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Prediction and statistics of pseudoknots in RNA structures
using exactly clustered stochastic simulations

A. Xayaphoummine, T. Bucher, F. Thalmann & H. Isambert
Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP,
Institut de Physique, 3 rue de I'Universjt67000 Strasbourg, France

Ab initio RNA secondary structure predictions have long visualization A
dismissed helices interior to loops, so-called pseudokrgt

despite their structural importance. Here, we report that
many pseudoknots can be predicted through long time scales
RNA folding simulations, which follow the stochastic closig
and opening of individual RNA helices. The numerical effi-
cacy of these stochastic simulations relies on a@(n?) clus-
tering algorithm which computes time averages over a con-
tinously updated set ofn reference structures. Applying this g
exact stochastic clustering approach, we typically obtain a
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RNA structure

5- to 100-fold simulation speed-up for RNA sequences up to

400 bases, while the effective acceleration can be as high as

10°-fold for short multistable molecules (< 150 bases). We
performed extensive folding statistics on random and nat-
ural RNA sequences, and found that pseudoknots are un-
evenly distributed amongst RNA structures and account for

up to 30% of base pairs in G+C rich RNA sequences (On-
line RNA folding kinetics server including pseudoknots :

http://kinefold.u-strasbg.fr/).

The folding of RNA transcripts is driven by intramolecular

with pseudoknots

FIG. 1: A An RNA secondary structure with pseudoknd@dviinimum

set of heliceglefinedas “pseudoknots” and visualized for convenience
by colored single-stranded regions connected by two straight li@ies.
The entropic cost of the actual 3D structural constraints is evaluated
modeling RNA helices as stiff rods (black) and single-stranded regior
as ideal polymer springs. Colored single-stranded circlgfsmequasi-
independent structural domains referred to as “nets” ivﬂef[Zl].

GC/AU/GU base pair stacking interactions. This primarily leads to theusing polymer theory[1d, 1. 2]. From a computational perspectivi
formation of short double-stranded RNA helices connected by uripairePseudoknots have proved not easily amenable to classical polynorr
regions. Ab initio RNA folding prediction restricted toee-like sec- minimization algorithmg$[20] due to their intrinsic non-nested nature
ondary structures is now well establisigdj1[]2[] 4] ¢l 7. 8] and halnstead, simulating RNA folding dynamics has provided an altern
become an important tool to study and design RNA structures whicfive avenue to predict pseudokniﬂ[ , 22] in addition to bringing somr
remain by and large refractory to many crystallization techniques. Yet{nique insight into the kinetic aspects of RNA foldifjofg] 211.

the accuracy of these predictions is difficult to assess —despite the pre- Yet, stochastic RNA folding simulations can become relatively in

cision of stacking interaction tabl
of pseudoknot helices, Fig 1A.

Pseudoknots are regular double-stranded helices which provide sp,

cific structural rigidity to the RNA molecule by connecting different
“branches” of its otherwise more flexibteee-like secondary structure

(Figs 1A-B). Many ribozymes, which require a well-defined 3b en_7gorithm which greatly accelerates RNA folding stochastic simulation

%y exactly clustering the main short cycles along the explored fold

zymatic shape, have pseudoknﬂts@, @ H?)DADED]_G 1

Pseudoknots are also involved in mRNA-ribosome interactions durin

translation initiation and frameshift regulatiE[18]. Still, the overall

prevalence of pseudoknots has proved difficult to ascertain from th
limited number of RNA structures known to date. This has recently
motivated several attempts to include pseudoknots in RNA seconda

structure prediction El21].

‘ﬂS[7]— due to their a priori dismissalefficient due to the occurrence short cyclesamongst closely related

configurationsIEZ], which typically differ by a few helices only. Not
%grprisingly, similar numerical pitfalls have been recurrent in stocha:
tic simulations of other trapped dynamical systelﬂs@4mﬂ6, 217

To address this computational efficiency issue and capture the sl
folding dynamics of RNA molecules, we have developed a generic &

g paths. The general approach, which may prove useful to simulg
8ther trapped dynamical systems, is discussed in the main subsect
of Theory and MethodsIn the Resultssection, the efficacy of these

actly clustered stochasf{ECS) simulations is first compared to non-
lustered RNA folding simulations, before being used to predict th
prevalence of pseudoknots in RNA structures on the basis of the strt

There are two main obstacles to include pseudoknots in RNA strucyral model introduced in reﬁtl] and briefly reviewed hereafter.
tures: a structural modeling problem and a computational efficiency

issue. In the absence of data bases for pseudoknot energy parsme
their structural features have been modeled at various descriptels lev

*Corresponding author: herve.isambert@curie.fr New addiestitut Curie,
CNRS-UMR168, 11 rue P & M Curie, 75005 Paris, France.

