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Synchronization of Hamiltonian motion and dissipative effects

in optical lattices: Evidence for a stochastic resonance

Laurent Sanchez-Palencia∗ and Gilbert Grynberg
Laboratoire Kastler Brossel, Département de Physique de l’Ecole Normale Supérieure,

24, rue Lhomond, 75231, Paris Cedex 05, France.

(Dated: September 29, 2003)

We theoretically study the influence of the noise strength on the excitation of the Brillouin prop-
agation modes in a dissipative optical lattice. We show that the excitation has a resonant behavior
for a specific amount of noise corresponding to the precise synchronization of the Hamiltonian mo-
tion on the optical potential surfaces and the dissipative effects associated with optical pumping in
the lattice. This corresponds to the phenomenon of stochastic resonance. Our results are obtained
by numerical simulations and correspond to the analysis of microscopic quantities (atomic spatial
distributions) as well as macroscopic quantities (enhancement of spatial diffusion and pump-probe
spectra). We also present a simple analytical model in excellent agreement with the simulations.

PACS numbers: 05.45.-a,05.60.-k,32.80.Pj

I. INTRODUCTION

During the past decades, the rapid development of the
experimental cooling and trapping methods for neutral
particles has delivered a remarkable mastery of accurate
measurement procedures of the dynamical and spectral
properties of the atoms [1]. Cold atomic samples thus
constitute privileged media for the study of various physi-
cal phenomena such as the properties of degenerate quan-
tum gases of both bosons [2] and fermions [3], or nonlin-
ear mechanical effects [4]. Among the cooling schemes,
the Sisyphus mechanism [5] distinguishes by the peculiar-
ity that it leads not only to very cold atomic samples but
also to the trapping of the atoms in spatially periodic po-
tential wells [6, 7, 8] by pure optical means. This creates
a periodic array of atoms bound by light, the so-called
optical lattices. Moreover, the trapping potentials can be
easily designed in a large variety of different topographies
in one, two or three dimensions [9, 10] and this provides
the possibility of modeling different situations. The cool-
ing mechanism itself results from the intercombination of
Hamiltonian motion and dissipative processes and is thus
particularly well suited for the study of the dynamics of
particles trapped in periodic structures in the presence
of noise.

In the Sisyphus scheme, a two level atom with Zeeman
degeneracy interacts with a laser field with a gradient
of the polarization. The light induces a spatially peri-
odic modulation of the optical potentials (light shifts) of
the different Zeeman sublevels and also random quan-
tum jumps between these sublevels (optical pumping).
The cooling mechanism results from successive cycles of
Hamiltonian motion on the optical potential surfaces fol-
lowed by dissipative processes associated to the random
jumps in such a way that a moving atom on average
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climbs up potential hills before it is optically pumped
into a lower lying potential surface [5]. The kinetic en-
ergy is thus converted into potential energy which is
subsequently carried away by a spontaneously emitted
photon, thereby reducing the total atomic energy. Be-
cause the steady-state kinetic energy is generally lower
than the potential depth, the particles get trapped in
the potential wells. The typical evolution times corre-
sponding to the Hamiltonian motion on the one hand
and to the dissipative processes on the other hand can
vary independently with the lattice parameters and for
usual experimental conditions have roughly the same or-
der of magnitude. This leads to distinguish two dynami-
cal regimes (the jumping regime where dissipative effects
dominate and the oscillating regime where Hamiltonian
motion dominates). This makes particularly difficult to
perform analytical calculations in the whole accessible
range of parameters [11].

By contrast, the intermediate regime offers the pos-
sibility of studying unusual and fascinating atomic be-
haviors combining Hamiltonian motion and dissipative
effects. In particular, it can be considered as models for
the transport of particles trapped in periodic structures
and in the presence of noise, which is of particular in-
terest for systems where the dynamics is dominated by
noise such as in many biological systems [12]. For exam-
ple, an atomic ratchet has been realized in a variant of
the configuration considered in this paper [13] and the
phenomenon of directed diffusion has been observed [14]
in a one-dimensional setup.

