = (1 + Wλ)−1λ−2iaπ⊥
0 (1 + Wλ), where Wλ =

∑∞
k=0 Ŵkλk as in [3].

In order to have a well-posed problem (and in particular to guarantee the existence
of an unique solution of this type) we assume that Wλ takes values in V ⊥. We start
by evaluating (4.2) along ∂/∂z. It gives, after conjugation by 1 + Wλ:

λ−2 ∂a

∂z
π⊥

0 + λ−2a
[
π⊥

0 ,

∂Wλ

∂z
(1 + Wλ)−1 − (1 + Wλ)(λ−2iaπ⊥

0 + λ−1X + C)(1 + Wλ)−1
]

= 0 (4.3)

Here the fact that a is a constant leads to an immediate simplification, namely
that the bracket in the left hand side of (4.3) is 0. Thus equation (4.3) implies that

†Actually the map ξ 7−→ i[π⊥
0 , ξ] corresponds to the complex structure on the Legendrian distri-

bution.
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∂Wλ

∂z
(1+Wλ)−1− (1+Wλ)(λ−2iaπ⊥

0 +λ−1X +C)(1+Wλ)−1 lies in V , hence there
exists a map ϕλ : C −→ V such that

∂Wλ

∂z
(1 + Wλ)−1 − (1 + Wλ)(λ−2iaπ⊥

0 + λ−1X + C)(1 + Wλ)−1 = ϕλ

or
∂Wλ

∂z
− (1 + Wλ)(λ−2iaπ⊥

0 + λ−1X + C) = ϕλ(1 + Wλ),

which can be projected according to the splitting V ⊕ V ⊥ as
{

λ−2iaπ⊥
0 + λ−1WλX + C = −ϕλ ∈ V

∂Wλ

∂z
− λ−2iaWλπ⊥

0 − λ−1X − WλC = ϕλWλ ∈ V ⊥.

Substituting ϕλ,

∂Wλ

∂z
− λ−2iaWλπ⊥

0 − λ−1X − WλC + λ−2iaπ⊥
0 Wλ + λ−1WλXWλ + CWλ = 0

or

[iaπ⊥
0 , Wλ] + λ(WλXWλ − X) + λ2[C, Wλ] + λ2 ∂Wλ

∂z
= 0

or

ia
∑

n≥0

[π⊥
0 , Ŵn]λn +

∑

n≥1

(
n−1∑

k=0

ŴkXŴn−1−k

)
λn − λX

+
∑

n≥2

(
[C, Ŵn−2] +

∂Ŵn−2

∂z

)
λn = 0.

Hence





n = 0, ia[π⊥
0 , Ŵ0] = 0

n = 1, ia[π⊥
0 , Ŵ1] + Ŵ0XŴ0 − X = 0

n ≥ 2, ia[π⊥
0 , Ŵn] +

n−1∑

k=0

ŴkXŴn−1−k + [C, Ŵn−2] +
∂Ŵn−2

∂z
= 0

and thus





Ŵ0 = 0

Ŵ1 = −ia−1[π⊥
0 , X ]

Ŵn = ia−1

[
π⊥

0 ,
n−1∑

k=0

ŴkXŴn−1−k + [C, Ŵn−2] +
∂Ŵn−2

∂z

]

We observe that the formal Killing field is quasi-adapted in the sense that the two
first coefficients are the right ones:

Yλ = iaλ−2(1 + Wλ)−1π⊥
0 (1 + Wλ) = iaλ−2

(
π⊥

0 − λ[Ŵ1, π
⊥
0 ] + O(λ2)

)

= λ−2iaπ⊥
0 + λ−1X + O(1).

Another pleasant property is that this formal field is automatically twisted (as in
the case of C2, see [10]). Indeed using the fact that τ is an automorphism for the
product of matrices as well as for the Lie bracket (and so [u(3)C

a , u(3)C

b ] ⊂ u(3)C

a+b

and u(3)C
au(3)C

b ⊂ u(3)C

a+b), we obtain that

τ(Yλ) = τ(1 + Wλ)−1(−λ2)iaπ⊥
0 τ(1 + Wλ).
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Thus it is enough to show that 1 + Wλ is twisted, i.e. τ(Wλ) = Wiλ. In terms of

the Fourier decomposition of Wλ this is equivalent to proving that Ŵn belongs to
u(3)C

