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Abstract

We analyze here Hamiltonian stationary surfaces in the complex pro-
jective plane as (local) solutions to an integrable system, formulated as a
zero curvature equation on a loop group. As an application, we show in
details why such tori are finite type solutions, and eventually describe the
simplest of them: the homogeneous ones.
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1 Introduction

Hamiltonian stationary Lagrangian surfaces are Lagrangian surfaces of a given
four-dimensional manifold endowed with a symplectic and a Riemannian struc-
ture, which are critical points of the area functional with respect to a particu-
lar class of infinitesimal variations preserving the Lagrangian constraint. This
class is the set of compactly supported Hamiltonian vector fields. The Euler–
Lagrange equations of this variational problem are highly simplified when we as-
sume that the ambient manifold N is Kähler. In that case we can make sense of
a Lagrangian angle function ˻ along any simply-connected Lagrangian subman-
ifold Σ ⊂ N (uniquely defined up to the addition of a constant). And as shown

in [ScWo] the mean curvature vector of the submanifold is then ~H = J ∇˻,
where J is the complex structure on N and ∇˻ is the gradient of ˻ along Σ.
(We will revisit in the following this relationship between ~H and ˻ in the special
case where N = CP 2.) It turns out that Σ is Hamiltonian stationary if and
only if ˻ is a harmonic function on Σ.

A particular subclass of solutions occurs when ˻ is constant: the Lagrangian
submanifold is then simply a minimal one. In the case where N is a Calabi–
Aubin–Yau manifold, such submanifolds admit an alternative characterization
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as special Lagrangian, a notion which has been extensively studied recently be-
cause of its connection with string theories and the mirror conjecture, see [SYZ].

An analytical theory of two-dimensional Hamiltonian stationary Lagrangian
submanifolds was constructed by R. Schoen and J. Wolfson [ScWo], proving
the existence and the partial regularity of minimizers. In contrast our results
in the present paper rest on the fact that, for particular ambient manifolds N ,
Hamiltonian stationary Lagrangian surfaces are solutions of an integrable sys-
tem. This was discovered first in the case when N = C

2 in [HR1] and [HR2]. In
a subsequent paper [HR3] we proved that the same problem is also completely
integrable if we replace C

2 by any two-dimensional Hermitian symmetric space.
Among these symmetric spaces one very interesting example is CP 2, because
any simply-connected Lagrangian surface in CP 2 can be lifted into a Legen-
drian surface in S5. Furthermore the cone in C

3 over this Legendrian surface
is actually a singular Lagrangian three-dimensional submanifold in C

3; and the
cone in C

3 is Hamiltonian stationary if and only if the surface in CP 2 is so.

A similar correspondence has been remarked and used in [J], [McI3] and [Has]
in the case of minimal Lagrangian surfaces in CP 2 and allows these Authors to
connect results on minimal Lagrangian surfaces in CP 2 [Sh] to minimal Legen-
drian surfaces in S5 [MM] and special minimal cones in C

3.

Our aim in this paper is the following:

• to expound in details the correspondence between Hamiltonian station-
ary Lagrangian surfaces in CP 2 and Hamiltonian stationary Legendrian
surfaces in S5 and a formulation using a family of curvature free connec-
tions of this integrable system. We revisit here the formulation given in
[HR3], using twisted loop groups. Roughly speaking it rests on the iden-
tifications CP 2 ≃ SU(3)/S(U(2) · U(1)) and (S5, contact structure) =(
U(3)/U(2) · U(1), A3

3 = 0
)
, where A3

3 is a component of the Maurer–
Cartan form. We also show that this problem has an alternative formula-
tion, analogous to the theory of K. Uhlenbeck [U] for harmonic maps into
U(n), using based loop groups.

• to define the notion of finite type Hamiltonian stationary Legendrian sur-
faces in S5: we give here again two definitions, in terms of twisted loop
groups (which is an analogue to the description of finite type harmonic
maps into homogeneous manifolds according to [BP]) and in terms of based
loop groups (an analogue to the description of finite type harmonic maps
into Lie groups according to [BFPP]). We prove the equivalence between
the two definitions because we actually need this result for the following.
We believe that this fact should be well known to some specialists in the
harmonic maps theory, but we did not find it in the literature.

• we prove that all Hamiltonian stationary Lagrangian tori in CP 2 (and
hence Hamiltonian stationary Legendrian tori in S5) are of finite type.
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This is the main result of this paper. Our proof focuses on the case
of Hamiltonian stationary tori which are not minimal, since the mini-
mal case has been studied by many authors ([BFPP], [Sh], [MM], [Has],
[McI1],[McI2], [McI3], [J]). The method here is adapted from the similar
result for harmonic maps into Lie groups in [BFPP]. However the strategy
differs slightly: we use actually the two existing formulations of finite type
solutions, using twisted or based loop groups. One crucial step indeed is
the construction of a formal Killing field, starting from a given torus solu-
tion. This step can be slightly simplified here in the twisted loop groups
formulation, because the semi-simple element we start with is then just
constant. However proving that the formal Killing field is adapted requires
more work in the twisted loop groups formulation (actually we were not
able to do it directly) than in the based loop groups formulation; here we
take advantage from the two formulations to avoid the difficulties and to
conclude.

• lastly we give some examples of Hamiltonian stationary Legendrian tori
in S5: we construct a family of solutions which are equivariant in some
sense under the action of the torus, that we call homogeneous Hamiltonian
stationary tori. These are the simplest examples that one can build.

Let us add that the structure of the integrable system studied here fits in a
classification of elliptic integrable systems proposed by C.L. Terng [T], as a 2nd
(U(3), ̌, ̍)-system1, where ̌ is an involution of U(3) such that its fixed set is
U(3)̌ ≃ U(2) · U(1) and U(3)/U(2)̌ ≃ CP 2 and ̍ is a 4th order automor-
phism (actually ̍2 = ̌) which encodes the symplectic structure on CP 2 or the
Legendrian structure on S5.

Notations — For any matrix M ∈ GL(n, C), we denote by M † := tM .

2 Geometrical description of Hamiltonian sta-

tionary Lagrangian surfaces in CP
n

2.1 The space CP
n

The complex projective space CPn can be identified with the quotient manifold(
C

n+1 \ {0}
)
/C

⋆. We denote by ̉ : C
n+1 \ {0} −ջ CPn the canonical projec-

tion (a.k.a. Hopf fibration): if z = (z1, ⋅ ⋅ ⋅ , zn+1) ∈ C
n+1 \ {0}, ̉(z) = [z] is the

equivalence class of z modulo C
⋆ (the complex punctured line spanned by z)

and is also written in homogeneous coordinates [z1 : ⋅ ⋅ ⋅ : zn+1].

The tangent bundle — If [z] ∈ CPn a tangent vector ̇ ∈ T[z]CPn can be

1we have here exchanged the notations σ and τ with respect to [T] in order to be consistent
with our notations in [HR3]
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represented by a C-linear map ℓ : Cz −ջ C
n+1, ̄z 7−ջ ℓ(̄z) such that

∀̄ ∈ C, d̉̄z (ℓ(̄z)) = ̇. (1)

Note that ℓ is not unique and given some ̇ ∈ T[z]CPn if ℓ and ℓ̃ satisfy condition

(1) with ̇, then there exists k ∈ C s.t. ℓ̃(̄z) = ℓ(̄z) + k̄z. However by using
the standard Hermitian product 〈⋅, ⋅〉Cn+1 on C

n+1 we can select an unique ℓ0

which satisfies (1) and such that

〈ℓ0(z), z〉Cn+1 = 0. (2)

Indeed it suffices to start from any ℓ satisfying (1) and to set ℓ0(z) = ℓ(z) + kz.

Then condition (2) holds if and only if k = − 〈ℓ(z),z〉
Cn+1

|z|2
Cn+1

.

The Hermitian metric — We can define a Hermitian product on CPn as follows.
If ̇1, ̇2 ∈ T[z]CPn we consider the linear maps ℓ01 and ℓ02 satisfying (2) and such
that d̉z(ℓ

0
1(z)) = ̇1 and d̉z(ℓ

0
2(z)) = ̇2. Then the Hermitian product of ̇1

and ̇2 is

〈̇1, ̇2〉CP n :=
〈ℓ01(z), ℓ02(z)〉Cn+1

|z|2
Cn+1

,

a definition which is obviously invariant by transformations z 7−ջ ̄z. If we had
started with linear mappings ℓ1, ℓ2 which lift respectively ̇1 and ̇2 according to
(1) but without the condition (2) we could recover 〈̇1, ̇2〉CP n by substitution

of ℓ0a(z) = ℓa(z) − 〈ℓa(z),z〉
Cn+1

|z|2
Cn+1

z (for a = 1, 2) in the above definition. It gives

〈̇1, ̇2〉CP n =
〈ℓ1(z), ℓ2(z)〉Cn+1

|z|2
Cn+1

− 〈ℓ1(z), z〉Cn+1〈z, ℓ2(z)〉Cn+1

|z|4
Cn+1

. (3)

Note that the Hermitian metric 〈⋅, ⋅〉CP n on CPn provides us with an Euclidean
metric 〈⋅, ⋅〉E and a symplectic form ̒ through2 〈⋅, ⋅〉CP n = 〈⋅, ⋅〉E − i̒(⋅, ⋅).

The horizontal distribution and the connection — For each z ∈ C
n+1 \ {0} we

let Hz to be the complex n-subspace in C
n+1 which is Hermitian orthogonal

to z (and hence to the fiber of ̉). Note that the definition of the Hermitian
metric on CPn is such that 1

|z|
Cn+1

d̉z : Hz −ջ T[z]CPn is an isometry between

complex Hermitian spaces (and d̉z allows us also to orient Hz). We call the
subbundle H := ∪z∈Cn+1\{0}Hz of TC

n+1 \ {0} −ջ C
n+1 \ {0} the horizontal

distribution. It defines in a natural way a connection ∇Hopf ≃ ∇H on the Hopf
bundle ̉ : C

n+1 \ {0} −ջ CPn: if f : CPn −ջ C
n+1 \ {0} is a section of this

bundle its covariant derivative is

(
∇H

̇ f
)
[z]

:=
〈df[z](̇), f(z)〉Cn+1

|f(z)|2
Cn+1

f(z).