In a recent publication [15], we identified a resonant be-
havior of the stimulated transport (Brillouin propagation

modes) of atoms versus the noise strength, i.e. versus the
rate of optical pumping, and we interpreted it in terms
of a stochastic resonance (SR). This phenomenon, corre-
sponding to a situation where Hamiltonian motion and
noise-induced effects work together to induce a resonant
response of a system to a weak external stimulation, has
been widely studied in various theoretical models [16].
However, no direct evidence for SR in dissipative optical

mailto:lsanchez@lkb.ens.fr
http://www.lkb.ens.fr/~lsanchez
http://www.lkb.ens.fr/~lsanchez


2

lattices has been given so far. The aim of this paper is
to theoretically analyze the influence of the level of noise
on the efficiency of the excitation process of the Brillouin
propagation modes in a dissipative optical lattice. We
show that the excitation is resonant for a specific amount
of noise corresponding precisely to the synchronization
of the hamitonian motion and of the dissipative effects.
Our results are mainly obtained by means of numerical
simulations.

Our paper is organized as follows. In section II, we
present the main features of the dynamics of atoms cooled
and trapped in a dissipative optical lattice. We dis-
cuss the peculiarities of Hamiltonian motion and dissipa-
tive processes and we describe the Brillouin propagation
modes. In the next two sections, we show that the exci-
tation of the propagation modes is resonant for a given
amount of noise and that this is compatible with the phe-
nomenon of SR: (i) in section III, we analyze the resonant
enhancement of the spatial diffusion of the atomic cloud
and we show that the position of the resonance precisely
corresponds to the synchronization of the Hamiltonian
motion and the dissipative processes; (ii) in section IV,
we present further evidences for the phenomenon of SR
by considering the microscopic behavior of the propagat-
ing atoms. We also show that SR can be observed in
the amplitude of the Brillouin resonance that appears in
well-mastered nonlinear spectroscopy experiments. Fi-
nally, we summarize our results in section V.

II. HAMILTONIAN MOTION AND

DISSIPATIVE PROCESSES IN OPTICAL

LATTICES

A. Dynamics of cold atoms in an optical lattice

Consider a sample of atoms interacting with a laser
field with a frequency slightly red detuned with respect
to a J ջ J + 1 atomic transition. The atoms experience
a set of optical potentials corresponding to the light shifts
of the various Zeeman sublevels of the atomic ground
state and thus depending on the internal state. The to-
pography of the potential surfaces depends on the inter-
ference pattern of the laser fields and are spatially peri-
odic with periods of the order of the laser wavelength. In
this paper we study the so-called 3D-lin⊥lin configura-
tion [17]. This is obtained from the standard 1D-lin⊥lin
configuration [5] by symmetrically splitting each of the
two laser beams into two parts at an angle θ with the
(Oz) axis in the (Oxz) and (Oyz) planes respectively.
The resulting configuration consists of two pairs of laser
beams in the (Oxz) plane and in the (Oyz) plane, respec-
tively with orthogonal linear polarizations as depicted in
Fig. 1. In this situation, the potential surfaces are made
of regularly displaced wells (see Fig. 2).

Moreover, for a near resonant laser field, the optical
pumping cycles transfer the atoms from a given sublevel
to another one with a rate depending on the atomic posi-

FIG. 1: 3D-lin⊥lin laser configuration: the interference pat-
tern of the four laser beams L�µ (with µ ∈ {x, y}), with linear
polarizations arranged as in the figure, creates the optical lat-
tice. A probe laser beam (P ) along the z- axis is also added for
excitation of propagation modes (see section II B) and non-
linear spectroscopy (see section IVB).

tion. More precisely, the optical pumping tends to popu-
late the lower potential surfaces thus providing the cool-
ing of the moving atoms via the Sisyphus effect [5, 11].
The resulting mean atomic kinetic energy is lower than
the potential barrier for escaping from the potential wells,
so that the atoms get trapped and form a crystal-like lat-
tice bound by light.

After the cooling stage, the atomic dynamics is com-
posed of two parts: the Hamiltonian motion and dissi-
pative effects. First, the hamitonian motion consists in
periodic oscillations around the bottom of potential wells.
The principal directions of the oscillations correspond to
the coordinates axes x, y and z with a frequency Ωµ/2π
along the µ- axis. In particular, in the 3D-lin⊥lin config-
uration and for a Jg = 1/2 ջ Je = 3/2 atomic transition,
one finds

Ωx = 4 sin (θ)
√

|∆′
0|ωr (1)

where θ is half the angle between the quasi-copropagating
laser beams (see Fig. 1) and ∆′

0 is the light shift per
lattice beam and for a Clebsch-Gordan coefficient of 1
[10]. ωr = ~k2

