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Abstract— We present a new modified Burg-Like algorithm for 

spectral estimation and adaptive signal processing that yield the 
same prediction coefficients given by the Levinson algorithm for 
the solution of the normal equations. An equivalency proof is 
given for both the 1D signal and 2D signal cases. Numerical 
simulations illustrate the improved accuracy and stability in 
spectral power amplitude and localization; especially in the cases 
of low signal to noise ratio, and (or) augmenting the used 
prediction coefficients number for a relatively short data records. 
Also our simulations illustrate that for relatively short data 
records the unmodified version of Burg Algorithm fail to 
minimize the mean square residual error beyond certain Order, 
while the new algorithm continue the minimization with Order 
elevation.  
 

Index Terms—Adaptive Signal processing, lattice filters, image 
processing, multidimensional signal processing. 
 

I. INTRODUCTION 
o many are the fields of application of Linear 
Autoregressive Modelling in our days [1]-[3]. At the same 

time, a lot of work has been done in studying this model and 
its applications in the one-dimensional signal case, and - 
lately- for the two-dimensional signal. Almost One common 
factor to the previous work done depend on the solution of the 
normal equations –known also as the Yule-Walker equations- 
using different techniques to find an estimation of the 
prediction coefficients, which are scalars in 1D case, and 
matrices in the Multichannel (multivariate) case. Starting from 
a given 1D signal, two main methods of estimating the 
prediction coefficients are the Levinson Algorithm [7] and the 
Burg Algorithm [6]. The counterparts of these two algorithms 
in the 2D case are, respectively, a modified version of the 
Whittle-Wiggins-Robinson Algorithm (WWRA)[8][9], and a 
group of slightly in-between different algorithms given in [10], 
[11], [15], which will be referred to in this paper–excluding 
[10], as 2D burg Algorithms. Historically the 2D approach 
depended on the Multichannel Levinson (WWRA) and 
Multichannel Burg [12] approach, to obtain the Coefficients 
matrices, with an extra step to recover the 2D quarter-plan 
causal Filter scalar coefficients, from the calculated 
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coefficients Matrices, the connection between the Coefficients 
Matrices and the prediction 2D Filter was first established by 
[14], this was further invested by [11], to apply the 
Multichannel burg algorithm [12], directly on the two 
dimensional data, which  gave the first 2D-Burg algorithm, the 
same algorithm was represented in [15], with an additional 
simplifications that take advantage of the Toeplitz-Block 
Toeplitz of the 2D Correlation Matrix, while it is just Block 
Toeplitz in the Multichannel case. On the other side in [10], 
another Burg-like algorithm was presented, that calculate the 
2D Prediction Filter Directly without passing by the calculus 
of the corresponding Multichannel Coefficients Matrices. 
In this paper we present a new 1D and 2D Burg Algorithm, 
that yield the same prediction coefficients as the Levinson 
Algorithm in 1D case, and the WWRA in 2D case. Also we 
enhance WWRA computational efficiency in 2D case, due to 
proposition 3. In practice, the motivation of using 1D Burg is 
the computational efficiency over the Levinson Algorithm, 
since the later, demand the calculus of the correlation matrix in 
advance, which is very costly in calculus time. For the same 
reason also the 2D Burg Algorithms are preferred over the 
WWRA algorithm. Still, for the reasons that we will explain in 
this paper, the 1D and 2D Burg Algorithms suffer from major 
numerical deficiency, that was the motive behind our 
development of the new Burg Algorithm. While the 
computational efficiency of The New Modified Burg 
Algorithm need to be further investigated they yield a stable 
Levinson and WWRA solution. Saying that, we also believe, 
that the new-presented Burg Algorithm, in 1D and 2D cases, 
represent the natural burg algorithms, since they are now, 
consistent, in theory, and in application, to the original 
Levinson approach. 
In [4]-[5], fast, and practical formulas were presented, that 
calculate the inverse of the Correlation Matrix in function of 
the prediction coefficients. 
The paper is organized as follows. In section II, we establish 
the proof of asymptotic equivalency, between, Levinson 
Algorithm results, and Burg Algorithm results, in 1D case. In 
section III, we also establish the proof, of asymptotic 
equivalency, between WWRA Algorithm results, and the 2D 
Burg Algorithms results. In section IV, we present the 
practical modifications, needed to the current Burg 
Algorithms, in both, 1D and 2D cases, to realize the in-results 
proven equivalency, to Levinson algorithm, and WWRA 
algorithm, respectively. Finally, Section V contains our 
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numerical examples, which illustrate, the numerical stability of 
the new Burg algorithms, relative to the original Burg 
Algorithms. 
 