n. Let us prove it by recursion. We already know that Ŵ1 = −ia−1[π⊥
0 , X ] is

in u(3)C
1 . Assume that the result is true up to n − 1,then

n−1∑

p=0

ŴpXŴn−1−p + [C, Ŵn−2] +
∂Ŵn−2

∂z

belongs to u(3)C
n−2. And since π⊥

0 ∈ u(3)C
2 , Ŵn is in gC

n.
We now prove that (4.2) is also true along ∂/∂z̄. We follow here the same kind

of arguments as in [3] slightly simplified†. We want to show that

∂Yλ

∂z̄
+

[
Aλ

(
∂

∂z̄

)
, Yλ

]
= 0

and for that purpose we rather consider the conjugate of the left hand side ζλ =
(1 + Wλ)(∂Yλ

∂z̄
+ [Aλ

(
∂
∂z̄

)
, Yλ])(1 + Wλ)−1. We then prove two facts

– ζλ takes its values in V ⊥: this follows from the identity

ζλ =

[
λ−2iaπ⊥

0 ,
∂Wλ

∂z̄
(1 + Wλ)−1 − (1 + Wλ)Aλ

(
∂

∂z̄

)
(1 + Wλ)−1

]
.

Note that since ζλ is twisted the fact that ζλ ∈ V ⊥ implies also that ζλ is an
odd function of λ and so that

ζλ =

∞∑

k=0

ζ̂2k−1λ
2k−1. (4.4)

– the relation
∂ζλ

∂z
= [ϕλ, ζλ]. (4.5)

Indeed d+adAλ is a flat connection and in particular ∂
∂z

+adAλ( ∂
∂z

) commutes
with ∂

∂z̄
+ Aλ( ∂

∂z̄
). Hence

(
∂

∂z
+ adAλ

(
∂

∂z

))(
∂

∂z̄
+ adAλ

(
∂

∂z̄

))
Yλ = 0

i.e. (
∂

∂z
+ adAλ

(
∂

∂z

))(
(1 + Wλ)−1ζλ(1 + Wλ)

)
= 0

Thus (4.5) follows from a computation which uses ϕλ = ∂Wλ

∂z
(1+Wλ)−1− (1+

Wλ)Aλ

(
∂
∂z

)
(1 + Wλ)−1.

Now assume by contradiction that ζλ 6= 0: in view of (4.4) there exists an integer k ∈
N such that ζ̂2k−1 6= 0 and ζ̂2k−3 = 0. By substituting the Fourier decompositions
in (4.5) and observing that the Fourier series expansion of ϕλ starts by λ−2iaπ⊥

0 ,
we deduce that 0 = ∂ζ̂2k−3/∂z = [iaπ⊥

0 , ζ̂2k−1]; but adπ⊥
0 is invertible on V ⊥ and

hence ζ̂2k−1 = 0. So we get a contradiction.

†essentially the simplifications occur because the semi-simple term B of [3] is here iaπ⊥
0 which

is constant for d, so we do not need to introduce a flat connection.
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4.2. Polynomial Killing fields

We now deduce the existence of a non-trivial polynomial Killing field.
A first easy consequence of the results of the previous section is that, for all n ∈ N

and for all polynomial of the form P (λ) = anλ−4n +an−1λ
−4(n−1) + · · ·+a0, where

a0, a1, · · · , an ∈ C and an 6= 0, then Zλ := P (λ)Yλ is again formal Killing field.
Moreover it is quasi-adapted (modulo the multiplicative factor anλ−4n), i.e. the
lower degree terms are anλ−4n

(
iaλ−2π⊥

0 + λ−1X + O(λ0)
)
). Let us consider

Z≤ :=

0∑

k=−2−4n

Ẑkλk, and Z> :=

∞∑

k=1

Ẑkλk,

so that Zλ = Z≤ + Z>. We study

Rλ := dZ≤ + [Aλ, Z≤]. (4.6)

We first remark that Rλ is necessarily of the form Rλ =
∑2

k=−4−4n R̂kλk. But
because of dZλ + [Aλ, Zλ] = 0, we also have

Rλ = −dZ> − [Aλ, Z>], (4.7)

which implies Rλ =
∑∞

k=−1 R̂kλk. Hence finally

Rλ = λ−1R̂−1 + R̂0 + λ1R̂1 + λ2R̂2.