2M
, with k, the laser wavenumber and M the

mass of one atom, denotes the recoil frequency. In the
following, we only consider the case θ = 30◦. Second,
the dissipative processes correspond to random quantum
jumps between the various potential surfaces that modify
instantaneously the atomic energy. For the same condi-
tions as for Eq. (1) and in the semi-classical approxima-
tion, the optical pumping rate from the internal state
|g,�〉 to the state |g,∓〉 averaged over position, reads
[18]

γ�,∓ ≃ 4Γ′
0

9

{

cos2(2πx̂) + cos2(2πŷ)
}

(2)
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where Γ′
0 is the scattering rate of photons per lattice

beam and for a Clebsch-Gordan coefficient of 1, x̂ and
ŷ denotes the atomic position along the x- and y- direc-
tions in units of the lattice spacing in the corresponding
direction and ( . ) denotes the uniform spatial average
value [35].

As pointed out in section I, the relative importance
of Hamiltonian evolution and dissipative effects depends
on the lattice parameters. In the jumping regime
(Γ′

0 ≫ Ωx), the dissipative effects dominate the dynam-
ics so that an atom encounters several optical pumping
cycles during a single oscillation in a potential well. On
the contrary, in the oscillating regime (Ωx ≫ Γ′

0), the
dynamics is dominated by the Hamiltonian motion and
an atom makes several oscillations before being optically
pumped. Note that in our configuration, ∆′

0 ∝ IL/∆ and
Γ′

0 ∝ IL/∆2, where IL is the intensity of one laser beam
and ∆ is the detuning between the laser and the Bohr
frequencies of the atomic transition, so that the typical
times of both Hamiltonian motion (2π/Ωx) and of the
dissipative effects (1/γ�,∓) can vary independently in a
large range.

Finally, because a strong trapping site in the po-
tential surface for a given internal state (for example
x = y = z = 0 for |−〉) corresponds to a non-trapping site
in the potential surface for an other internal state (see
Fig. 2), γ�,∓ is approximately the escape rate from a
trapping site. Note that the macroscopic manifestation
of the escapes from trapping sites consists in spatial dif-
fusion of the atomic cloud in the lattice [19].

B. Brillouin Propagation modes

One can excite atomic propagation modes in the op-
tical lattice by adding a laser beam (P ) detuned by δ
from the lattice beams and aligned with the symmetry
axis z as shown in Fig. 1 [15, 20]. This laser is usually
referred to as the probe beam because it was first intro-
duced in nonlinear spectroscopy experiments in optical
lattices ([7, 21], see also section IV B). For an atom, a
propagation mode in a given direction consists in making
a half oscillation in a potential well followed by an op-
tical pumping cycle that changes its internal state, then
in making a new half oscillation in the neighboring well,
undergoing an optical pumping cycle and so on, as shown
in Fig. 2.

The interference between the probe laser beam and the
lattice beams induces a moving spatial modulation of the
potential surfaces. For the configuration considered here,
there are two modulations symmetric with respect to z

along the directions −ջu � =
−ջ
∆k�/|−ջ∆k�| where

−ջ
∆k� is the

difference between the wavevectors of L�x and P and
that lies in the (Oxz) plane. Note that there are also
two moving potential modulations in the (Oyz) plane.
However, we do not consider them because they are of
a very different kind and in particular, they excite the
propagation modes in the (Oyz) plane only for a value

FIG. 2: Cut along a given direction (x) of the optical poten-
tials U� for a Jg = 1/2 → Je = 3/2 atomic transition. The
propagation mode along +x is also represented. Similar
modes exist along −x, ±y and ±z.

of δ different from the one considered in the following
(see Eq. (3)). The potential modulations are periodic in

space with a period λmod = 2π/|−ջ∆k�| and move along
−ջu � at a velocity vmod = δ/|−ջ∆k�|. In particular, in the
x- direction, the modulations move along +x and −x at

a velocity vx = δ/|−ջ∆k� ⋅ −ջex|. Because the atoms tend to
populate the potential wells of the moving modulation,
the two modulations dragg the atoms along +x and −x at
a velocity vmod. Hence, a resonant excitation (Brillouin

resonance) of the propagation mode is obtained when the
phase velocity vmod of the driving modulations is equal
to the natural velocity vx of an atom along the mode in
the lattice. vx corresponds (see Fig. 2) for an atom to
travel over one half spatial period (π/kx) in half a tem-
poral oscillating period π/Ωx, so that vx = Ωx/kx. In
the 3D-lin⊥lin lattice, one finds that the Brillouin reso-
nance for the propagation modes along the x- direction
corresponds to