Theory and Methods

Modeling and visualizing pseudoknots in RNA structures. We

model the 3D constraints associated with pseudoknots using polyn
theory. The entropy costs of pseudoknots and internal, bulge a
hairpin loops are evaluated on the same basis by modeling the st
ondary structure (including pseudoknots) as an assembly of stiff+ods



representing the helices— connected by polymer springs —corréasgond i
to the unpaired regions, Fig 1C. In practice, free energy computations Jj
involve the labelling of RNA structures into constitutive “nets” —shown

as colored circuits on Fig 1C— to account for the stretching of the un-

paired regions linking the extremities of pseudoknot helices, sef[21

for details. In addition, free energy contributions from base pair stack-

ings, terminal mismatches and co-axial stackings are taken from the AN
thermodynamic tables measured by the Turnerﬂab[?].

The main limitation of this structural model is the absence of hard-
core interactions, which could stereochemically prohibit certain RNA
structures witheitherlong pseudoknotse(g, >11bp, one helix turnyr
a large proportion of pseudoknots.g, >30% of formed base pairs).
However, we found that such stereochemically improbable structures
account for less than 1-to-10% of all predicted structures, depending
on G+C content (see Results section). Hence, in practice, neglectirfgG. 2: Stochastic transitions over a thermodynamic barkiér. to
hardcore interactions is rarely a stringent limitation, except for a fewgclose and open an individual helix between two neighbor RNA struc
somewhat pathological cases. tures,i andj. Nucleation of the new helix usually involve some local

Although the presence of pseudoknots in an RNA structure is notnzipping of nearby helices at the barrier and further base pair re:
associated to a unique set of helices, it is convenient for visualizatiorBngements to reach equilibrium in the new structiiid]].
and statistics purposesdefinethe set of pseudoknots as the minimum
set of helices which should be imagined broken to obtain a tree-like

secondary structure, Fig 1B. Finding such a minimum set (with respectBd). However, as mentioned in the introduction, the efficiency of this

to the number of base pairs or their free energy) amounts to finding thgpproach is often severely impeded by the existenderadtic traps
maximum tree-like set amongst the formed helices and can be done ynsisting of rapidly exchanging states.

polynomial time using a classical “dynamic programming” algorithm.
Exactly clustered stochastic (ECS) simulations. As in the case

Modeling RNA folding dynamics and straightforward stochastic  of RNA folding dynamics, the simulation of other trapped dynami-
algorithm. RNA folding kinetics is known to proceed through rare cal systems generally presents a computational efficiency issue.
stochastic openings and closings of individual RNA helicds[28]. Theparticular, powerful numerical schemes have been developed to co
time limiting step to transit between two structures sharing essenpute the elementary escape times from traps for a variety of simul
tially all but one helix can be assigned Arrhenius-like rates, = tion technique@djz ﬁZElZ?]_ Still a pervasive problem usuall
k° x exp(—AG+/kT), wherekT is the thermal energyk®, which  remains for most applications due to the occurrencshufit cycles
reflects only local stacking processes within a transient nucleation corggmongst trapped states, amelristicclustering approaches have been
has been estimated from experiments on isolated stem-@)p@s‘[Zﬁ]( proposed to overcome these “numerical traé"[ZQ].
10°s™1), while the free energy differencesG .. between the transition o capture the slow folding dynamics of RNA molecules, we hav
states and the current configurations (Fig 2) can be evaluated by corgeveloped amxactstochastic algorithm which accelerates the simula
bining the stacking energy contributions and the global coarse-grainegon by numerically integrating the main short cycles amongst trappe
structural model described above, Fig 1C. states. This approach being quite general, it could prove useful to sil