2note the the sign convention may vary in the literature, e.g. some Authors use 〈⋅, ⋅〉CP n =
〈⋅, ⋅〉E + iω(⋅, ⋅).
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In order to compute the curvature of this connection, let us choose two vector
fields ̇1 and ̇2 on CPn such that [̇1, ̇2] = 0. Then using (3) one computes
that

∇H
̇1

(
∇H

̇2
f
)
−∇H

̇2

(
∇H

̇1
f
)

= (〈̇2, ̇1〉CP n − 〈̇1, ̇2〉CP n) f = 2i̒(̇1, ̇2)f.

Hence the curvature of this connection is proportional to the symplectic form
̒. It has the following consequence:

Proposition 2.1 Let Ω be a simply connected open subset of R
n and u : Ω −ջ

CPn be a smooth Lagrangian immersion, i.e. such that u∗̒ = 0. Then there
exists a lift

C
n+1

̉

²²
Ω

bu

<<zzzzzzzz u // CPn

such that
(
u∗∇H

)
û = 0 (where u∗∇H is the pull-back by u of the connection

∇H). Moreover this lift is unique modulo a multiplicative constant in C
⋆, is

isotropic (i.e. the pull-back by û of the symplectic form on C
n+1 vanishes) and

we can choose it in such a way that |û|Cn+1 = 1 everywhere (i.e. such that
û : Ω −ջ S2n+1).

Proof — The curvature of u∗∇H is the pull-back by u of the curvature of ∇H ,
i.e. 2iu∗̒. But this 2-form vanishes because u is Lagrangian and thus u∗∇H is
flat. Hence we can find a parallel section û (unique up to multiplication by a
non-zero constant). The condition

(
u∗∇H

)
û = 0 writes 〈dû, û〉Cn+1 = 0, which

implies d|û|2
Cn+1 = 〈dû, û〉Cn+1 + 〈û, dû〉Cn+1 = 0. Hence |û|R2n+2 is constant and

in particular we can choose û to take values in S2n+1. ¥

Observe that in Proposition 2.1 the tangent n-subspace along û at (x, y) is a
subspace of Hbu(x,y): we then say that û is a Legendrian immersion.

The Levi–Civita connection on CPn — It can be expressed in terms of the trivial
connection D of (Cn+1, 〈⋅, ⋅〉R2n+2) as follows. Let U ⊂ CPn be an open subset
such that we can define a smooth local section ̌ : U −ջ C

n+1 \ {0} of the
Hopf bundle. For any m ∈ U we denote by m̂ := ̌(m). Let X be a smooth
tangent vector field on CPn defined on U and, choosing some point m ∈ U , let
̇ ∈ TmCPn. In order to define the covariant derivative of X at m along ̇ we
let ̂̇ := ďm(̇) ∈ T bmCPn and X̂ := ̌∗X. Then we set

(∇̇X) (m) := d̉ bm

((
ḊX̂

)
(m)

)
−

(
〈̂̇, m̂〉Cn+1

|m̂|2
Cn+1

X(m) +
〈X̂(m), m̂〉Cn+1

|m̂|2
Cn+1

̇

)

(4)
(Of course this definition does not depend on the choice of the local section
̌.) One can then check easily that this connection respects the metric and is
torsion-free and so it is the Levi–Civita connection on CPn.
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2.2 The mean curvature vector of a Lagrangian submani-

fold in CP
n

We consider here a simply connected Lagrangian submanifold Σ of CPn and
denote by u : Σ −ջ CPn its immersion map. According to Proposition 2.1, we
can construct a Legendrian lift û : Σ −ջ C

n+1 \{0}. We also consider a smooth
orthonormal moving frame along u, i.e. sections E1, ⋅ ⋅ ⋅ , En of u∗TCPn such
that for all x ∈ Σ, (E1(x), ⋅ ⋅ ⋅ , En(x)) is a direct orthonormal basis over R of
Tu(x)Σ and, for all a, we let ea := û∗Ea. Then for all x ∈ Σ, (e1(x), ⋅ ⋅ ⋅ , en(x))
is a direct orthonormal basis over R of Tbu(x)û(Σ). We next define the mean

curvature vector ~H of the immersion u which is the normal component of the
trace of the second fundamental form. The main point here is that, since Tu(x)Σ
is Lagrangian, it is mapped by the complex structure3 J of Tu(x)CPn to the

normal space
(
Tu(x)CPn

)⊥
. And so (JE1(x), ⋅ ⋅ ⋅ , JEn(x)) is an orthonormal

basis of the normal subspace to Tu(x)Σ in Tu(x)CPn. Hence

~H :=
1

n

n∑

a,b=1

〈∇Ea
Ea, JEb〉E JEb. (5)

Note that then, since 〈ea, û〉Cn+1 = 〈eb, û〉Cn+1 = 0, we have according to (4)

∇Ea
Eb = d̉bu(x) (DEa

eb) = d̉bu(x) (Dea
eb) .

Hence

~H =
1

n

n∑

a,b=1

〈Dea
ea, ieb〉R2n+2 JEb. (6)

The complex volume n-form along û — Let us consider on C
n+1 the complex

volume (n + 1)-form Θ := dz1 ∧ ⋅ ⋅ ⋅ ∧ dzn+1. Then we construct the complex

volume n-form along û to be the section ̂́ of û∗ (ΛnH∗ ⊗ C) by

̂́
x := (û(x) Θ)|Hbu(x)

, ∀x ∈ Σ,

where is the interior product. Lastly we define the complex volume n-
form ́ along u to be the section of u∗ (ΛnT ∗

CPn ⊗ C) defined by ́ := û∗ ̂́.
Using ̂́ we define the Lagrangian angle function along û to be the function
˻bu : Σ −ջ R/2̉Z such that

ei˻bu(x) = ́x(E1(x), ⋅ ⋅ ⋅ , En(x)) = Θ(û(x), e1(x), ⋅ ⋅ ⋅ , en(x)), ∀x ∈ Σ.

It is not difficult to check that this definition is independent of the choice of the
framing (E1, ⋅ ⋅ ⋅ , En). However all this construction depends on the choice of
the Legendrian lift û: another choice v̂ would lead to another complex volume
n-form along v̂, and another Lagrangian angle function ˻bv, however ˻bu − ˻bv is
a constant in R/2̉Z.

3the complex structure J is the image of the canonical complex structure i on Hbu(x) by
dπbu(x).
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Lemma 2.2 The mean curvature vector of the Lagrangian surface Σ can be
computed using the Lagrangian angle function ˻bu through the relation

~H =
1

n
J∇˻bu. (7)

Proof — We set here ˻ = ˻bu. Relation (7) is equivalent to proving that

∀V ∈ TxCPn, n〈 ~H, JV 〉E = 〈∇˻, V 〉E . (8)

The left hand side of (8) is, by using (6) and the fact that J is an isometry,∑n
a,b=1 〈Dea

ea, ieb〉R2n+2 〈Eb, V 〉E . So we are led to the following computation,
which uses first the fact that 〈ea, ieb〉R2n+2 = 0, second the fact that i is a
complex structure, and third the fact that the Lie bracket [ea, eb] is tangent to
Σ:

〈Dea
ea, ieb〉R2n+2 = −〈ea, iDea

eb〉R2n+2

= 〈iea,Dea
eb〉R2n+2

= 〈iea,Deb
ea + [ea, eb]〉R2n+2

= 〈iea,Deb
ea〉R2n+2 .

So we have n〈 ~H, JV 〉E =
∑n

a,b=1 〈iea,Deb
ea〉R2n+2 〈Eb, V 〉E . Now the right

hand side of (8) can be computed as follows.. We derivate both sides of the
relation ei˻ = Θbu(û, e1, ⋅ ⋅ ⋅ , en) with respect to eb and use the decomposition
of Deb

ea in the R-orthonormal basis (û, e1, ⋅ ⋅ ⋅ , en, iû, ie1, ⋅ ⋅ ⋅ , ien):

iei˻Deb
˻ = Deb

ei˻

= Deb
(Θ(û, e1, ⋅ ⋅ ⋅ , en))

= Θ(eb, e1, ⋅ ⋅ ⋅ , en) +

n∑

a=1

Θ(û, e1, ⋅ ⋅ ⋅ ,Deb
ea, ⋅ ⋅ ⋅ , en)

=
n∑

a=1

Θ(û, e1, ⋅ ⋅ ⋅ , ea, ⋅ ⋅ ⋅ , en)
(
〈ea,Deb

ea〉R2n+2 + i 〈iea,Deb
ea〉R2n+2

)

= iei˻

n∑

a=1

〈iea,Deb
ea〉R2n+2 .

Here we used in the last line the fact that |ea|2R2n+2 = 1 =⇒ 〈ea,Deb
ea〉R2n+2 = 0.

Hence we are left with Deb
˻ =

∑n
a=1 〈iea,Deb

ea〉R2n+2 , which implies that

〈∇˻, V 〉E =

n∑

b=1

Deb
˻ 〈Eb, V 〉E =

n∑

a,b=1

〈iea,Deb
ea〉R2n+2 〈Eb, V 〉E .

So we have proved (8). ¥

A Hamiltonian stationary Lagrangian submanifold Σ in CPn is a Lagrangian
submanifold which is a critical point of the n-volume functional A under first
variations which are Hamiltonian vector fields with compact support. This
means that for any smooth function with compact support h ∈ C∞

c (CPn, R),
we have

˽Ȧh
(Σ) :=

∫

Σ

〈
~H, ̇h

〉

E
dvol = 0,
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where ̇h is the Hamiltonian vector field of h, i.e. satisfies ̒(̇h, ⋅) + dh = 0 or
̇h = J∇h. We also remark that if f ∈ C∞

c (Σ, R), then there exist smooth
extensions with compact support h of f , i.e. functions h ∈ C∞

c (CPn, R) such
that h|Σ = f , and moreover the normal component of (̇h)|Σ does not depend

on the choice of the extension h (it coincides actually with J∇f , where ∇ is
here the gradient with respect to the induced metric on Σ). So we deduce from
Lemma 2.2 that actually ˽Ȧh

(Σ) = 1
n

∫
Σ
〈∇˻,∇f〉E dvol. This implies the

following.

Corollary 2.3 Any Lagrangian submanifold Σ in CPn is Hamiltonian sta-
tionary if and only if ˻ is a harmonic function on Σ, i.e.

∆Σ˻ = 0.