δ = �Ωx . (3)

In the following, we consider situations where the prop-
agation modes in the x- direction are resonantly excited
versus δ. The atomic cloud thus separates into three
modes. The first one corresponds to atoms trapped in the
potential wells of the unmoving lattice and that are not
sensitive to the moving potential modulations whereas
the other two correspond to atoms moving along the
propagation modes at a velocity vmod towards +x or −x.
These modes are not independent. There are popula-
tion transfers between the modes, mainly due to non-
Hamiltonian forces encountered by an atom which are
related to random optical pumping cycles and fluores-
cence cycles.

C. Numerical simulations

Our theoretical analysis is supported by numerical sim-
ulations. These consist in a Monte-Carlo integration of
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the master equation for the dynamics of an atom inter-
acting with a laser field and the vacuum modes in the
semi-classical approximation [18, 19]. This approxima-
tion is justified in the range of parameters that we con-
sider here because of the strong localization of the atomic
wavefunctions [11]. We consider a theoretical transition
Jg = 1/2 ջ Je = 3/2 which gives good qualitative results
and for which analytical calculations can be performed
[5].

In the semi-classical approximation of the laser cooling
theory, the master equation can be written as a Fokker-
Planck equation (FPE) [18, 19, 22] where the external
degrees of freedom of the atoms are treated as classical
variables. This is obtained from the Wigner transform
[23] of the full quantum master equation for external as
well as internal degrees of freedom under the assumption
of a momentum distribution which is much broader than
a single photon momentum, ∆P ≫ ~k. The FPE for the
populations Π�(r, p, t) of |�〉 reads

[

∂t +
pi

M
∂i − (∂iU�)∂pi

]

Π� =

γ∓,�Π∓ − γ�,∓Π�

−F i
��∂pi

Π� − F i
∓�∂pi

Π∓

+Dij
��∂pi

∂pj
Π� + Dij

∓�∂pi
∂pj

Π∓. (4)

Here i, j = x, y, z and summation over i and j is assumed.
In this equation, γ�,∓ is the jumping rate from the Zee-
man sublevel |�〉 to the sublevel |∓〉, F i

�� represents the

radiation pressure force and Dij
�� the momentum diffu-

sion matrix for atoms in the internal state |�〉. F i
�∓ and

Dij
�∓ are the corresponding quantities associated with

jumps between different internal states [24]. Note that
all these coefficients are laser field depend. In our case
the laser field is made of the contributions of the lat-
tice beams L�µ and of the probe beam P . A numerical
solution of the FPE can be obtained by averaging over
many realizations of the corresponding Langevin equa-
tions [19, 25].

For the sake of simplicity and to save computation
time, we restricted the atomic motion into two dimen-
sions of space, in the plane y = 0. That way, we consider
the motion along x (direction of the stimulated propaga-
tion modes) and also along z to take into account the pos-
sible escapes in the orthogonal direction. As pointed out
in the preceeding section, we only consider cases where
only the propagation modes in the (Oxz) are excited. We
therefore expect our results to differ from 3D situations
only by scaling factors due to the atomic spatial distri-
bution in the y direction (see also the discussion at the
end of section III B).

III. MACROSCOPIC MANIFESTATION OF

STOCHASTIC RESONANCE

A. Resonant enhancement of spatial diffusion

The excitation of the propagation modes drives one
part of the atomic cloud along +x and another part along
−x. The spatial diffusion in the specific direction x thus
results enhanced whereas the spatial diffusion in the or-
thogonal directions is almost unchanged [15]. In order
to optimize this phenomenon for a given set of lattice
parameters, we tune the probe laser frequency to the
Brillouin resonance according to Eq. (3). Because the
propagation process of an atom along a mode involves
both Hamiltonian motion and dissipative processes, it is
clear that changing the strength of one with respect to
the other should modify the efficiency of the driving. We
plot in Fig. 3 the spatial diffusion coefficient in the lat-
tice along the driving direction (Dx) and in the orthog-
onal direction (Dz) as a function of the noise strength
(proportional to the optical pumping rate Γ′

0).
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FIG. 3: Numerical results for the spatial diffusion coefficients
in the x- and z- directions as a function of the optical pumping
rate, for a given depth of the optical potential. Parameters
for the calculations are: ∆′

0 = −200ωr and θ = 30◦.