Simulating a stochastic RNA folding pathway amounts to follow- ulate other small, trapped dynamical systems with coarse-grained ¢
ing one particular stochastic trajectory within the large combinatorialgrees of freedom.
space of mutually compatible helickd[22]. Each transition in this dis- In a nutshell, the ECS algorithm aims at overcoming the numeric:
crete space of RNA structures corresponds to the opemirgosing  pitfalls of kinetic traps by “clustering” some recently explored configu-
of asinglehelix, possibly followed by additional helix elongation and rations into a single, yet continuously updated clustef n reference
shrinkage rearrangements to reach the new structure’s equilibrium corgtates. These clustered configurations are tudlectivelyrevisited in
patible with a minimum size constraint for each formed hglix[21] (basethe subsequent stochastic exploration of states. Although stochastic
pair zipping/unzipping kinetics occurs on much shorter time scales thajg “|ost” for the individual clustered states, its statistical properties ar
helix nucleation/dissociation). For a given RNA sequence, the totahoweverexactlytransposed at the scale of the setf then reference
number of possible helices (which roughly s_cglesLés wh(_areL is states. This is achieved as follows. For eaalhwayC’f,‘1 on A, asta-
the sequence length) sets the local connectlylty of thg .dlscrete StrUgtical weighthvAﬁ _ HcA pux is defined, wheré and run over all
ture space and therefore the number of possible transitions from eaclh . A o - e
particular structure. consecutivestates along’;, from its starting” statei o its "exiting”

) . ) statej on A. Then x n probability matrixP** which sumsthe statisti-

Formally, we consider the following generic model. Each structure . cA 4
or “state” i is connected to a finite, yet possibly state-to-state vary-C2} WeightsW=m overall pathwaysC;, on A between any two states
ing number of neighboring configuratiofizia transition rateg;; (the iand; of Ais then introduced,
right-to-left matrix ordering of indices is adopted hereafter). kAsis

A
the average number of transitions from statestatej per unit time, the N c oA c Cm
lifetime ¢; of configuration; corresponds to the average time befang Pji = Z Wwom = Z lek , 1)
transition towards a neighboring stgteccurs, i.e.f; = 1/Z<j>kji, mije—i mijei N jei

and the transition probability from stat¢o statej is p;; = kjits, with
Z<. p;ji = 1, as expected, for all state

J)

Hence, in the straightforward stochastic aIgoritErh, 22], each ne
transition is picked at random with probabilipy; while the effective  probability to exit the sett at statej is p;* Pj;, with Z;‘ PP =1,
time is incremented with the lifetimg of the current configuration for all 7 of A.

and the exit probability to make a transitiontside A from the state
VJ is noted:ij =1- Zéc>pkj. Hence, starting from state the



Thus, in the ECS algorithm, oriest chooses at random with proba-
bility ijPﬁ the reference statg of A from which a new transition
towards a staté outside A will thenbe chosen stochastically with
probabilitypkj/pj-A. Meanwhile, the physical quantities of interest,
like the cumulative time Iapg“j to exit the setA from j starting ati,
areexactlyaveraged oveall (future) pathways from to j within A, as
explained in the next subsectiofinally, the new staté is added to

3

statistical Weight(HB Pik) Pba (HA pui). Its contribution to the av-
erage time to exit somewhere from the uniondéndB is,

B A B A
<Z th + Zm) lek “ Dba - Hpm/ = (4)

j—b a1 j<b a1

B B A B A A
the reference setd whilst another reference state is removed, so as to (Zth H plk) Pba H D'k +H Plk Pba (Zth/ H pl’k)

updateA, as discussed ifihe®(n?) algorithmsubsection.

Exact averaging over all future pathways. We start the discussion
with the path averageime lapse to exit the sed. Let us introduce
the time lapse transform @®“: 7[P4]{t} = P“{t}, whichsumsthe

A A
weighted cumulative Iifetime(szcm th) HC’” pue overall pathways
C2 on A between any two statésand; of A,

cA ch ch
TPty = B = [(Zth) lek17 @

m:j—1i Ji J—1i

where thet;'s are summed over altonsecutivestatesh —from ¢ to
j included- along each pathwag;:. Hence, the mean tim&* to
exit A from any statej of A starting from configuratiorni is, ¢ =

Zf ps* P {t}. However, in the context of the ECS algorithm, the

time lapse of interest |§j§ the mean time to exitl from aparticular
statej, t7; = p§” Pyi{t}/p5" Py = Pji{t}/Pji.