The theory above extends to non simply connected surfaces Σ with the follow-
ing restrictions. Let ˼ be a homotopically non trivial loop. The Legendrian
lift of ˼ needs not close, so that in general its endpoints p1, p2 ∈ S2n+1 are
multiples of each other by a factor eí. The same holds for the Lagrangian
angle: ˻(p2) ≡ ˻(p1) + (n + 1)́ mod 2̉ (since the tangent plane is also shifted
by the Decktransformation z 7−ջ eíz). In particular ˻ is not always globally
defined on surfaces in CPn with non trivial topology, unless the Legendrian lift
is globally defined in S2n+1/Zn+1 (here Zn+1 stands for the cubic roots of unity
in SU(n + 1)).

2.3 Conformal Lagrangian immersions into CP
2

We now set n = 2. We suppose that Ω is a simply connected open subset of
R

2 ≃ C and consider a conformal Lagrangian immersion u : Ω −ջ CP 2. This
implies that we can find a function ̊ : Ω −ջ R and two sections E1 and E2 of
u∗TCP 2 such that ∀(x, y) ∈ Ω, (E1(x, y), E2(x, y)) is an Euclidean orthogonal
basis over R of Tu(x,y)u(Ω) and

du = e̊ (E1dx + E2dy) .

We observe that, due to the fact that u is Lagrangian, (E1, E2) is a also a Her-
mitian basis over C of Tu(x,y)CP 2.

Let Ω
bu //

u

!!CC
CC

CC
CC

S5

̉

²²
CP 2

be a parallel lift of u as in Proposition 2.1 and (e1, e2) be the

unique section of û∗H· û∗H which lifts4 (E1, E2). Then we have

dû = e̊ (e1dx + e2dy) . (9)

4recall that the condition that v ∈ (bu∗H)(x,y) means that v is in the horizontal subspace
Hbu(x,y)
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Note that ∀(x, y) ∈ Ω, (e1(x, y), e2(x, y)) is a Hermitian basis of Hbu(x,y), which
is Hermitian orthogonal to û(x, y). Hence ∀(x, y) ∈ Ω, (e1(x, y), e2(x, y), û(x, y))
is a Hermitian basis of C

3. Thus this triplet can be identified with some
F̂ (x, y) ∈ U(3). We hence get the diagram U(3)

(⋅⋅∗)

²²
Ω

bF

=={{{{{{{{
bu //

u

!!CC
CC

CC
CC

S5

̉

²²
CP 2

, where (⋅ ⋅ ∗) is

the mapping (e1, e2, e3) 7−ջ e3.

We define the Maurer–Cartan form Â to be the 1-form on Ω with coefficients in
u(3) such that dF̂ = F̂ ⋅ Â. Then we remark that the horizontality assumption
〈dû, û〉C3 = 0 exactly means that

Â3
3 = 0. (10)

Moreover the Lagrangian angle function ˻bu along û can be computed by

ei˻bu = Θ(e1, e2, û) = det F̂ .

As in [HR1] we consider a larger class of framings of u as follows.

Definition 2.4 A Legendrian framing of u along û is a map F : Ω −ջ
U(3) such that

• (⋅ ⋅ ∗) ◦ F = û

• detF = ei˻bu .

It is easily seen that the first condition is equivalent to the fact that there exists
a smooth map G : Ω −ջ U(3) (a gauge transformation) of the type

G(x, y) =

(
g(x, y) 0

0 1

)
, where g : Ω −ջ U(2)

such that
F (x, y) = F̂ (x, y) ⋅ G−1(x, y).

And then the second one is equivalent to say that g takes values in SU(2).

2.4 A splitting of the Maurer–Cartan form of a Legen-

drian framing

Using (9) and (10) one obtains the following decomposition of Â:

Â = Âu(1) + Âsu(2) + ÂC2 ,



10

with the notations

Âu(1) =

(
̂˺u(1) 0

0 0

)
, Âsu(2) =

(
̂˺su(2) 0

0 0

)
,

and ÂC2 = e̊

(
0 ǫdz + ǫdz̄

− t(ǫdz + ǫdz̄) 0

)
,

where ̂˺u(1) is a 1-form on Ω with coefficients in u(1) ≃ R

(
i 0
0 i

)
, ̂˺su(2) a

1-form on Ω with coefficients in su(2), ǫ := 1
2

(
1
−i

)
and ǫ := 1

2

(
1
i

)
(so that

ǫdz + ǫdz̄ =

(
dx
dy

)
). Note that detF = ei˻bu implies ̂˺u(1) = d˻bu

2

(
i 0
0 i

)
.

Now we let F : Ω −ջ U(3) be a Legendrian framing and A := F−1 ⋅ dF . The

relation F = F̂ ⋅ G−1 implies that A = G ⋅ Â ⋅ G−1 − dG ⋅ G−1. Hence

A = Au(1) + Asu(2) + AC2 ,

where, using the fact that u(1) commutes with su(2),

Au(1) =

(
˺u(1) 0

0 0

)
=

(
̂˺u(1) 0

0 0

)
=




id˻bu

2 0 0

0 id˻bu

2 0
0 0 0



 ,

Asu(2) =

(
˺su(2) 0

0 0

)
=

(
g ⋅ ̂˺su(2) ⋅ g−1 − dg ⋅ g−1 0

0 0

)

and

AC2 = e̊

(
0 g ⋅ (ǫdz + ǫdz̄)

− (g ⋅ (ǫdz + ǫdz̄))
†

0

)
.

We can further split the last term AC2 along dz and dz̄ as AC2 = A′
C2 + A′′

C2

where

A′
C2 := e̊

(
0 g ⋅ ǫ

− (g ⋅ ǫ)† 0

)
dz and A′′

C2 := e̊

(
0 g ⋅ ǫ

− (g ⋅ ǫ)† 0

)
dz̄.

2.5 Interpretation in terms of an automorphism

As expounded in [HR1] and [HR3] the key point in order to exploit the structure
of an integrable system is to observe that the splitting A = Au(1) + Asu(2) +
A′

C2 +A′′
C2 corresponds to a decomposition along the eigenspaces of the following

automorphism in u(3)C, the complexification5 of u(3). We let J :=

(
0 −1
1 0

)

5we can define u(3)C as the set M(3, C) with its standard complex structure and with the
conjugation mapping c : M 7−ջ −M†; clearly c is a Lie algebra automorphism, an involution
and the set of fixed points of c is u(3).
Similarly the complexification U(3)C is the set GL(3, C) with its standard complex structure

and the conjugation map C : G 7−ջ
`
G†

´−1
.
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and
̍ : u(3)C −ջ u(3)C

M 7−ջ −
(

−J 0
0 1

)
⋅ tM ⋅

(
J 0
0 1

)
.

It is then straightforward that ̍ is a Lie algebra automorphism, that u(3) is
stable by ̍ and that ̍4 = Id. Hence we can diagonalize the action of ̍ over u(3)C

and in the following we denote by u(3)C
a the eigenspace of ̍ for the eigenvalue

ia, for a = −1, 0, 1, 2. We first point out that the eigenspaces u(3)C
0 and u(3)C

2 ,
with eigenvalues 1 and −1 respectively, are the complexifications of u(3)0 and
u(3)2 respectively, where

u(3)0 :=

{(
g 0
0 0

)
/g ∈ su(2)

}
and u(3)2 :=









̄i 0 0
0 ̄i 0
0 0 ̅i



 /̄, ̅ ∈ R




 .

This can be obtained by first computing that

̍

(
A X

− tY d

)
=

(
J tAJ −JY
− tXJ −d

)
, ∀A ∈ M(2, C),∀X,Y ∈ C

2,∀d ∈ C,

and by using the fact that ∀A ∈ sl(2, C), J tAJ = A. Similarly the eigenspaces
u(3)C

1 and u(3)C
−1, with eigenvalues i and −i respectively, are found to be

u(3)C

1 =

{(
0 X

− tY 0

)
/X, Y ∈ C

2, JY = −iX

}

and

u(3)C

−1 =

{(
0 X

− tY 0

)
/X, Y ∈ C

2, JY = iX

}
.

Now we have the following

Lemma 2.5 The eigenspaces u(3)C
1 and u(3)C

−1 can be characterized by

u(3)C

1 =

{
̄

(
0 h ⋅ ǫ

− (h ⋅ ǫ)† 0

)
/̄ ∈ [0,∞), h ∈ SU(2)

}

and

u(3)C

−1 =

{
̄

(
0 h ⋅ ǫ

− (h ⋅ ǫ)† 0

)
/̄ ∈ [0,∞), h ∈ SU(2)

}
.

Proof — This can be proved either by adapting the argument in section 2.4 of
[HR1] or by a straightforward computation which exploits the fact that ∀h ∈
SU(2), hJ = Jh, Jǫ = iǫ and Jǫ = −iǫ. ¥

We conclude that if, using u(3)C = u(3)C
−1⊕u(3)C

0 ⊕u(3)C
1 ⊕u(3)C

2 , we decompose
A as

A = A−1 + A0 + A1 + A2,
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where each Aa is a 1-form with coefficients in the u(3)C
a , then we recover the pre-

vious splitting by setting A0 = Asu(2), A2 = Au(1), A−1 = A′
C2 and A1 = A′′

C2 .
Note that the two last conditions actually reflects the Lagrangian constraint on
u.

Remark — Note that by the automorphism property [u(3)a, u(3)b] ⊂ u(3)a+b mod 4.

2.6 Legendrian framings of Hamiltonian stationary La-

grangian immersions

Given the Legendrian framing F of a conformal Lagrangian immersion u in
CP 2, we define the family of deformations Ā of its Maurer–Cartan form A, for
̄ ∈ S1 ⊂ C

∗ by

Ā := ̄−2A′
2 + ̄−1A−1 + A0 + ̄A1 + ̄2A′′

2 , (11)

where A′
2 := A2(∂/∂z)dz and A′′

2 := A2(∂/∂z̄)dz̄. We then have the following:

Theorem 2.6 Given a conformal Lagrangian immersion u : Ω −ջ CP 2 and a
Legendrian framing F of u, the Maurer–Cartan form of F satisfies

A−1 = A′
−1 = A′

C2 and A1 = A′′
1 = A′

C2 . (12)

Furthermore u is Hamiltonian stationary if and only if, defining Ā as in (11),

dĀ + Ā ∧ Ā = 0, ∀̄ ∈ S1. (13)

Remark — For ̄ = 1, A1 = A and equation (13) is a consequence of its definition
A := F−1 ⋅ dF .
Proof — See [HR1] and [HR3]. ¥

We remark that all the conditions that have been collected about the compo-
nents Aa can be encoded by the following twisting condition on Ā:

∀̄ ∈ S1, ̍(Ā) = Aī.