Generically, Dµ shows a monotonous decrease versus
Γ′

0. This behavior is in agreement with a simple model
of random walk [26]: an atom is trapped in a potential
well with a lifetime of the order of τesc ∼ 1/Γ′

0 and during

a jump it travels at a typical velocity of v =
√

2EK/M
(where EK is the kinetic energy of the cloud and M is
the mass of one atom) for a typical time τflight ∼ 1/Γ′

0.
Because for Sisyphus cooling, EK ∝ ~|∆′

0| [5], the spatial

diffusion coefficient scales as Dµ ∼ ~

M

|∆′

0
|

Γ′

0

[19]. In addi-

tion to the global behavior versus Γ′
0, we find that Dx

displays a clear narrow peak for a specific value of Γ′
0

(Γ′
0 ≃ 13ωr in Fig. 3) whereas no peak is observed for the

spatial diffusion coefficient along the orthogonal (z-) di-
rection. This corresponds to a resonant enhancement of
the spatial diffusion along the driving direction and can
be interpreted as a resonant excitation of the Brillouin
propagation modes for a given amount of noise. This
point will be demonstrated in detail in section IV A.



5

B. Characterization of stochastic resonance

In order to characterize the specific influence of the
propagation modes to the spatial diffusion in the x- direc-
tion, we introduce the enhancement factor of the spatial
diffusion coefficient along x with a probe beam at Bril-
louin resonance (see Eq. (3)) Dx compared to far from
Brillouin resonance D0

x:

ξ =
Dx − D0

x

D0
x

. (5)

Here, D0
x is typically calculated for δ ≃ 100Ωx. In

Fig. 4, we plot the enhancement factor ξ versus the noise
strength Γ′

0 for a fixed value of the potential depth ∆′
0

and for various depths of the driving modulation induced
by the probe beam.
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FIG. 4: Numerical results for the enhancement factor ξ as a
function of the optical pumping rate, for a given depth of the
optical potential. The four data sets correspond to different
intensities of the probe beam IP in units of the intensity of one
lattice beam IL, i.e. different depths of the moving potential
modulation. Parameters for the calculations are: ∆′

0 = −50ωr

and θ = 30◦.

The results of Fig. 4 show that ξ is a nonmonotonic
function of the amount of noise Γ′

0 in the lattice. For low
noise strength, ξ is an increasing function of Γ′

0, then ξ
reaches a maximum and finally decreases for high values
of the noise strength Γ′

0. Hence, there is a specific value
of the noise strength for which the propagation modes
are resonantly excited. Such a property is interpreted as
a SR and corresponds to the synchronization of Hamilto-
nian motion and dissipative processes [16]. We checked
that the peak for ξ precisely corresponds to the peak for
Dx and we conclude that the resonant enhancement of
spatial diffusion is due to a resonant excitation of the
propagation modes in the x- direction.

In order to understand more precisely the phenomenon
in our system, consider again the propagation process of
an atom in a Brillouin mode (section II B and Fig. 2).
Such a process clearly works better when an optical
pumping cycle occurs each time the atom gets close to
a crossing point between the potential curves U+ and
U−. Taking into account the velocity of the atoms in the
propagation modes vx = Ωx/kx, this occurs periodically

in time every π/Ωx. Besides, the typical time between
two subsequent optical pumping cycles is 1/γ�,∓. Hence,
we expect SR to occur for π/Ωx ≃ 1/γ�,∓, and, accord-
ing Eqs. (1) and (2), for

(Γ′
0)SR =

9 sin(θ)
√

|∆′
0|ωr

π
(

cos2(2πx̂) + cos2(2πŷ)
) . (6)

For values of the noise strength lower than (Γ′
0)SR, the

optical pumping is too weak to allow the atom to go
across the potential barrier every time it reaches a cross-
ing point between the potential curves. On the contrary,
for a level of noise much larger than (Γ′

0)SR, the Hamilto-
nian motion is broken by the numerous optical pumping
cycles so that the atoms cannot follow the driving poten-
tial modulation.

Figure 4 clearly shows that the amplitude of the bell-
shaped curve of ξ versus Γ′

0 increases for increasing
depths of the driving modulation (i.e. increasing values
of IP/IL). This can be easily explained by the fact that
the number of atoms dragged by the moving modulation
is greater for deeper driving modulations. We find that
the position of the SR, (Γ′

0)SR, is independent of IP/IL

in good agreement with the property that Eq. (6) does
not involve the driving modulation properties. In fact
Eq. (6) only involves the properties of the lattice itself.
Note however, that for extreme values of IP/IL, Eq. (6)
certainly no longer works. Indeed, for very weak val-
ues of IP/IL, the propagation modes are not excited and
no enhancement of the spatial diffusion can be detected,
whereas for very high values, the lattice is too much per-
turbated to influence the dynamics of the atoms.