The average of any path cumulative quantity of intergstan be
similarly obtained by introducing the appropriaks!{z} matrix. In

je—b j<b a1 j<—b a—i a<—1i

or in matrix form for any “direct” pathway fromt to B,
T[PPTP4PA = TIPP] TP P4 + PPTPATIPY),  (5)

which implies that applying the usual differentiation rules to any com
bination of probability matrices yields the correct combined path av
erage matrices (defining [T4],; = 0 for all : andj). Note, this
out-of-equilibrium calculation of path average quantities is reminiscer
of the usual equilibrium calculation of thermal averages through diffel
entiation of an appropriate Partition Function. Indeed, the probabilit
matrices introduced herare “partition functions” overall pathways
within a set of reference states.

The O(n?) algorithm. With this result in mind, we can now return
to the calculation of the probability and path average matrie€sand
P¢ for the unionC of two disjoint sets4 and B.

Defining PA® = PATAB and PP* = PET54, we readily obtain
the probability matrixP® as an infinite summation ovel possible
pathway loops between the setsand B (I is the identity matrix),

AA AB
particular, the instantaneous efficiency of the algorithm is well reflected pPC = ( ) . with (6)

by the average pathwagngthéfi between any two states df,

= Py Pt @3)

Ji
~ A A A A
where P/H{¢} = 0 [(329 1) TIO pue], with 3 1 cor-
responding to the length of the pathway} (1 is added at each state
along each pathwag/,). Hence, starting from staieZ; corresponds
to theaverage number of transitiorthat would have to be performed
by the straightforward algorithm before exiting the geat statej. As

QBA QBB
QAA: [I+PAbPBa+(PAbPBa)2+'"]PA:LAPA
QBA —_ PBH.LAPA
QBB = [I+PBaPAb+(PBaPAb)2+___]PB:LBPB
QAB — PAbLBPB
whereL” =[I — PA*pBa]~1andLP =[1 — pPepAY~1,
Defining alsoP#* = PAT45 and PP* = PETP4, we finally

expected/4 can be very large for a trapped dynamical system, which?btai_n_ the path average mat#X” from simple “differentiation” of the
accounts for the efficiency of the present algorithm. Since the approac Partition function” P, Eqgs.(§),

is exact there is, however, na priori requirement on the trapping con-

NVAA AAB
ditiop Qf the stateg ofl and the algorithm can be used gontinuously. PC = ( QBA QBB ) , with (7
Similarly, the time average of any physical quantity —like the Q Q
pseudoknot proportion of an RNA molecule— can be calculated by 04 = AP+ 1LAPA

introducing the appropriatéme weightedmatrix PA{yt}. For in-
stance, the time average enellg}\z over all pathways between any two
statesi andj of A is, B = P;j{FEt}/P;i{t}, where P;:{Et} =

i [(2 Bts) T pu]

The actual calculation of the probability and path average matrices where,

PC and PC over a setC of N states will be performed recursively in

the next subsection. As an intermediate step, we first consider hereafte

theunidirectionalconnection between twdisjointsetsA and B.

Let us hence introduce the transfer matfi# from setA to setB
defined a§ﬁA = pji, Wherep;; is the probability to make a transition
from state of A to statej of B (TﬁA = 0if 7 andj are not connected).
We will assume thatl hasn states and3 m states and that their prob-
ability and path average matricés*, P4, P? and P are known.
Starting at state of A, we find that the probability to exit on of B

after crossingnce and only oncgom A to B is, pi? (PP TEAP4);,

QBA _ PBGLAPA + PBa.Z/APA + PBaLAPA
QBB — EBPB + LBpB

QAB — pAbLBPB + PAbEBPB + PAbLBPB
iA _ LA (pAbPBa + PApra)LA
and EB _ LB (PBaPBb + PBaPAb)LB