Thus we are led to define the following twisted loop algebra

Λu(3)̍ := {S1 ∋ ̄ 7−ջ ̇̄ ∈ u(3)/∀̄ ∈ S1, ̍(̇̄) = ̇ī},
and Ā is a 1-form on Ω with coefficients in Λu(3)̍ .

Actually Λu(3)̍ is the Lie algebra of the following twisted loop group

ΛU(3)̍ := {S1 ∋ ̄ 7−ջ ḡ ∈ U(3)/∀̄ ∈ S1, ̍(ḡ) = gī},
where the Lie algebra automorphism ̍ : u(3)C −ջ u(3)C has been extended to
the Lie group automorphism by

̍ : U(3)C −ջ U(3)C

M 7−ջ
(

−J 0
0 1

)
⋅ tM−1 ⋅

(
J 0
0 1

)
.
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Now if we assume that Ω is simply connected, then relation (13) allows us to
integrate Ā, i.e. to find a map F̄ : Ω −ջ U(3) for any ̄ ∈ S1 such that
dF̄ = F̄ ⋅Ā. Moreover if we choose some base point z0 ∈ Ω, then by requiring
further that F̄(z0) = Id, F̄ is unique. A key observation is then that ̍(Ā) =
Aī implies ̍(F̄) = Fī, ∀̄ ∈ S1. Hence, a conformal Lagrangian immersion
u : Ω −ջ CP 2 is Hamiltonian stationary if and only if any Legendrian lift F
of it can be deformed into a map F̄ : Ω −ջ ΛU(3)̍ , such that F−1

̄ ⋅ dF̄ has
the form (11). Summarizing this result with the observations in the previous
section we have:

Theorem 2.7 Given a simply connected domain Ω ⊂ C and a base point
z0 ∈ Ω, the set of Hamiltonian stationary conformal Lagrangian immersions
u : Ω −ջ CP 2 such that u(z0) = [0 : 0 : 1] is in bijection with the set of maps
F̄ : Ω −ջ ΛU(3)̍ , such that F̄(z0) = Id and the Fourier decomposition of

Ā := F−1
̄ ⋅ dF̄, Ā =

∑
k∈Z

Âk̄k satisfies

∀k ∈ Z, k ≤ −3 =⇒ Âk = 0, (14)

Â−2 = a(z)dz




i 0 0
0 i 0
0 0 0



 , where a ∈ C∞(Ω, C), (15)

Â−1 = Â−1(∂/∂z)dz, i.e. Â−1(∂/∂z̄) = 0. (16)

Proof — For any conformal Lagrangian Hamiltonian stationary immersion u
the existence of F̄ and the properties (14), (15) and (16) are immediate con-
sequences of Theorem 2.6. Conversely for any map F̄, conditions (14), (15)
and (16) and the reality condition Ā = Ā imply that Ā must satisfy (11).
In particular we remark that condition (15) is a reformulation of (10). Thus
by theorem 2.6 we deduce that F1 is the Legendrian lift of some Hamiltonian
stationary conformal Lagrangian immersion. ¥

Remark — From the analysis of the Maurer–Cartan of a Legendrian lift we
know that actually the function a in (15) is 1

2∂˻/∂z, where ˻ is the Lagrangian
angle function. In particular since u is Hamiltonian stationary ˻ is harmonic
and hence a is holomorphic.

2.7 An alternative characterization

We introduce here another construction using based loop groups for character-
izing Hamiltonian stationary Lagrangian conformal immersions. Consider

Ē := F̄ ⋅ F−1.

We can observe that Ē is a map with values in the based loop group

ΩU(3) := {S1 ∋ ̄ 7−ջ ḡ ∈ U(3)/ḡ=1 = 1},



14

since F̄=1 = F . It is easy to check that ΩU(3) is a loop group, the Lie algebra
of which is

Ωu(3) := {S1 ∋ ̄ 7−ջ ̇̄ ∈ u(3)/̇̄=1 = 0}.
Note that the (formal) Fourier expansion of an element ̇̄ ∈ Ωu(3) can be writ-

ten ̇̄ =
∑

k∈Z\{0}
̂̇
k(̄k − 1).

The Maurer–Cartan form of Ē is

Γ̄ := E−1
̄ ⋅ dĒ

= F ⋅
(
F−1

̄ ⋅ dF̄ − F ⋅ dF
)
⋅ F−1 = F ⋅ (Ā − A) ⋅ F−1

= (̄−2 − 1)Γ′
2 + (̄−1 − 1)Γ−1 + (̄ − 1)Γ1 + (̄2 − 1)Γ′′

2 ,

where Γ′
2 := F ⋅ A′

2 ⋅ F−1, Γ−1 := F ⋅ A−1 ⋅ F−1, Γ1 := F ⋅ A1 ⋅ F−1 and
Γ′′

2 := F ⋅ A′′
2 ⋅ F−1. We can observe in particular that

Γ′
2 = iả⊥dz, where ̉⊥ := F ⋅




1

1
0



 ⋅ F−1.

Note that ̉⊥ is the Hermitian orthogonal projection in C
3 onto the plane û⊥

(moreover ̉⊥ is actually independent of the lift û chosen for u).

Lastly we point out the following equivariance property with respect to the
automorphism ̍u defined6 by

̍u(M) = F ⋅ ̍(F−1 ⋅ M ⋅ F ) ⋅ F−1.

We have obviously ̍4
u = 1. Moreover, setting

˼̄ := ̄−2Γ′
2 + ̄−1Γ−1 + ̄Γ1 + ̄2Γ′′

2

= F ⋅
(
̄−2A′

2 + ̄−1A−1 + ̄A1 + ̄2A′′
2

)
⋅ F−1

and ˼ := ˼̄=1 = F ⋅ (A′
2 + A−1 + A1 + A′′

2) ⋅F−1, so that Γ̄ = ˼̄ − ˼, we have

̍u(˼̄) = ˼ī.

3 Finite type solutions

In [HR3] we showed how Theorem 2.7 allows us to adapt the theory of J.
Dorfmeister, F. Pedit and H.Y. Wu [DPW], in order to build a Weierstrass

6We can remark that the definition of τu is independent from the choice of the Legendrian
framing F of u, and depends only on u. This means that for any pair of Legendrian framings

F and bF such that bF = F ⋅ G, where G =

„
g

1

«
and g : Ω −ջ SU(2), we have

bF ⋅ τ( bF−1 ⋅ M ⋅ bF ) ⋅ bF−1 = F ⋅ τ(F−1 ⋅ M ⋅ F ) ⋅ F−1. This can be checked by a computation

using the fact that

„
�J

1

«
⋅ G = G ⋅

„
�J

1

«
.
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type representation theory of all conformal Lagrangian Hamiltonian stationary
immersions, i.e. using holomorphic data. Here we want to exploit Theorem 2.7
in order to construct a particular class of examples of solutions: the finite type
ones.

3.1 Definitions

We invite the Reader to consult [BFPP], [G] or [H] for more details. We first
observe that U(3)0 := {g ∈ U(3)/̍(g) = g}, the fixed set of ̍ , is a subgroup
of U(3), the Lie algebra of which is u(3)0 (same observation about U(3)C

0 ).
Actually U(3)0 is isomorphic to SU(2) so that we make the identifications
U(3)0 ≃ SU(2) and u(3)0 ≃ su(2). We will need an Iwasawa decomposition
of SU(2)C for our purpose: it will be a pair (SU(2),B) of subgroups of SU(2)C,
such that ∀g ∈ SU(2)C, ∃!(f, b) ∈ SU(2) · B with g = f ⋅ b, a property that
we summarize by writing SU(2)C = SU(2) ⋅ B. Moreover B is a solvable Borel
subgroup. We can choose for example

B :=

{(
T 1

1 0
T 2

1 T 2
2

)
/T 1

1 , T 2
2 ∈ (0,∞), T 2

1 ∈ C, T 1
1 T 2

2 = 1

}
.

We denote by b the Lie algebra of B. The Iwasawa decomposition SU(2)C =
SU(2)⋅B immediately implies the vector space decomposition su(2)C = su(2)⊕b,
which leads to the definition of the two projection mappings (⋅)su : su(2)C −ջ
su(2) and (⋅)b : su(2)C −ջ b such that

∀̇ ∈ su(2)C, ̇ = (̇)su + (̇)b with (̇)su ∈ su(2) and (̇)b ∈ b.

Then we define the following twisted loop algebras

Λu(3)C

̍ := {S1 ∋ ̄ 7−ջ ̇̄ ∈ u(3)C/∀̄ ∈ S1, ̍(̇̄) = ̇ī},

Λ+
b
u(3)C

̍ := {[̄ 7−ջ ̇̄] ∈ Λu(3)C

̍ /∀k ∈ Z, k ≤ −1 =⇒ ̂̇
k = 0 and ̂̇

0 ∈ b},

where we use the Fourier decomposition ̇̄ =
∑

k∈Z
̂̇
k̄k.

The decomposition su(2)C = su(2) ⊕ b can be extended to loop algebras, i.e. to
the splitting Λu(3)C

̍ = Λu(3)̍ ⊕ Λ+
b
u(3)C

̍ . This can be checked by using the
Fourier decomposition of an element ̇̄ ∈ Λu(3)C

̍ :

∑

k∈Z

̂̇
k̄k =

(
∑

k<0

̂̇
k̄k + (̂̇0)su −

∑

k>0

(
̂̇
−k

)†

̄k

)
+

(
(̂̇0)b +

∑

k>0

(
̂̇
k +

(
̂̇
−k

)†
)

̄k

)
.

We will denote the corresponding projection mappings by (⋅)Λsu
: Λu(3)C

̍ −ջ
Λu(3)̍ and (⋅)Λ+

b

: Λu(3)C
̍ −ջ Λ+

b
u(3)C

̍ .
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We also introduce the following finite dimensional subspaces of Λu(3)̍ : for any
p ∈ N we let

Λ2+4pu(3)̍ :=




[̄ 7−ջ ̇̄] ∈ Λu(3)̍/̇̄ =

2+4p∑

k=−2−4p

̂̇
k̄k




 .

We can now define a pair of vector fields X1,X2 : Λ2+4pu(3)̍ −ջ Λu(3)̍ by

X1(̇̄) := [̇̄, (̄4ṗ̄)Λsu
], X2(̇̄) := [̇̄, (ī4ṗ̄)Λsu

]. (17)

Note that ̄4ṗ̄ belongs to Λu(3)C
̍ , so that (̄4ṗ̄)Λsu

is well defined.