In order to check the validity of the theoretical synchro-
nization condition (6), we determined the enhancement
factor ξ versus the noise strength Γ′

0 for various fixed val-
ues of the lattice potential depth ∆′

0. We found results
as in Fig. 4 and we consequently determined the position
of the SR, (Γ′

0)SR, as a function of ∆′
0 in a wide range.

We plot our results in Fig. 5 together with the theoretical
curve corresponding to Eq. (6) for a 2D lattice (ŷ = 0)

where cos2(2πx̂) + cos2(2πŷ) = 3/2 as in the simulations.
Note that no free parameter is used to fit the numerical
data.

We obtain an excellent qualitative as well as quanti-
tative agreement between the numerical results and the
theory. We thus conclude that the resonance observed in
Fig. 4 corresponds to the phenomenon of SR for which the
dissipative processes (optical pumping) are synchronized
with the Hamiltonian motion (half-oscillations in the po-
tential wells) of the atoms in a propagation mode. Similar
results are expected in a full 3D situation. In that case,
the scaling factor of (Γ′

0)SR versus
√

|∆′
0| is however ex-

pected to be slightly different because of a different aver-
age value for cos2(2πx̂) + cos2(2πŷ). In the x direction, a
uniform average is valid because the atoms excited in the
propagation modes are moving along x but the average
over y should take into account the atomic localization
in the lattice [19]. In fact, because the potential minima
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FIG. 5: Position of the stochastic resonance versus the square
root of the modulation depth and comparison to the theoret-
ical value given by Eq. (6). Parameters for the simulations
are θ = 30◦ and IP/IL = 9%.

correspond to ŷ ≡ 0 [π], we expect cos2(2πx̂) + cos2(2πŷ)
not to be very different from 3/2.

IV. MICROSCOPIC DYNAMICS AND

STOCHASTIC RESONANCE

A. Atomic bunching in a moving frame

In section III, we have given evidences for the realiza-
tion of SR in the enhancement of the spatial diffusion of
the atomic cloud in the x- direction. However, no de-
tailed study of the microscopic behavior of the atoms in
the presence of a variable amount of noise has been per-
formed so far. In particular, the problem arises as to give
a direct evidence that the propagation modes are really
excited resonantly for a given amount of noise. In or-
der to adress this problem, we shall directly determine
the atomic population in a propagation mode versus Γ′

0.
In the configuration depicted in Fig. 1, two potential
modulations with a spatial period λmod and a velocity
vmod, dragg the atoms symmetrically with respect to axis
(Oz) in the directions −ջu + and −ջu −. We therefore expect
that the atomic distribution is spatially modulated in the
moving potential modulations and particularly that the
atoms are bunched around the moving potential minima.

We determined the atomic spatial distribution N�(u)
in a frame moving in the direction and at the velocity of
each mode. Here u is the space coordinate in direction−ջu �. Because of the low atomic filling rates in dissipa-
tive optical lattices, N�(u) is in fact calculated by accu-
mulating over time. Moreover, we cut the whole space
in elementary λmod-large cells centered at λmod(j + 1/2)
and we add the populations of each cell N�

j (u + jλmod),

with u ∈ [0, λmod[, so that N�(u) =
∑

j N�
j (u + jλmod).

N�(u) results from the superimposition of several terms
corresponding to atoms with different dynamical behav-
iors. On the one hand, the atoms trapped in the lattice
sites and the atoms dragged along the moving potential
modulation −ջu ∓ have a modulated and stationary spatial

distribution respectively in the un-moving frame and in
the frame moving as the mode −ջu ∓. Because these frames
move with respect to our reference frame (attached to
the mode −ջu �), their contribution is uniform with re-
spect to u and contributes as a constant number. On
the other hand, the atoms dragged along the potential
modulation −ջu � are approximately at rest in our frame
and consequently give the shape of moving matter mod-
ulation along the mode −ջu �. In a linear regime for the
atomic response to the dragging, valid for low enough
values of IL/IP, we expect the contribution to N�(u) of
the atoms from mode −ջu � to be sinusoidal as the poten-
tial modulation itself. We thus conclude that the atomic
spatial distribution in the moving frame should be