Eqs.ﬂS) and|]7) are valid for any sizesandm of A andB. HenceP®
and P° can be calculated recursively starting fra¥hisolated states
and2N 1x 1 matricesP' = [1] and P*{z} = [z;], withi = 1, N,
wherez; is the value of the feature of interest in stateClustering
those states 2 by 2, then 4 by 4, etc..., using Eqs.(G) End (7) final
yields P¢ and PC in O(N?) operations (i.e., by matrix inversions and
multiplications). However, instead of recalculating everything back re
cursively from scratch each time the set of reference states is mqdifie

where we have used matrix notations. Let us consider a particular pathturns out to be much more efficient to update it continuously eac

fromi in A to j in B crossingonce and only oncéom A to B, with

time a single state is added. Indeed, Eﬂ}s.(6) B1d (7) can be calcula



in O(n?) operations only, whem = 1 andn = N —1, as we will

show below. Naturally, a complete update also requires the removal of
one “old” reference state each time a “new” one is added, so as to kee

a stationary numbet of reference configurations. As we will see, this
removal step can also be calculated(n?) operations only.

TheO(n?
line, relies on the fact thaf“Z, P4 and PA® aren x 1 matrices and
thatT24, PP and PP arelxn matrices, whemn = 1 andn = N—1
(PP and L? are simplel x 1 matrices for a single statB). Since
we operate owectors the Sherman-Morrison formula[[31] can then be
used to calculate the x n matrix L* = [I — P** @ PP?] -t
[I+P* @ PPe/(1 - P*. PP*)]. Hence, not onlyL* but also
any matrix productL” M, where M is an x n matrix, can be eval-
uated inO(n?) operations [by first calculating?®® M followed by
PAY @ (PBeM)).
nxn matricesP4® @ PE® and PA* @ PP provides a simple scheme
to add a single reference stateA4aand obtain matrice®“ and P¢ in
O(n?) operations using Eqﬂ(6) arﬂl ).

)-operation update of the reference set, which we now out-
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Noticing that the same reasoning applies for the FIG. 3: A: Expected (grey lines) and actual (black lines) speed-up c

the approach with respect to the straightforward algorithm (see ma
text). i: Bistable molecule in Fig 4C (with a combinatorial structure
space of 37 possible helicesi; 67-nt-long molecule with reverse se-

In order to achieve the reverse modification consisting in remov-quence of the bistable molecule in Fig 4C (38 possible helices). Tt

ing one stateB from the reference set, it is useful to first imag-
ine that the originalP® and P were obtained by the addition of
the single stateB to the n-configuration setd, as given by Eqs[k(i)
and ‘}). Identifying row@Z4, column Q4Z and their intersection
QBB corresponding to the single staf® readily yields the vectors
pAb — QAB QBB pBa — B4 (asPB = [1]) and, hence, the
nxnmatrix[L4] 7' = I — P4 @ PP =1 — (Q*? @ TP*)/QP5.
This gives the following relations between tkmown L4, 748, T84,
Q44 QBB %4, 4%, PP andQ*4, and theunknownP andPA

QAA
QAA

=14p4,

_ LA{I}A (I L TABg QBA) QBB QAB® QBA:|
which eventually provide” and P# using the Sherman-Morrison
formulaf3]] to invertr + 747 © Q”4,

PA = [LA]'Q44 = ([ _ %)QAA7 ®)
pa_ [( ~ QAZ%BTBA>QAA QBBQAB(X)QBA}
AB BA
(1_ IILTA% QQBA) ©

Hence, the single stat® can be removed from the set of refererice

in O(n?) operations to yield the updated probability and path average,

matricesP“ and P.

F
Note, however, that this_continuous updating procedure, using alter-

natively EquH]?) and EqE [IB 9) in succession, is expected tarteco

numerically unstable after too many updates of the reference set. F
1 <n < 300, we have usually found that the small numerical drifts [as

measured e.g. by=>"7" Z p5* P —1)% ~ 0] can simply be re-

set everyn™® update by recalculating matricés® and P4 recursively
from n isolated states i¥(n?) operations, so as to keep the overall
O(n?)-operation counper updateof the reference set.

O(n?) algorithm becomes unstable above 40 reference states in tl
case (see main text)ii: Hepatitis delta virus ribozyme, Fig 4B (84
possible helices)iv: average speed-up for random 100-nt-long RNA
sequences with 50% G+C contemt.Group | intron ribozyme, Fig 4A
(894 possible helices)B: Net speed-up distribution amongst random
100-nt-long RNA sequences with 50% G+C contewnibh Fig 3A) for

a cluster of 40 reference states.