Each term R̂k can be evaluated through two different ways: by using (4.6) or (4.7).
From (4.6) we obtain






R̂−1(∂z) = ∂zẐ−1 + [A−1(∂z), Ẑ0] + [A0(∂z), Ẑ−1]

R̂0(∂z) = ∂zẐ0 + [A0(∂z), Ẑ0]

R̂1(∂z) = 0

R̂2(∂z) = 0

(4.8)

and




R̂−1(∂z̄) = ∂z̄Ẑ−1 + [A0(∂z̄), Ẑ−1] + [A1(∂z̄), Ẑ−2] + [A′′
2 (∂z̄), Ẑ−3]

R̂0(∂z̄) = ∂z̄Ẑ0 + [A0(∂z̄), Ẑ0] + [A1(∂z̄), Ẑ−1] + [A′′
2 (∂z̄), Ẑ−2]

R̂1(∂z̄) = [A1(∂z̄), Ẑ0] + [A′′
2 (∂z̄), Ẑ−1]

R̂2(∂z̄) = [A′′
2 (∂z̄), Ẑ0].

(4.9)

¿From (4.7) we get





R̂−1(∂z) = −[A′
2(∂z), Ẑ1]

R̂0(∂z) = −[A′
2(∂z), Ẑ2] − [A−1(∂z), Ẑ1]

R̂1(∂z) = −∂zẐ1 − [A′
2(∂z), Ẑ3] − [A−1(∂z), Ẑ2] − [A0(∂z), Ẑ1]

R̂2(∂z) = −∂zẐ2 − [A′
2(∂z), Ẑ4] − [A−1(∂z), Ẑ3] − [A0(∂z), Ẑ2]

(4.10)

and 




R̂−1(∂z̄) = 0

R̂0(∂z̄) = 0

R̂1(∂z̄) = −∂z̄Ẑ1 − [A0(∂z̄), Ẑ1]

R̂2(∂z̄) = −∂z̄Ẑ2 − [A0(∂z̄), Ẑ2] − [A1(∂z̄), Ẑ1].

(4.11)

Thus in order to obtain an expression of Rλ which does depend only on Ẑ−1 and
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Ẑ0, we exploit (4.8) and the two last equations in (4.9). But instead of using the
two first equations of (4.9) we take the two first ones of (4.11). This gives us

Rλ(∂z) = λ−1
(
∂zẐ−1 + [A−1(∂z), Ẑ0] + [A0(∂z), Ẑ−1]

)
+
(
∂zẐ0 + [A0(∂z), Ẑ0]

)
,

(4.12)

Rλ(∂z̄) = λ
(
[A1(∂z̄), Ẑ0] + [A′′

2(∂z̄), Ẑ−1]
)

+ λ2[A′′
2 (∂z̄), Ẑ0]. (4.13)

These relations will imply that Ẑ−1 and Ẑ0 satisfy a second order elliptic equation.
In order to prove that we need to establish another relation between Rλ(∂z) and
Rλ(∂z̄). For that purpose recall that dAλ + Aλ ∧ Aλ = 0, which means that the
connection d + adAλ has a vanishing curvature. In particular

0 = (d + adAλ) ◦ (d + adAλ)Z≤ = dRλ + [Aλ ∧ Rλ].

This implies

∂Rλ(∂z)

∂z̄
− ∂Rλ(∂z̄)

∂z
= [Aλ(∂z), Rλ(∂z̄)] − [Aλ(∂z̄), Rλ(∂z)]. (4.14)

A substitution of (4.12) and (4.13) in (4.14) gives a system of linear elliptic equations
on Ẑ−1 and Ẑ0. Since the space of solutions to this system which are periodic is
finite dimensional, it turns out that Ẑ−1 and Ẑ0 belong to a finite dimensional
vector space. Hence relations (4.12) and (4.13) force Rλ(∂z) and Rλ(∂z̄) to stay in
a finite dimensional vector space.