Lemma 3.1 Let p ∈ N and X1 and X2 defined by (17). Then

• ∀̇̄ ∈ Λ2+4pu(3)̍ , X1(̇̄),X2(̇̄) ∈ Ṫλ
Λ2+4pu(3)̍ ≃ Λ2+4pu(3)̍ , so that

X1 and X2 are tangent vector fields to Λ2+4pu(3)̍ .

• |̇̄|2 is preserved by X1 and X2. Hence the flow of these vector fields are
defined for all time

• The Lie bracket of X1 and X2 vanishes:

[X1,X2] = 0. (18)

Proof — This result follows by a straightforward adaptation of the analogous
results for harmonic maps in [BFPP] (see e.g. [G] and [H]). Note that the proof
of (18) rests upon the crucial property that Λu(3)̍ and Λ+

b
u(3)C

̍ are Lie algebras
(see e.g. [BP], [H]). ¥

This result allows us to integrate simultaneously X1 and X2. So for any ̇0
̄ ∈

Λ2+4pu(3)̍ there exists a unique map ̇̄ : R
2 −ջ Λ2+4pu(3)̍ such that ̇̄(z0) =

̇0
̄ and

∂̇̄

∂x
(x, y) = X1 (̇̄(x, y)) and

∂̇̄

∂y
(x, y) = X2 (̇̄(x, y)) . (19)

Denoting by z = x + iy ∈ C, the system (19) can be rewritten

ḋ̄ =
[
̇̄,

(
̄4ṗ̄

)
Λsu

dx +
(
ī4ṗ̄

)
Λsu

dy
]

=
[
̇̄,

(
̄4ṗ̄dz

)
Λsu

]
.

Let us denote by Ā := (̄4ṗ̄dz)Λsu
. Since the system (19) is overdetermined,

Ā should satisfy a compatibility condition. Indeed one can check that

dĀ + Ā ∧ Ā = 0. (20)

This relation can be proved by a method similar to the proof of (18) (see [H]).
It implies that there exists a map F̄ : C −ջ ΛU(3)̍ such that

dF̄ = F̄ ⋅ Ā. (21)
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Now observe that ̄4ṗ̄ =
∑8p+2

k=−2
ˆ̇
k−4p̄

k implies

Ā = ̄−2 ˆ̇
−4p−2dz+̄−1 ˆ̇

−4p−1dz+
(

ˆ̇
−4pdz

)

su

−̄
(

ˆ̇
−4p−1

)†

dz̄−̄2
(

ˆ̇
−4p−2

)†

dz̄.

We recall that ˆ̇
−4p−2 ∈ u(3)C

2 and so has the form diag(ia, ia, ib). Moreover we
have the following

Lemma 3.2 If ̇̄ −ջ Λ2+4pu(3)̍ and Ā := (̄4ṗ̄dz)Λsu
are solutions of

ḋ̄ = [̇̄, Ā], then ˆ̇
−4p−2 is constant.

Proof — The relevant term in the Fourier expansion of ḋ̄ = [̇̄, Ā] gives

d ˆ̇
−4p−2 =

[
ˆ̇
−4p−2,

(
ˆ̇
−4pdz

)

su

]
+

[
ˆ̇
−4p−1, ˆ̇

−4p−1

]
dz +

[
ˆ̇
−4p, ˆ̇

−4p−2

]
dz

=
[(

ˆ̇
−4pdz

)

b

, ˆ̇
−4p−2

]
.

But since the coefficients of
(

ˆ̇
−4pdz

)

b

are in u(3)C
0 and ˆ̇

−4p−2 takes values in

u(3)2 we deduce that d ˆ̇
−4p−2 = 0, because u(3)C

0 and u(3)C
2 commute. ¥

We deduce from this result that if we choose the initial value ̇0
̄ of ̇̄ to be

such that ˆ̇0
−4p−2 = diag(ia, ia, 0) then ˆ̇

−4p−2 is equal to that value for all
(x, y). So in this case the map F̄ obtained by integrating Ā satisfies all the
requirements of Theorem 2.7. It implies that F̄ represents a (conjugate family)
of Hamiltonian stationary conformal Lagrangian immersion(s). The category of
such F̄’s are exactly characterized by the following definition.

Definition 3.3 Let F̄ be a family of Hamiltonian stationary conformal La-
grangian immersions and let Ā := F−1

̄ ⋅dF̄. Then F̄ is called a family of finite
type solutions if and only if there exists p ∈ N and a map ̇̄ : C −ջ Λ2+4pu(3)̍

such that ˆ̇
−4p−2 = diag(ia, ia, 0), for some constant a ∈ C, and

ḋ̄ = [̇̄, Ā] (22)

(̄4ṗ̄dz)Λsu
= Ā. (23)

We also need the following definition in which we introduce an a priori weaker
notion of finite type solution.

Definition 3.4 Let F̄ be a family of Hamiltonian stationary conformal La-
grangian immersions and let Ā := F−1

̄ ⋅ dF̄. Then F̄ is called a family of
quasi-finite type solutions if and only if it satisfies the same requirements as in
definition 3.3 excepted that condition (23) is replaced by

∃B ∈ Ω1 ⊗ u(3)C

0 , (̄4ṗ̄dz)Λsu
= Ā + B. (24)

We shall see in Section 3.3 that both definitions are actually equivalent.
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3.2 An alternative description of quasi-finite type solu-

tions

We may as well characterize such finite type solutions in terms of Ē = F̄ ⋅F−1.
For that purpose we need to introduce the untwisted loop Lie algebra

Λ+u(3)C := {S1 ∋ ̄ 7−ջ ̇̄ ∈ u(3)C/̇̄ =

∞∑

k=0

̂̇
k̄k}

and observe that any ̇̄ =
∑∞

k=−∞
̂̇
k̄k ∈ Λu(3)C can be split as

̇̄ =

(
−1∑

k=−∞

̂̇
k(̄k − 1) − (̂̇k)†(̄−k − 1)

)
+

(
∞∑

k=0

̂̇
k̄k +

∞∑

k=1

̂̇
−k + (̂̇−k)†(̄k − 1)

)
,

and hence Λu(3)C = Ωu(3) ⊕ Λ+u(3)C . This defines a pair of projection map-
pings (⋅)Ω : Λu(3)C −ջ Λ+u(3)C and (⋅)Λ+ : Λu(3)C −ջ Λ+u(3)C .

Now consider a family F̄ of quasi-finite type, let Ā := F−1
̄ ⋅dF̄, A := F−1 ⋅dF

(where F = F̄=1) and ̇̄ be a solution of (22). We let

̀̄ := F ⋅ ̇̄ ⋅ F−1 =

2+4p∑

k=−2−4p

F ⋅ ̂̇
k ⋅ F−1̄k.

Then (22) implies by a straightforward computation that

d̀̄ = F ⋅ (ḋ̄ + [A, ̇̄]) ⋅ F−1

= F ⋅ ([̇̄, Ā] − [̇̄, A]) ⋅ F−1 = [̀̄,Γ̄],

where Γ̄ := E−1
̄ ⋅ dĒ. Now setting R̄ :=

∑2+4p
k=−4p F ⋅ ̂̇

k ⋅ F−1̄k, we have

(
̄4p̀̄dz

)
Ω

=
(
̄−2F ⋅ ̂̇

−2−4p ⋅ F−1dz + ̄−1F ⋅ ̂̇
−1−4p ⋅ F−1dz + ̄4pR̄dz

)

Ω

= (̄−2 − 1)F ⋅ ̂̇
−2−4p ⋅ F−1dz + (̄−1 − 1)F ⋅ ̂̇

−1−4p ⋅ F−1dz

−(̄ − 1)
(
F ⋅ ̂̇

−1−4p ⋅ F−1
)†

dz̄ − (̄2 − 1)
(
F ⋅ ̂̇

−2−4p ⋅ F−1
)†

dz̄.

But relation (24) implies in particular that ̂̇
−2−4p = A′

2(∂/∂z) and ̂̇
−1−4p =

A−1(∂/∂z). So we deduce that

(
̄4p̀̄dz

)
Ω

= F ⋅ (Ā − A) ⋅ F−1 = Γ̄.

Hence Ē can be constructed by solving a system analogous to (22), (23), i.e.

d̀̄ + [Γ̄, ̀̄] = 0 and Γ̄ =
(
̄4p̀̄dz

)
Ω

. (25)

Conversely a similar computation shows that a solution of (25) gives rise to a
quasi-finite type family of solutions by an inverse transformation, but we shall
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prove more in the next section.

Note that system (25) can also be interpreted as a pair of commuting ordinary
differential equations in the finite dimensional space Λ2+4pu(3) := {S1 ∋ ̄ 7−ջ
̀̄ ∈ u(3)/̀̄ =

∑2+4p
k=−2−4p ̂̀k̄k}. It is the analogue of the definition of a finite

type solution according to [BFPP].

3.3 Quasi-finite type solutions are actually finite type

We show here the following

Theorem 3.5 For any family F̄ of Hamiltonian stationary Lagrangian con-
formal immersions of quasi-finite type, i.e. such that there exists ̇̄ : Ω −ջ
Λ2+4pu(3)̍ which satisfies (22) and (24), there exists a gauge transformation
F̄ 7−ջ FG

̄ := F̄ ⋅ G, where G ∈ C∞(Ω, U(3)0), such that FG
̄ is of finite type.

More precisely, denoting by AG
̄ := G−1 ⋅Ā ⋅G+G−1 ⋅dG and ̇G

̄ := G−1 ⋅̇̄ ⋅G,
then ḋG

̄ +
[
AG

̄ , ̇G
̄

]
= G−1 ⋅ (ḋ̄ + [Ā, ̇̄]) ⋅ G = 0 and (̄4ṗG

̄ dz)Λsu
= AG

̄ .

Proof — We set Ē := F̄ ⋅ F−1, Γ̄ := E−1
̄ ⋅ dĒ and ̀̄ := F ⋅ ̇̄ ⋅ F−1 and

will use the results of the previous section.

A constant in Λ2+4pu(3)̍ associated to the quasi-finite type family — First (25),
which is a reformulation of (22), implies

d
(
Ē ⋅ ̀̄ ⋅ E−1

̄

)
= Ē ⋅ (d̀̄ + [Γ̄, ̀̄]) ⋅ E−1

̄ = 0.