Results

Performance of the ECS algorithm. Before applying the ECS algo-
rithm to investigate the prevalence of pseudoknots in RNA structure
we first focus on the efficacy of the approach by studying the netispee
up of the ECS algorithm with respect to the straightforward algorithrr
As illustrated on Fig 3 for a few natural and artificial sequences, thel
is anactual 10" to 10°-fold increase of the ratio “simulated-time over
CPU-time” between ECS and straightforward algorithms (black lines
for RNA shorter than about50 nt, Fig 3. This improvement runs par-
allel to theexpectedspeed-up (grey lines) as predicted ijy Eq.@),

as long as the number of reference states is not too large (typically
n < 50 here), so that thé)(n?) update routines do not significantly
increase the operation count as compared to the straightforward alg
rithm. Hence, the ECS algorithm is most efficient for small trappe:
systems (when the dynamics can be appropriately coarse-graihed),
though a several-fold speed-up can still be expected with somewt
rger systems, such as the 394-nt-long Group | intron pictured |

ig 4A.

Alternatively, using this exact approach may also provide a cor

trolled scheme to obtain approximate coarse-grained dynamics f
rger systems. The C routines of the ECS algorithm are freely availak

upon request.

Pseudoknot prediction and prevalence in RNA structures.In the
context of RNA folding dynamics, the present approach can be us
to evaluate time averages for a variety of physical features of intere

Another important issue is the choice of the state to be removed frorsuch as the free energy along the folding paths, the fraction of time ps

the updated reference set. Although this choide winciple arbitrary,

the benefit of the algorithm strongly hinges on it (for instance removingng under mechanical forcEI

ticular helices are formed, the extension of an RNA molecule unfolc
32], the end-to-end distance of a nasce

one of the most statistically visited reference states usually ruins thRNA molecule during transcription, etc. Here, we report results o
efficiency of the method). We have found that a “good choice” is oftenthe prediction of pseudoknot prevalence in RNA structures. They ha

the statej* with the lowest “exit frequency” from the current state
li.e., 1/£%; = minf(1/¢:)], but other choices may sometimes prove
more appropriate.

been obtained performing several thousands of stochastic RNA fol
ing simulations including pseudoknots. As explained in Theory an
Methods, the structural constraints between pseudoknot helices and



>
>

Pseudoknot proportion

| |
@ | - u
% 0‘_:_); 10% :" Ex: 5~ A o339
R | LR 12
2 B
Mgy 5@
I S <«
|ENNNEEEn] 45 ch 5%
P5b g
S %
T =
z 2
~ 3 0%
B 0%
C CaAlh—. ¢
P2 c TNE 35 B N
c P3 C A c@: | | |
e A G R ECH - “ |+
—C G 7 - b
s g Ac ), a %10% r ||
e P1 sy s ¢ ER \ |1 25%  50%
—c G- c s "g = s | ‘ G+C content
-t G (/3\: c G 2 172} \‘ -
° o c{ pn B <« |
o A2, He - Z 5% |
c 5'G GG c A g =4 “ 0%
. gun ° Juk: O S e
A 3'cece /\C — % on *
A o 2z 25% ©
Ag — C A B % A A o © Q
CGG C A 1 72) E %
A °H- (N AR 0% ) 50%
ALCAC cHe n — -
cAcC e A 0% 1 — 70%
A < e {2 0% 20% 30% 40%
P4 C’,GG < e c o Ak’ -
— — A - nown B
CC \ GG Al s’ cA “ “ \\ \ 4 predicted intron Group I
ASW <% s - T O known .
29 Ac GG . % é 10% 5 | e predicted HDV ribozyme
G c A A g 2 |
A A 5 Q |
o B L
I
FIG. 4: RNA structure prediction with the ECS algorithm. Structures & |
. . . . %
are drawn using the “RNAMovies” softwaE[33] adapted to visualize % é 3% w‘
predicted pseudoknot#\ 394-base long Tetrahymena Group | intron: %‘ < ,
the lowest free-energy structure found shares 80% base pair identity ’% %"
with the known 3D structure, including the two main pseudoknots, P3 & £ (g
and P13l 12[ 14, 1$.]1.]17B 88-base long hepatitis delta virus

0%
ribozyme: predicted structure shares 93% base pair identity with the 0

10% 20% 30% 40% 70%
known 3D structure, including the main pseudoknoEZ[Zl] (but not the Pseudoknot proportion
2-base pair long Pl.@w])': The two structures of a bistable, 67-nt-
long artificial RNA molecule.