N�(u) = C

[

1 + A sin

(

2πu

λmod

+ ϕ

)]

. (7)

Here the amplitude A characterizes the fraction of atoms
in the propagation mode −ջu � and the phase ϕ accounts
for the delay of the matter modulation with respect to the
dragging potential modulation due to the finite response

time of the atoms in the lattice. C =
∫ λmod

0
du

λmod

N�(u)
is determined by the total number of atoms used in the
simulations and the integration time window. C is thus
invariant when changing the lattice parameters.
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FIG. 6: Amplitude of the atomic fraction in the propaga-
tion mode versus the optical pumping rate. The phenomenon
of stochastic resonance is clearly visible. Parameters for the
simulations are ∆′

0 = −50ωr, θ = 30◦ and IP/IL = 9%. In-
set: Numerical result for the atomic bunching in the moving
frame corresponding to the propagation mode together with
a sinusoidal fit of the form of Eq. (7). Here Γ′

0 = 9ωr.

A typical result for N+(u) is plotted in the inset of
Fig. 6 together with a fit to a function of the form of
Eq. (7) where A and ϕ are the free parameters. The
numerical results are found to be in excellent agreement
with Eq. (7). We plot in Fig. 6 the amplitude A of the
sinusoidal component in N+(u) as a function of the op-
tical pumping rate Γ′

0. We obtain a bell-shaped curve
which is characteristic of SR. This result constitutes the
first direct evidence on a microscopic observable that the
Brillouin-like propagation modes are resonantly excited
for a given level of dissipative effects. The position of
the resonance (Γ′

0)SR is also in good agreement with the
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results plotted in Fig. 5 and corresponding to the SR
observed in the enhancement factor of the spatial diffu-
sion coefficient along the direction x. These results con-
firm by a direct method that the Brillouin propagation
modes are excited resonantly when the synchronization
condition (6) between the Hamiltonian motion and the
dissipative processes in the optical lattice is fulfilled.

B. Brillouin spectroscopy

A very powerful and widely used technique to probe
the dynamical properties of a cold atomic sample in
an optical lattice is nonlinear pump-probe spectroscopy
[7, 21, 27] and we adress now the problem to known
whether SR can be observed in spectroscopy experiments.
The method consists in using the laser (P ) as the probe
and the lattice beams (L�µ) as the pump (see Fig. 1).
As mentionned previously, the interference between the
probe and pump beams induces moving modulations of
the laser field which create time-dependent modulations
of various observables in the medium (spatial and veloc-
ity distributions, polarization, etc . . . ) with a non-zero
phase with respect to the laser field modulation. This
is connected to the finite response time of the atoms in
the lattice. The diffraction of the pump beams onto the
matter modulation induces a modification of the probe
intensity I which is measured as a function of the detun-
ing between the probe and the pump beams δ [28]. The
elementary excitation modes of the atomic sample ap-
pear in the spectrum (I as a function of δ) as resonances
whose positions and widths are related respectively to
the real part and to the imaginary part of the eigen-
frequency of the mode [29, 30]. It is thus clear that the
amplitude of the excitation resonance in the spectrum
depends on both the amplitude and the phase of the ob-
servable modulation involved in the light scattering pro-
cess. For a 3D-lin⊥lin configuration with a probe beam
aligned along (Oz), the spectrum consists of three kinds
of resonances: first, the Rayleigh lines which relate to the
pure relaxation processes associated to spatial diffusion
and damping of the kinetic energy [31, 32]; second, the
sideband Raman lines which correspond to transitions
between vibrational bound states in the potential wells
[27]; third, the Brillouin resonances which correspond to
the propagation modes discussed in section II B [20].

In the case of the Brillouin line, the amplitude of the
resonance is closely related to the atomic spatial distri-
bution in the moving reference frame and particularly to
the values of A and ϕ. In fact, we observed in the numer-
ical simulations that ϕ weakly depends on Γ′

0 for a fixed
value of ∆′

0 in the range of parameters considered here
(the range of values for ϕ is found to be ∆ϕ/π < 10%).
Hence, the amplitude of the Brillouin resonance should
characterize the amplitude A of the moving matter mod-
ulation and should therefore show a SR behavior.