Hence
̀0

̄ := Ē ⋅ ̀̄ ⋅ E−1
̄

is a constant in Λu(3). Moreover

̀0
̄ = Ē(z0) ⋅ ̀̄(z0) ⋅ E−1

̄ (z0) = ̀̄(z0) = F (z0) ⋅ ̇̄(z0) ⋅ F−1(z0) = ̇̄(z0),

which proves that ̀0
̄ ∈ Λ2+4pu(3)̍ .

An auxiliary map into Λ+U(3)C — We let

Θ̄ :=
(
̄4p̀̄dz

)
Λ+ = ̄4p̀̄dz −

(
̄4p̀̄dz

)
Ω

.

Then using (25) we have Θ̄ = ̄4p̀̄dz − Γ̄ and so

dΓ̄ + Γ̄ ∧ Γ̄ + dΘ̄ − Θ̄ ∧ Θ̄ = −̄4p (d̀̄ + [Γ̄, ̀̄])

(
∂

∂z̄

)
dz ∧ dz̄ = 0.

But since dΓ̄ + Γ̄ ∧ Γ̄ = 0 this implies that dΘ̄ − Θ̄ ∧ Θ̄ = 0. Hence
∃!V̄ : Ω −ջ Λ+U(3)C such that

dV̄ = Θ̄ ⋅ V̄ and V̄(z0) = 1.
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Now, starting from ̄4p̀̄dz = Γ̄ + Θ̄, we deduce that

̄4p̀0
̄dz = Ē ⋅ Γ̄ ⋅ E−1

̄ + Ē ⋅ Θ̄ ⋅ E−1
̄

= dĒ ⋅ E−1
̄ + Ē ⋅ dV̄ ⋅ V −1

̄ ⋅ E−1
̄

= d (Ē ⋅ V̄) (Ē ⋅ V̄)
−1

,

which can be integrated into the relation

Ē ⋅ V̄ = ē4p(z−z0)̀
0
λ .

An Iwasawa decomposition of ē4p(z−z0)̀
0
λ — The latter implies

ē4p(z−z0)̀
0
λ = F̄ ⋅ F−1 ⋅ V̄.

From this relation and the fact that ̀0
̄ and F̄ are twisted we deduce that

W̄ := F−1 ⋅ V̄ is twisted. It is also a map with values in Λ+U(3)C
̍ . However

it may not be not in Λ+
B

U(3)C
̍ in general, because in the development

F−1 ⋅ V̄ = Ŵ0 +

∞∑

k=1

Ŵk̄k,

we are not sure that Ŵ0 takes values in B. But it takes values in U(3)C
0 , so by

using the Iwasawa decomposition U(3)C
0 = U(3)0 ⋅B we know that ∃!G ∈ U(3)0,

∃!B̂0 ∈ B, Ŵ0 = G ⋅ B̂0. Hence

G−1 ⋅ F−1 ⋅ V̄ = B̂0 +
∞∑

k=1

G−1 ⋅ Ŵk̄k

takes values in Λ+
B

U(3)C
̍ . So the splitting

ē4p(z−z0)̀
0
λ = (F̄ ⋅ G)

(
G−1 ⋅ F−1 ⋅ V̄

)

exactly reproduces the Iwasawa decomposition ΛU(3)C
̍ = ΛU(3)̍ ⋅ Λ+

B
U(3)C

̍

proved in [DPW].

Conclusion — Let us denote by FG
̄ := F̄ ⋅ G, AG

̄ :=
(
FG

̄

)−1 ⋅ dFG
̄ = G−1 ⋅

Ā ⋅ G + G−1 ⋅ dG and BG
̄ := G−1 ⋅ F−1 ⋅ V̄ and let us introduce

̇G
̄ :=

(
FG

̄

)−1 ⋅ ̀0
̄ ⋅ FG

̄ .

(These definitions imply immediately ḋG
̄ + [AG

̄ , ̇G
̄ ] = 0.) The first main

observation is that the relation ̀0
̄ = Ē ⋅ ̀̄ ⋅ E−1

̄ = F̄ ⋅ F−1 ⋅ ̀̄ ⋅ F ⋅ F−1
̄ =

F̄ ⋅ ̇̄ ⋅ F−1
̄ implies

̇G
̄ = G−1 ⋅ F−1

̄ ⋅ ̀0
̄ ⋅ F̄ ⋅ G = G−1 ⋅ ̇̄ ⋅ G. (26)
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Second, from the relation

̄4p̀0
̄dz = d

(
ē4p(z−z0)̀

0
λ

)
⋅ e−̄4p(z−z0)̀

0
λ

= d
(
FG

̄ ⋅ BG
̄

)
⋅
(
FG

̄ ⋅ BG
̄

)−1

= dFG
̄ ⋅

(
FG

̄

)−1
+ FG

̄ ⋅ dBG
̄ ⋅

(
BG

̄

)−1 ⋅
(
FG

̄

)−1
,

we deduce that

̄4ṗG
̄ dz =

(
FG

̄

)−1 ⋅
(
̄4p̀0

̄dz
)
⋅ FG

̄ =
(
FG

̄

)−1 ⋅ dFG
̄ + dBG

̄ ⋅
(
BG

̄

)−1
.

Hence, since BG
̄ takes values in Λ+

B
U(3)C

̍ ,

AG
̄ =

(
FG

̄

)−1 ⋅ dFG
̄ =

(
̄4ṗG

̄ dz
)
Λsu

. (27)

And relations (26) and (27) lead to the conclusion. ¥

4 All Hamiltonian stationary Lagrangian tori are

of finite type

The subject of this section is to prove the following:

Theorem 4.1 Let u : C −ջ CP 2 be a doubly periodic Hamiltonian stationary
Lagrangian conformal immersion. Then u is of finite type.

We will actually prove a slightly more general result, since we can replace the
doubly periodicity assumption by the hypothesis that the Maurer–Cartan form
of any Legendrian framing of u is doubly periodic. This result of course implies
immediately that Hamiltonian stationary Lagrangian tori are of finite type, since
they always can be covered conformally by the plane.

Note also that the study of Hamiltonian stationary Lagrangian tori splits into
exactly two subcases: the minimal Lagrangian tori and the non minimal Hamil-
tonian stationary Lagrangian ones. The first case occurs when the Lagrangian
angle function along any Legendrian lift is locally constant, the second one when
this function is harmonic and non constant. In the case of minimal Lagrangian
surfaces, Theorem 4.1 is a special case of the result in [BFPP], since in this case
u is a harmonic map into CP 2, as discussed in [McI1], [McI2], [McI3] and [J].
The non minimal case however is not covered by the theory in [BFPP] and is
the subject of this section.

Let F : C −ջ U(3) be a Legendrian framing of u, A := F−1 ⋅ dF its Maurer–
Cartan form and Ā the family of deformations of A as defined by (11). The
first basic observation is that A2

(
∂
∂z

)
is holomorphic and doubly periodic on C,

hence constant. Thus two cases occur: either A2

(
∂
∂z

)
= 0, which corresponds



22

to the minimal case that we exclude here, or A2

(
∂
∂z

)
is a constant different from

0, the case that we consider next.

In order to show Theorem 4.1 we need to prove that there exists some p ∈ N and
a map ̇̄ : C −ջ Λ2+4pu(3)̍ such that ḋ̄ = [̇̄, Ā] and Ā = (̄4ṗ̄dz)Λsu

.
But thanks to Theorem 3.5 it will enough to prove that Ā − (̄4ṗ̄dz)Λsu

is
a 1-form with coefficients in U(3)0. Our proof here follows a strategy inspired

from [BFPP]: a first step consists in building a formal series Ȳ =
∑∞

k=−2 Ŷk̄k

which is a solution of dȲ = [Ȳ, Ā]. Such a series is called a formal Killing
field. We will also require Ȳ to be quasi-adapted, i.e. is such that

(Ȳdz)Λsu
= Ā + B, where the coefficients of B are in u(3)0. (28)

This is achieved through a recursion procedure.

In a second step we will show that the coefficients of Ȳ form a countable
collection of doubly periodic functions satisfying an elliptic PDE and hence, by
using a compactness argument, we conclude that they are contained in a finite
dimensional space. Then we deduce the existence of ̇̄ using linear algebra.

4.1 Construction of an adapted formal Killing field

We first introduce some notations. We denote by

̉⊥
0 :=




1

1
0





and a := 1
2

∂˻
∂z

(here a constant different from 0). Then A′
2 = iả⊥

0 dz. We will

also set X := A−1

(
∂
∂z

)
and C := A0

(
∂
∂z

)
, so that

Ā = ̄−2iả⊥
0 dz + ̄−1Xdz + Cdz − C†dz̄ − ̄X†dz̄ + ̄2iả⊥

0 dz̄.

We also introduce the linear map ad̉⊥
0 : u(3)C −ջ u(3)C , acting by ̇ 7−ջ

[̉⊥
0 , ̇]7. We observe that ̉⊥

0 commutes with the elements in u(3)C
0 and u(3)C

2 .
Moreover ∀a, b ∈ C

⌈

⌊̉⊥
0 ,




a
b

∓ib �ia





⌉

⌋ =




a
b

�ib ∓ia



 ,

i.e. ad̉⊥
0 maps u(3)C

∓1 to u(3)C
�1. From that we deduce that V := Ker ad̉⊥

0

coincides with u(3)C
0 ⊕ u(3)C

2 and V ⊥ := Im ad̉⊥
0 coincides with u(3)C

−1 ⊕ u(3)C
1

(note that V ⊥ is actually the orthogonal subspace to V in u(3)C). In our
construction we will use extensively the following properties:

7actually the map ξ 7−ջ i[π⊥
0 , ξ] corresponds to the complex structure on the Legendrian

distribution.
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• the map ad̉⊥
0

∣∣
V ⊥ջV ⊥

is a vector space isomorphism (it is actually a

involution on V ⊥),

• the inclusions V V ⊂ V , V V ⊥ ⊂ V ⊥, V ⊥V ⊂ V ⊥ and V ⊥V ⊥ ⊂ V .
These properties can be checked by a direct computation using the fact
that matrices in V are diagonal by blocks and the matrices in V ⊥ are
off-diagonal by blocks. (The three first properties can also be deduced
from the definition of V and V ⊥ and the fact that ad is a derivation).