FIG. 5: Distribution of pseudoknot proportion amongst formed bas

pairs for 50-nt-long4&), 100-nt-long B), and 150-nt-long@) random

sequences of increasing G+C content. Projected lines correspond
paired connecting regions are modeled using elementary polymer thghe average pseudoknot proportion in 50 (blue), 100 (red), and 15

ory (Fig 1C,[2}]) and added to the traditional base pair stacking internt-long (green) random sequences. All three average curvessare ¢
actions and simple loops’ contributioﬂs[?]. played in inset on Fig 5B. Open (and filled) symbols on Fig 5C cor

We found that many pseudoknots can effectively be predicted witieSPond to known (and predicted) pseudoknot proportions forffietra
such a coarse-grained kinetic approach probing seconds to minut§&na group |

intron, Fig 4A (triangles) and Hepatitis delta virus ri
folding time scales. No optimum “final” structure is actually predicted, PZyme, Fig 4613 41] (circles).
as such, in this folding kinetic approach. Instead, low free-energg-stru

tures are repeatedly visited, as helices stochastically form and break.
Fig 4A represents the lowest free-energy secondary structurd foun

coli and Saccharomyces cerevisigenomes. The statistical analysis
394-nt-long Tetrahymena Group | intron, which shows 80% base paifyas done as follows: for each random and genomic sequence set,
identity with the known 3D structure including the two main pseu-to 1000 sequences were 5amp|ed aMpendentoming trajectories
doknots, P3 and P1B[L{, J1B.]1f4] {5] §6 17]. A number of smallewere simulated for each of them, using the ECS algorithm. A minimur
known structures with pseudoknots are also compared to the loweg{ration for each trajectory was determined so that more than 80-9C
free-energ structures found with similar stochastic RNA foldlng Sim'of sequences visit the same free_energy minimum structures a|0ng th
ulations in]. In addition, to facilitate the study of folding dynamics 3 independent trajectories. The time average proportion of pseutiokn
for specific RNA sequences, we have set up an online RNA foldingyas then evaluated, considering this fraction of sequences having like
server including pseudoknots at URLtp://kinefold.u-strasbg.fr/. reached equilibrium (including the 10-20% of still unrelaxed sequence
Beyond specific sequence predictions, we also investigated the gedees not significantly affect global statistics). In practice, slow fold
eral prevalence of pseudoknots by studying the “typical” proportion ofing relaxation limits extensive folding statistics to sequences up to 1°
pseudoknots in both random RNA sequences of increasing G+C coirases and 75% G+C content, although individual folding pathways c:
tent (Fig 5) and in 150-nt-long mRNA fragments of tBscherichia

still be studied for molecules up to 250 to 400 bases depending on th



specific G+C contents. [7] Mathews, D.H., Sabina, J., Zuker, M. & Turner, D.H. (1999)
The results for 50-nt-long (Fig 5A), 100-nt-long (Fig 5B), and 150- Mol. Biol. 288 911-940.

nt-long (Fig 5C) random sequences show, firdty@ad distributionin [8] Higgs, P.G. (2000R. Rev. Biophys33, 199-253, and references

pseudoknot proportion from a few percents of base pairs to more than  therein.

30% for some G+C rich random sequences. Such a range is in facf9] Pleij, C.W.A,, Rietveld, K., & Bosch, L. (198%)ucleic Acids Res.

compatible with the various pseudoknot contents observed in different 13, 1717-1731.

known structuresd.g. see triangles and circles in Fig 5C). Second, [10] Tinoco, I., Jr. (1997Nucleic Acids Symp S&6, 49-51.

the averageproportion of pseudoknots (projected curves and inset in11] Lehnert, V., Jaeger, L., Michel, F. & Westhof, E. (19%Hem.