We performed numerical simulations of the pump-
probe spectra in the lattice for different values of the

optical pumping rate Γ′
0 and of the light shift per beam

∆′
0 by means of a method equivalent to the one described

in Ref. [28]. In order to determine the amplitude of the
Brillouin resonance, we fit the spectra to functions of the
form

I(δ) = Aeδ + Be + AR exp

[

− (δ − ΩR)2

2σ2
R

]

+

+AB exp

[

− (δ − ΩB)2

2σ2
B

]

(8)

with Ae, Be, AR, σR, AB and σB as free parameters. The
linear term in Eq. (8) accounts for the very large central
Rayleigh resonance [32] in a restricted range for δ close to
the Brillouin resonance, whereas the two Gaussian func-
tions account for the Raman (R) and Brillouin (B) lines
centered at ΩR,B and with a half-width at 1/

√
e equal to

σR,B. The a priori justification of the Gaussian shapes of
the Raman and Brillouin lines is out of the scope of this
paper and the approximation of the spectra to Eq. (8)
is validated by the fact that it fits well the numerical
spectra as shown in the inset of Fig. 7.
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FIG. 7: Amplitude of the Brillouin line as a function of the
optical pumping rate for a fixed potential depth as obtained
from nonlinear spectroscopy simulations. Parameters for the
simulations are the same as in Fig. 6. Inset: Numerical result
of a nonlinear spectrum (Γ′

0 = −5.55ωr); the Raman (R) and
Brillouin (B) resonances are indicated on the plot.

We finally plot in Fig. 7 the amplitude of the Bril-
louin resonance AB as a function of the optical pumping
rate Γ′

0 for a fixed value of the light shift per beam ∆′
0.

Again, we find a bell-shaped curve which corresponds to
SR. The position of the resonance, (Γ′

0)SR, is found to
be in good agreement with the position observed for the
enhancement of spatial diffusion (section III) and for the
spatial distribution in moving frames (section IVA). We
therefore conclude that the spectroscopy methods pro-
vide a new means for observing SR on the propagation
modes in a dissipative optical lattice.

V. CONCLUSION

In conclusion, we have performed a detailed theoreti-
cal study of the influence of the noise related to the dis-
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sipative processes (optical pumping) on the excitation
process of the Brillouin propagation modes in an opti-
cal lattice. Our results are mainly obtained from semi-
classical Monte-Carlo simulations. We have shown that
there is a specific amount of noise for which the excita-
tion of the modes is resonant. This corresponds to the
phenomenon of stochastic resonance (SR), obtained when
the Hamiltonian motion of an atom in the light potential
and the dissipative processes in the lattice are precisely
synchronized. This result can be understood from the
fact that the excitation of a mode involves synchronized
half-oscillations in the potential wells and optical pump-
ing cycles. We have given a direct evidence for SR by
means of the bunching properties in frames moving in
the direction and at the same velocity as the propaga-
tion modes, and an indirect evidence by the observation
of the resonant enhancement of spatial diffusion. We
have shown that the resonant excitation of the modes,
and thus SR, can be observed by means of pump-probe
spectroscopy. The three methods give results for the de-
pendence of the SR point versus the lattice parameters in
good agreement. We have also derived a simple analyt-
ical model for the synchronization condition in excellent
qualitative as well as quantitative agreement with the
results of our numerical simulations.

The system that we examined in this paper is thus a
good candidate for the experimental realization of SR in
a system where the relevant parameters for Hamiltonian
motion and dissipative effects can vary independently
and that can be probed easily. Note also that optical
lattices can be designed in a large variety of configura-
tions [10]. This system may thus model many different
physical situations. First experimental results have been
already obtained in a variant of the configuration consid-

ered in this paper [33]. In Ref. [33], Schiavoni et al show
that the excitation of the Brillouin propagation modes
is nonmonotonic versus the noise strength. Our model-
system is known to correctly simulate the real experi-
mental situations. We therefore expect our results to be
reproductible in current experiments. In particular, it
would be interesting to investigate the atomic bunching
in moving frames in order to show the coherent collective
excitation aspect of the propagation modes. This may
be achieved via Bragg scattering, a technique that has
been already used to give evidence of atomic localization
in optical lattices [34]. The characterization of SR via

pump-probe spectroscopy experiments, a technique well-
mastered in experiments on cold atoms [7, 21], would also
give interesting results. At last, an experimental inves-
tigation of the lattice parameters dependence of the SR
point ((Γ′

0)SR) would give interesting insights onto the
excitation process of the Brillouin propagation modes in
dissipative optical lattices.
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