We look for a formal Killing field Ȳ, i.e. a solution of the equation

dȲ = [Ȳ, Ā], (29)

of the form Ȳ = (1 + W̄)−1̄−2iả⊥
0 (1 + W̄), where W̄ =

∑∞
k=0 Ŵk̄k as in

[BFPP]. In order to have a well-posed problem (and in particular to guarantee
the existence of an unique solution of this type) we assume that W̄ takes values
in V ⊥. We start by evaluating (29) along ∂/∂z. It gives, after conjugation by
1 + W̄:

̄−2 ∂a

∂z
̉⊥

0 + ̄−2a
[
̉⊥

0 ,

∂W̄

∂z
(1 + W̄)−1 − (1 + W̄)(̄−2iả⊥

0 + ̄−1X + C)(1 + W̄)−1
]

= 0 (30)

Here the fact that a is a constant leads to an immediate simplification, namely
that the bracket in the left hand side of (30) is 0. Thus equation (30) implies
that ∂Wλ

∂z
(1 + W̄)−1 − (1 + W̄)(̄−2iả⊥

0 + ̄−1X + C)(1 + W̄)−1 lies in V ,
hence there exists a map ̞̄ : C −ջ V such that

∂W̄

∂z
(1 + W̄)−1 − (1 + W̄)(̄−2iả⊥

0 + ̄−1X + C)(1 + W̄)−1 = ̞̄

or
∂W̄

∂z
− (1 + W̄)(̄−2iả⊥

0 + ̄−1X + C) = ̞̄(1 + W̄),

which can be projected according to the splitting V ⊕ V ⊥ as

{
̄−2iả⊥

0 + ̄−1W̄X + C = −̞̄ ∈ V
∂W̄

∂z
− ̄−2iaW̄̉⊥

0 − ̄−1X − W̄C = ̞̄W̄ ∈ V ⊥.

Substituting ̞̄,

∂W̄

∂z
− ̄−2iaW̄̉⊥

0 − ̄−1X − W̄C + ̄−2iả⊥
0 W̄ + ̄−1W̄XW̄ + CW̄ = 0

or

[iả⊥
0 ,W̄] + ̄(W̄XW̄ − X) + ̄2[C,W̄] + ̄2 ∂W̄

∂z
= 0
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or

ia
∑

n≥0

[̉⊥
0 , Ŵn]̄n +

∑

n≥1

(
n−1∑

k=0

ŴkXŴn−1−k

)
̄n − ̄X

+
∑

n≥2

(
[C, Ŵn−2] +

∂Ŵn−2

∂z

)
̄n = 0.

Hence





n = 0, ia[̉⊥
0 , Ŵ0] = 0

n = 1, ia[̉⊥
0 , Ŵ1] + Ŵ0XŴ0 − X = 0

n ≥ 2, ia[̉⊥
0 , Ŵn] +

n−1∑

k=0

ŴkXŴn−1−k + [C, Ŵn−2] +
∂Ŵn−2

∂z
= 0

and thus





Ŵ0 = 0

Ŵ1 = −ia−1[̉⊥
0 ,X]

Ŵn = ia−1

[
̉⊥

0 ,
n−1∑

k=0

ŴkXŴn−1−k + [C, Ŵn−2] +
∂Ŵn−2

∂z

]

We observe that the formal Killing field is quasi-adapted in the sense that the
two first coefficients are the right ones:

Ȳ = iā−2(1 + W̄)−1̉⊥
0 (1 + W̄) = iā−2

(
̉⊥

0 − ̄[Ŵ1, ̉
⊥
0 ] + O(̄2)

)

= ̄−2iả⊥
0 + ̄−1X + O(1).

Another pleasant property is that this formal field is automatically twisted (as
in the case of C

2, see [HR1]). Indeed using the fact that ̍ is an automorphism
for the product of matrices as well as for the Lie bracket (and so [u(3)C

a , u(3)C

b ] ⊂
u(3)C

a+b and u(3)C
a u(3)C

b ⊂ u(3)C

a+b), we obtain that

̍(Ȳ) = ̍(1 + W̄)−1(−̄2)iả⊥
0 ̍(1 + W̄).

Thus it is enough to show that 1+W̄ is twisted, i.e. ̍(W̄) = Wī. In terms of

the Fourier decomposition of W̄ this is equivalent to proving that Ŵn belongs to
u(3)C

n . Let us prove it by recursion. We already know that Ŵ1 = −ia−1[̉⊥
0 ,X]

is in u(3)C
1 . Assume that the result is true up to n − 1,then

n−1∑

p=0

ŴpXŴn−1−p + [C, Ŵn−2] +
∂Ŵn−2

∂z

belongs to u(3)C
n−2. And since ̉⊥

0 ∈ u(3)C
2 , Ŵn is in gC

n .
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We now prove that (29) is also true along ∂/∂z̄. We follow here the same kind
of arguments as in [BFPP] slightly simplified8. We want to show that

∂Ȳ

∂z̄
+

[
Ā

(
∂

∂z̄

)
, Ȳ

]
= 0

and for that purpose we rather consider the conjugate of the left hand side
˿̄ = (1 + W̄)(∂Yλ

∂z̄
+ [Ā

(
∂
∂z̄

)
, Ȳ])(1 + W̄)−1. We then prove two facts

• ˿̄ takes its values in V ⊥: this follows from the identity

˿̄ =

[
̄−2iả⊥

0 ,
∂W̄

∂z̄
(1 + W̄)−1 − (1 + W̄)Ā

(
∂

∂z̄

)
(1 + W̄)−1

]
.

Note that since ˿̄ is twisted the fact that ˿̄ ∈ V ⊥ implies also that ˿̄ is
an odd function of ̄ and so that

˿̄ =

∞∑

k=0

̂˿
2k−1̄

2k−1. (31)

• the relation
∂˿̄

∂z
= [̞̄, ˿̄]. (32)

Indeed d + adĀ is a flat connection and in particular ∂
∂z

+ adĀ( ∂
∂z

)

commutes with ∂
∂z̄

+ Ā( ∂
∂z̄

). Hence

(
∂

∂z
+ adĀ

(
∂

∂z

)) (
∂

∂z̄
+ adĀ

(
∂

∂z̄

))
Ȳ = 0

i.e. (
∂

∂z
+ adĀ

(
∂

∂z

)) (
(1 + W̄)−1˿̄(1 + W̄)

)
= 0

Thus (32) follows from a computation which uses ̞̄ = ∂Wλ

∂z
(1+W̄)−1 −

(1 + W̄)Ā

(
∂
∂z

)
(1 + W̄)−1.

Now assume by contradiction that ˿̄ 6= 0: in view of (31) there exists an

integer k ∈ N such that ̂˿
2k−1 6= 0 and ̂˿

2k−3 = 0. By substituting the Fourier
decompositions in (32) and observing that the Fourier series expansion of ̞̄

starts by ̄−2iả⊥
0 , we deduce that 0 = ∂ ̂˿

2k−3/∂z = [iả⊥
0 , ̂˿

2k−1]; but ad̉⊥
0 is

invertible on V ⊥ and hence ̂˿
2k−1 = 0. So we get a contradiction.

8essentially the simplifications occur because the semi-simple term B of [BFPP] is here
iaπ⊥

0 which is constant for d, so we do not need to introduce a flat connection.
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4.2 Polynomial Killing fields

We now deduce the existence of a non-trivial polynomial Killing field.

A first easy consequence of the results of the previous section is that, for all n ∈
N and for all polynomial of the form P (̄) = an̄−4n + an−1̄

−4(n−1) + ⋅ ⋅ ⋅+ a0,
where a0, a1, ⋅ ⋅ ⋅ , an ∈ C and an 6= 0, then Z̄ := P (̄)Ȳ is again formal
Killing field. Moreover it is quasi-adapted (modulo the multiplicative factor
an̄−4n), i.e. the lower degree terms are an̄−4n

(
iā−2̉⊥

0 + ̄−1X + O(̄0)
)
).

Let us consider

Z≤ :=

0∑

k=−2−4n

Ẑk̄k, and Z> :=

∞∑

k=1

Ẑk̄k,

so that Z̄ = Z≤ + Z>. We study

R̄ := dZ≤ + [Ā, Z≤]. (33)

We first remark that R̄ is necessarily of the form R̄ =
∑2

k=−4−4n R̂k̄k. But
because of dZ̄ + [Ā, Z̄] = 0, we also have

R̄ = −dZ> − [Ā, Z>], (34)

which implies R̄ =
∑∞

k=−1 R̂k̄k. Hence finally

R̄ = ̄−1R̂−1 + R̂0 + ̄1R̂1 + ̄2R̂2.

Each term R̂k can be evaluated through two different ways: by using (33) or
(34). From (33) we obtain






R̂−1(∂z) = ∂zẐ−1 + [A−1(∂z), Ẑ0] + [A0(∂z), Ẑ−1]

R̂0(∂z) = ∂zẐ0 + [A0(∂z), Ẑ0]

R̂1(∂z) = 0

R̂2(∂z) = 0

(35)

and





R̂−1(∂z̄) = ∂z̄Ẑ−1 + [A0(∂z̄), Ẑ−1] + [A1(∂z̄), Ẑ−2] + [A′′
2(∂z̄), Ẑ−3]

R̂0(∂z̄) = ∂z̄Ẑ0 + [A0(∂z̄), Ẑ0] + [A1(∂z̄), Ẑ−1] + [A′′
2(∂z̄), Ẑ−2]

R̂1(∂z̄) = [A1(∂z̄), Ẑ0] + [A′′
2(∂z̄), Ẑ−1]

R̂2(∂z̄) = [A′′
2(∂z̄), Ẑ0].

(36)

From (34) we get





R̂−1(∂z) = −[A′
2(∂z), Ẑ1]

R̂0(∂z) = −[A′
2(∂z), Ẑ2] − [A−1(∂z), Ẑ1]

R̂1(∂z) = −∂zẐ1 − [A′
2(∂z), Ẑ3] − [A−1(∂z), Ẑ2] − [A0(∂z), Ẑ1]

R̂2(∂z) = −∂zẐ2 − [A′
2(∂z), Ẑ4] − [A−1(∂z), Ẑ3] − [A0(∂z), Ẑ2]

(37)
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and 




R̂−1(∂z̄) = 0

R̂0(∂z̄) = 0

R̂1(∂z̄) = −∂z̄Ẑ1 − [A0(∂z̄), Ẑ1]

R̂2(∂z̄) = −∂z̄Ẑ2 − [A0(∂z̄), Ẑ2] − [A1(∂z̄), Ẑ1].