We can conclude: let us consider

R := {Rλ/Rλ(∂z), Rλ(∂z̄) are given by (4.12) and (4.13) and satisfy (4.14)}.
It is a complex finite dimensional vector space. Let us also denote by Pn := {P (λ) =
anλ−4n + an−1λ

−4(n−1) + · · · + a0/(a0, · · · , an) ∈ Cn+1} and P∞ := ∪n∈NPn.
The linear map P∞ ∋ P (λ) 7−→ dZ≤ + [Aλ, Z≤], where Z≤ = (P (λ)Yλ)≤ takes

values in R and so has a finite rank, say n. Then since dimCPn = n + 1, the map
Pn ∋ P (λ) 7−→ dZ≤+[Aλ, Z≤] has a non trivial kernel: let P (λ) =

∑n
k=0 akλ−4k be

a non trivial polynomial in this kernel. Let 4p be the degree of P in λ−1, i.e. such
that P (λ) =

∑p
k=0 akλ−4k and ap 6= 0. Without loss of generality we can assume

that ap = 1. Then ξλ := (P (λ)Yλ)≤ − (P (λ)Yλ)†≤ is a solution of (3.6) and (3.8).

5. Homogeneous tori in CP 2

We describe here the simplest examples of Hamiltonian stationary Lagrangian
tori in CP 2: the homogeneous Hamiltonian stationary Lagrangian tori, i.e. immer-
sions u of S1 × S1 into CP 2 such that u(x + t, y) = etAu(x, y) and u(x, y + t) =
etBu(x, y) for some skew-Hermitian matrices A and B. Notice that A and B are
only defined up to addition with a multiple of iId . The simplest example is the
Clifford torus, namely the image by the Hopf map π of the product torus {z =
(z1, z2, z3); |z1| = |z2| = |z3| = 1/

√
3}. This torus is minimal. The main result

states that all homogeneous Hamiltonian stationary Lagrangian tori are similar to
the Clifford torus.

Theorem 5.1. Any homogeneous Hamiltonian stationary Lagrangian torus in
CP 2 is the image by the Hopf map of some Cartesian product r1S

1×r2S
1×r3S

1 =
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{z = (z1, z2, z3); |z1| = r1, |z2| = r2, |z3| = r3} where r2
1 + r2

2 + r2
3 = 1, up to U(3)

congruence. Moreover, the torus is special Lagrangian if and only if r1 = r2 = r3 =√
3.

Proof. Let us first see why π(T ) is a Hamiltonian stationary Lagrangian torus
in CP 2, where T = r1S

1 × r2S
1× r3S

1. Indeed it suffices to show that π(T ) admits
a Legendrian preimage. Let

f(x, y) :=
(
r1e

i((1−r2
1)x−r2

2y), r2e
i(−r2

1x+(1−r2
2)y), r3e

i(−r2
1x−r2

2y)
)

.

Then the orbit under the Hopf action of the image of f is exactly the 3-torus
T above and π ◦ f is doubly periodic with periods (2π, 0) and (0, 2π). Note that
this immersion is not conformal but there exists an orthonormal Hermitian moving
frame (e1, e2) such that ∂f

∂x
= r1

√
1 − r2

1 e1 and ∂f
∂y

= r2√
1−r2

1

(r3e2 − r1r2e1). And

it is easy to check that f is Legendrian (and flat). Its Lagrangian angle function is

β(x, y) = x(1 − 3r2
1) + y(1 − 3r2

2) + π

and since the metric is flat, β is clearly harmonic, and constant if and only if
r1 = r2 = r3 = 1/

√
3. Notice that many of these tori do not lift up to S5 as

Legendrian tori (they do not close up). Indeed the Maslov class is not always an
integer: for the implicit homology basis, t 7−→ (2πt, 0) and t 7−→ (0, 2πt), it is
(1 − 3r2

1 , 1 − 3r2
2). However, if all r2

i are rational, the torus in CP 2 possesses a
Legendrian toric multiple cover.

Suppose now that u : S1×S1 −→ CP 2 is a homogeneous Lagrangian immersion.
According to our definition u has a lift û such that π(û(x + t, y)) = π(etAû(x, y))
and π(û(x, y + t)) = π(etBû(x, y)). In particular π(exAeyBp) = π(eyBexAp), for any
p ∈ S5 in the image. However the image is never contained in a complex subspace
of C3, hence [A, B] ∈ iRId . Since [A, B] is traceless, A and B commute.