Fig 5B) slowly increases with G+C content, since stronger (G+C rich) Biol. 3, 993-1009.

helices are more likely to compensate for the additional entropic codfl2] Zarrinkar, P.P. & Williamson, J.R. (199®ature Struc. Biol3,

of forming pseudoknots. Third, and perhaps more surprisingly, this 432-438.

averageproportion of pseudoknots appears roughlgependent of se- [13] Ferre-D’Amare, A.R., Zhou, K. & Doudna, J.A. (199Bjature

quence lengtlexcept for very short sequences with low G+C content 395 567-574.

(inset in Fig 5B), in contradiction with a naive combinatorial argument.[14] Sclavi, B., Sullivan, M., Chance, M.R., Brenowitz, M. & Wood-

Fourth, we found that the cooperativity of secondary structure rear-  son, S.A. (1998Bcience279 1940-1943.

rangements amplifies the structural consequences of pseudoknot f¢15] Treiber, D.K., Root, M.S., Zarrinkar, P.P. & Williamson, J.R.

mation; typically, a structure with 10 helices including 1 pseudoknot (1998)Science279, 1940-1943.

conservesiot 9 butonly 7 to 8 of its initial helices (while 2 to Biew  [16] Pan, J. & Woodson, S.A. (1999) Mol. Biol. 294, 955-965.

nested helices commitantly form) if theinglepseudoknot is excluded [17] Russell, R., Millet, I.S., Doniach, S. & Herschlag, D. (2008)-

from the structure prediction. Thus, neglecting pseudoknots usually in-  ture Struc. Biol.7, 367-370.

duces extended structural modifications beyond the sole pseudokndt8] Giedroc, D.P., Theimer, C.A. & Nixon, P.L. (2000) Mol. Biol.

themselves. 298 167-185. Review.
We compared these results with the folding of 150-nt-long section$19] Gultyaev, A.P., van Batenburg, E. & Pleij, C.W.A. (199RINAS5,
of mRNAs from the genomes dEscherichia coli(50% G+C con- 609-617.

tent) andSaccharomyces cerevisi@geast 40% G+C content). These [20] Rivas, E. & Eddy, S.R. (1999). Mol. Biol. 285 2053-2068.
genomes exhibisimilar broad distributions of pseudoknoetdespites  [21] Isambert, H. & Siggia, E. (200@roc. Natl. Acad. Sci. USA?7,
small differences due to G+C content inhomogeneity and codon bias  6515-6520.

usage; pseudoknot proportions (megrstd-dev.):E. coli, 15.5+6.5% [22] Mironov, A.A., Dyakonova, L.P. & Kister, A.E. (198%) Biomol.

(versus 16.57.9% for 50% G+C rich random sequenceggast Struct. Dynam2, 953-962.

14+6.6% (versus 1%7.3% for 40% G+C rich random sequences); [23] Frenkel, D. & Smit, B. (1996)Jnderstanding Molecular Simula-

Hence, genomic sequences appear to have maintained a large poten- tion (Academic Press) and references therein.

tial for modulating the presence or absence of pseudoknots in their 3{24] Bortz, A.B., Kalos, M.H. & Lebowitz, J.L. (1975). Comput.

structures. Phys.17, 10.

Overall, these results suggest that neglecting pseudoknots in RNER5] Krauth, W. & Mézard, M. (1995%. Phys. B97, 127.

structure predictions is probably a stronger impediment than the smaljR6] Voter, A.F. (1998Phys. Rev. 57, R13985-R13988.

intrinsic inaccuracy of stacking energy parameters. In practice, ecemb [27] Shirts, M.R. & Pande, V.S. (200Bhys. Rev. LetB6, 4983-4987.

ing simple structural models (Fig 1C) and exactly clustered stochastit28] Porschke, D. (1974Biophysical Chemistrg, 381-386.

(ECS) simulations provides aeffectiveapproach to predict pseudo- [29] Krauth, W. & Pluchery, O. (1994). Phys. A; Math. Gen27,

knots in RNA structures. L715.

[30] In principle, the approach can be adapted to stochastically drav
lifetimes from known distributions”’ () with mean lifetimet;.
This effectively yields a2 (n?) ECS algorithm in this case.
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