(38)

Thus in order to obtain an expression of R̄ which does depend only on Ẑ−1

and Ẑ0, we exploit (35) and the two last equations in (36). But instead of using
the two first equations of (36) we take the two first ones of (38). This gives us

R̄(∂z) = ̄−1
(
∂zẐ−1 + [A−1(∂z), Ẑ0] + [A0(∂z), Ẑ−1]

)
+

(
∂zẐ0 + [A0(∂z), Ẑ0]

)
,

(39)

R̄(∂z̄) = ̄
(
[A1(∂z̄), Ẑ0] + [A′′

2(∂z̄), Ẑ−1]
)

+ ̄2[A′′
2(∂z̄), Ẑ0]. (40)

These relations will imply that Ẑ−1 and Ẑ0 satisfy a second order elliptic equa-
tion. In order to prove that we need to establish another relation between
R̄(∂z) and R̄(∂z̄). For that purpose recall that dĀ + Ā ∧ Ā = 0, which
means that the connection d + adĀ has a vanishing curvature. In particular

0 = (d + adĀ) ◦ (d + adĀ) Z≤ = dR̄ + [Ā ∧ R̄].

This implies

∂R̄(∂z)

∂z̄
− ∂R̄(∂z̄)

∂z
= [Ā(∂z), R̄(∂z̄)] − [Ā(∂z̄), R̄(∂z)]. (41)

A substitution of (39) and (40) in (41) gives a system of linear elliptic equations

on Ẑ−1 and Ẑ0. Since the space of solutions to this system which are periodic is

finite dimensional, it turns out that Ẑ−1 and Ẑ0 belong to a finite dimensional
vector space. Hence relations (39) and (40) force R̄(∂z) and R̄(∂z̄) to stay in
a finite dimensional vector space.

We can conclude: let us consider

R := {R̄/R̄(∂z), R̄(∂z̄) are given by (39) and (40) and satisfy (41)}.
It is a complex finite dimensional vector space. Let us also denote by Pn :=
{P (̄) = an̄−4n + an−1̄

−4(n−1) + ⋅ ⋅ ⋅ + a0/(a0, ⋅ ⋅ ⋅ , an) ∈ C
n+1} and P∞ :=

∪n∈NPn.

The linear map P∞ ∋ P (̄) 7−ջ dZ≤ + [Ā, Z≤], where Z≤ = (P (̄)Ȳ)≤ takes
values in R and so has a finite rank, say n. Then since dimCPn = n+1, the map
Pn ∋ P (̄) 7−ջ dZ≤+[Ā, Z≤] has a non trivial kernel: let P (̄) =

∑n
k=0 ak̄−4k

be a non trivial polynomial in this kernel. Let 4p be the degree of P in ̄−1,
i.e. such that P (̄) =

∑p
k=0 ak̄−4k and ap 6= 0. Without loss of generality we

can assume that ap = 1. Then ̇̄ := (P (̄)Ȳ)≤ − (P (̄)Ȳ)
†
≤ is a solution of

(22) and (24). ¥
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5 Homogeneous tori in CP
2

We describe here the simplest examples of Hamiltonian stationary Lagrangian
tori in CP 2: the homogeneous Hamiltonian stationary Lagrangian tori, i.e.
immersions u of S1 · S1 into CP 2 such that u(x + t, y) = etAu(x, y) and
u(x, y + t) = etBu(x, y) for some skew-Hermitian matrices A and B. Notice
that A and B are only defined up to addition with a multiple of iId . The sim-
plest example is the Clifford torus, namely the image by the Hopf map ̉ of
the product torus {z = (z1, z2, z3); |z1| = |z2| = |z3| = 1/

√
3}. This torus is

minimal. The main result states that all homogeneous Hamiltonian stationary
Lagrangian tori are similar to the Clifford torus.

Theorem 5.1 Any homogeneous Hamiltonian stationary Lagrangian torus in
CP 2 is the image by the Hopf map of some Cartesian product r1S

1 · r2S
1 ·

r3S
1 = {z = (z1, z2, z3); |z1| = r1, |z2| = r2, |z3| = r3} where r2

1 + r2
2 + r2

3 = 1,
up to U(2) congruence. Moreover, the torus is special Lagrangian if and only if
r1 = r2 = r3 =

√
3.

Proof — Let us first see why ̉(T ) is a Hamiltonian stationary Lagrangian torus
in CP 2, where T = r1S

1 · r2S
1 · r3S

1. Indeed it suffices to show that ̉(T )
admits a Legendrian preimage. Let

f(x, y) :=
(
r1e

i((1−r2
1)x−r2

2y), r2e
i(−r2

1x+(1−r2
2)y), r3e

i(−r2
1x−r2

2y)
)

.

Then the orbit under the Hopf action of the image of f is exactly the 3-torus T
above and ̉◦f is doubly periodic with periods (2̉, 0) and (0, 2̉). Note that this
immersion is not conformal but there exists an orthonormal Hermitian moving
frame (e1, e2) such that ∂f

∂x
= r1

√
1 − r2

1 e1 and ∂f
∂y

= r2√
1−r2

1

(r3e2 − r1r2e1).

And it is easy to check that f is Legendrian (and flat). Its Lagrangian angle
function is

˻(x, y) = x(1 − 3r2
1) + y(1 − 3r2

2) + ̉

and since the metric is flat, ˻ is clearly harmonic, and constant if and only if
r1 = r2 = r3 = 1/

√
3. Notice that many of these tori do not lift up to S5 as

Legendrian tori (they do not close up). Indeed the Maslov class is not always
an integer: for the implicit homology basis, t 7−ջ (2̉t, 0) and t 7−ջ (0, 2̉t), it
is (1 − 3r2

1, 1 − 3r2
2). However, if all r2

i are rational, the torus in CP 2 possesses
a Legendrian toric multiple cover.

Suppose now that u : S1·S1 −ջ CP 2 is a homogeneous Lagrangian immersion.
According to our definition u has a lift û such that ̉(û(x+t, y)) = ̉(etAû(x, y))
and ̉(û(x, y + t)) = ̉(etBû(x, y)). In particular ̉(exAeyBp) = ̉(eyBexAp), for
any p ∈ S5 in the image. However the image is never contained in a complex
subspace of C

3, hence [A,B] ∈ iRId . Since [A,B] is traceless, A and B commute.

The obvious (non Legendrian) lift in S5 is (x, y) 7−ջ exAeyBp where now
p = (p1, p2, p3) is a fixed point mapped by the Hopf map ̉ to u(0, 0). A
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Legendrian lift û takes the following form: û(x, y) = eí(x,y)exAeyBp for some
function ́. The horizontality condition implies 〈(i ∂́

∂x
Id + A)p, p〉C3 = 0 so that

∂́
∂x

= i
〈Ap,p〉

C3

|p|2 is a constant. The same holds in the y direction so we can define

the lift û(x, y) = exÂ+yB̂p where Â = A + i ∂́
∂x

Id and B̂ = B + i ∂́
∂y

Id are two

commuting skew-symmetric matrices. (Notice that û is only defined on the uni-
versal cover R

2.) The base point p depends of course on the choice of origin and
is only defined up to multiplication by a complex unit number. Nevertheless it
plays an important role.

Consider now the metric induced by û. Due to homogeneity, it is a constant
metric on the (x, y)-plane. By doing a simple change in variables, we may as
well assume that the metric is the standard plane metric, in other words the
immersion is isometric. (Of course that will change the matrices Â and B̂, but
since they are replaced by some real linear combination of themselves, the prop-
erties mentioned above still hold.) Henceforth we suppose that û is an isometric
homogeneous Legendrian immersion of the plane.

Up to a unitary rotation in C
3 we may suppose that Â is diagonal, and write

Â = idiag(a1, a2, a3) with real coefficients a1, a2, a3. We need then to consider
three cases.

1. The only possible case: B = idiag(b1, b2, b3) is diagonal. Then the surface
lies inside the three torus T = |p1|S1 · |p2|S1 · |p3|S1. Necessarily it lifts
̉(T ). Isometry will constraint the coefficients to be as above.

2. One and only one of the off-diagonal coefficients of B is non zero. We
can assume it is b12 up to permutation of the coordinates. Commutation
forces a1 = a2, while a3 6= a1, otherwise we would get a contradiction: A
cannot be a multiple of iId . Let us first look at equations involving A.
The immersion being isometric in S5, |p| = |Ap| = 1

1 = |p1|2 + |p2|2 + |p3|2 = a2
1(|p1|2 + |p2|2) + a2

3|p3|2

but it is also Legendrian, so

̒(Ap, p) = 〈iAp, p〉C3 = a1(|p1|2 + |p2|2) + a3|p3|2 = 0.

Hence

|p1|2 + |p2|2 =
a3

a3 − a1
, |p3|2 = − a1

a3 − a1
and a1a3 = −1

excluding thus a1 = 0, and finally

|p1|2 + |p2|2 =
1

1 + a2
1

, |p3|2 =
a2
1

1 + a2
1

.

Take now into account the Legendrian constraints on B:

B =




ib1 b12 0

−b12 ib2 0
0 0 b3
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0 = 〈Bp, p〉C3 = i

(
3∑

1

bj |pj |2 + 2Im(b12p1p2)

)

0 = 〈Bp,Ap〉C3 =

3∑

1

ajbj |pj |2 + 2a1Im(b12p1p2).

Uniting both, we deduce

a1b1|p1|2 + a1b2|p2|2 + a1b3|p3|2 = a1b1|p1|2 + a1b2|p2|2 + a3b3|p3|2.

Since |p3| 6= 0 and a1 6= a3, b3 vanishes. The remaining equations are:

|p1|2 + |p2|2 =
1

1 + a2
1

b1|p1|2 + b2|p2|2 + 2Im(b12p1p2) = 0 (42)

(b2
1 + |b12|2)|p1|2 + (b2

2 + |b12|2)|p2|2 + 2(b1 + b2)Im(b12p1p2) = 1. (43)

Finally we infer a contradiction: indeed equation (42) amounts to the
existence of an isotropic vector (p1, p2) for the skew-hermitian matrix(

ib1 b12

−b12 ib2

)
, and that requires its determinant |b12|2 − b1b2 to van-

ish. Plugging this into (43), we obtain

(b1 + b2)
(
b1|p1|2 + b2|p2|2 + 2Im(b12p1p2)

)
= 1,

obviously contradicting (42).

3. If at least two off-diagonal coefficients of B are non-zero, then A = ia1Id .
But that contradicts (Ap|p) = 0. So that case is also excluded.

Notice that in the language of integrable systems, homogeneous tori correspond
to vacuum solutions and are of finite type for p = 0. ¥
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