The obvious (non Legendrian) lift in S5 is (x, y) 7−→ exAeyBp where now p =
(p1, p2, p3) is a fixed point mapped by the Hopf map π to u(0, 0). A Legendrian
lift û takes the following form: û(x, y) = eiθ(x,y)exAeyBp for some function θ. The

horizontality condition implies 〈(i ∂θ
∂x

Id + A)p, p〉C3 = 0 so that ∂θ
∂x

= i
〈Ap,p〉

C3

|p|2 is

a constant. The same holds in the y direction so we can define the lift û(x, y) =

exÂ+yB̂p where Â = A + i ∂θ
∂x

Id and B̂ = B + i ∂θ
∂y

Id are two commuting skew-

symmetric matrices. (Notice that û is only defined on the universal cover R2.) The
base point p depends of course on the choice of origin and is only defined up to
multiplication by a complex unit number. Nevertheless it plays an important role.

Consider now the metric induced by û. Due to homogeneity, it is a constant
metric on the (x, y)-plane. By doing a simple change in variables, we may as well
assume that the metric is the standard plane metric, in other words the immer-
sion is isometric. (Of course that will change the matrices Â and B̂, but since they
are replaced by some real linear combination of themselves, the properties men-
tioned above still hold.) Henceforth we suppose that û is an isometric homogeneous
Legendrian immersion of the plane.

Up to a unitary rotation in C3 we may suppose that Â is diagonal, and write
Â = i diag(a1, a2, a3) with real coefficients a1, a2, a3. We will now consider three
cases and show that only case (i) is possible.

(i) Suppose B = idiag(b1, b2, b3) is diagonal. Then the surface lies inside the
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three torus T = |p1|S1 × |p2|S1 × |p3|S1. Necessarily it lifts π(T ). Isometry
will constrain the coefficients to be as above.

(ii) One and only one of the off-diagonal coefficients of B is non zero. We can
assume it is b12 up to permutation of the coordinates. Commutation of Â
and B̂ forces a1 = a2, while a3 6= a1, otherwise we would get a contradiction:
A cannot be a multiple of iId . Let us first look at equations involving A.
The immersion being isometric in S5, |p| = |Ap| = 1

1 = |p1|2 + |p2|2 + |p3|2 = a2
1(|p1|2 + |p2|2) + a2

3|p3|2

but it is also Legendrian, so

ω(Ap, p) = 〈iAp, p〉C3 = a1(|p1|2 + |p2|2) + a3|p3|2 = 0.

Hence

|p1|2 + |p2|2 =
a3

a3 − a1
, |p3|2 = − a1

a3 − a1
and a1a3 = −1

excluding thus a1 = 0, and finally

|p1|2 + |p2|2 =
1

1 + a2
1

, |p3|2 =
a2
1

1 + a2
1

.

Take now into account the Legendrian constraints on B:

B =




ib1 b12 0

−b12 ib2 0
0 0 b3





0 = 〈Bp, p〉C3 = i

(
3∑

1

bj |pj|2 + 2Im(b12p1p2)

)

0 = 〈Bp, Ap〉C3 =

3∑

1

ajbj |pj |2 + 2a1Im(b12p1p2).

Uniting both, we deduce

a1b1|p1|2 + a1b2|p2|2 + a1b3|p3|2 = a1b1|p1|2 + a1b2|p2|2 + a3b3|p3|2.
Since |p3| 6= 0 and a1 6= a3, b3 vanishes. The remaining equations are:

|p1|2 + |p2|2 =
1

1 + a2
1

b1|p1|2 + b2|p2|2 + 2Im(b12p1p2) = 0 (5.1)

(b2
1 + |b12|2)|p1|2 + (b2

2 + |b12|2)|p2|2 + 2(b1 + b2)Im(b12p1p2) = 1. (5.2)

Finally we infer a contradiction: indeed equation (5.1) amounts to the exis-

tence of an isotropic vector (p1, p2) for the skew-hermitian matrix

(
ib1 b12

−b12 ib2

)
,

and that requires its determinant |b12|2 − b1b2 to vanish. Plugging this into
(5.2), we obtain

(b1 + b2)
(
b1|p1|2 + b2|p2|2 + 2Im(b12p1p2)

)
= 1,
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obviously contradicting (5.1).
(iii) If at least two off-diagonal coefficients of B are non-zero, then A = ia1Id .

But that contradicts (Ap|p) = 0. So that case is also excluded.

Notice that in the language of integrable systems, homogeneous tori correspond
to vacuum solutions and are of finite type for p = 0.
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