 

II. 1D CASE 

A. The model 
The autoregressive Model 
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where w represent the prediction error of the signal x, yield the 
Normal Equations 
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where nR is a Toeplitz Hermetian matrix with size (n,n), 
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B. The 1D Levinson Algorithm 
The Levinson Algorithm [7] proceed to the solution of (2) 

in a recursive manner, for 1>n  
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where the notation x̂ define a vector with the same elements of 
x taken in reverse order. 

C. 1D Burg Algorithm 
The Burg Algorithm [6] define an estimate of the prediction 

errors 
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The prediction coefficient is also calculated in a recurrent 
manner, according to the relation 
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Using the Levinson recurrence relation (7), a recursive relation 
between the errors signals is obtained and used in the calculus, 
to update the error signals for the next order prediction 
coefficient calculus 
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D. Equivalency proof 
To proceed in our construction, we will need the following 
proposition, which is easy to verify. 

Proposition. The forward and backward prediction errors 
square means are asymptotically equal, 
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∞−+→∞−+→ k

b
nkk

f
nk

keke
22

1limlim . (13) 

Theorem. Asymptotically, the prediction coefficients 
calculated using Levinson Algorithm and Burg Algorithm are 
Equals. 

Proof. Using the (13) we can know write the Burg relation 
(10) in the form 
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Replacing (9) into (14), we proceed according to the following 
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Using the equality 
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which is just another form for the relation (2), the second and 
forth terms, in both the dominator and denominator of (16) are 
eliminated 
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This completes the proof. 

III. 2D CASE 

A. The Model 
The Multichannel signal linear Autoregressive model is 
defined as [16] 
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where X, W are vectors of size 12 +n , changing according to 

the time k, 1n
lA is the l prediction coefficient Matrix of degree 

1n with size ( ) ( )( )11 22 +×+ nn . 
This Model yield also the multi-channel normal equations, 
known as multi-channel Yule-walker equations 
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The Correlation Matrix 
21,nnR is Hermetian and Block 

Toeplitz. In the Case of 2D signal the same Multichannel 
model can be used, by redefining the multi-channel vector, 

using the 2D signal [14][15] 
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In this case the definitions, and relations (19)-(23) still hold for 
the expression of the Normal equations and the Correlation 
matrix in the case of the 2D signal, with the Hermetian 
correlation matrix having the structure Toeplitz-Block-
Toeplitz (TBT). 

B. The 2D Levinson Algorithm (WWRA) 
 

The Coefficients Matrix are calculated in a recursive 
manner, starting from 0>n , according to [8][9][16]: 
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where J is the exchange Matrix defined as: 
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C. The 2D Burg Algorithm 
As in the 1D case, two Prediction Error signals are defined as 
[11][12][15] 
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The Prediction Coefficient Matrix of order n, is calculated 
according to [15] 
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D. Equivalency proof 
 
Proposition 2 
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By taking the Expectation inside, and by definition (23) we get 
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This can be written in the form 
 

( )

( ) ∑∑

∑∑

=
−+

=′
′′−+

= =′
′′−−++

++

+=

n

l
ln

n
l

n

l

Tn
lln

n

l

n

l

Tn
llln

n
ln

fb
n

RAJAJR

JAJRARP

1
1

1
1

1 1
11

 (45) 

 
By applying the equality 
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By this the proof is complete. 
 

Theorem 2. Asymptotically, the prediction coefficients 
calculated using WWRA Algorithm and 2D Burg Algorithms 
are Equals. 
 

Proof.  According to (41) and (42), (36) can be expressed as 
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By taking the expectation over each term, by definition (23) 
we get 
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Using the equality 
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Also by the same way we obtain 
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Also using the equality 
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our Proof is completed. 

IV. MODIFIED BURG ALGORITHM 
Before going into the New Version of Burg Algorithm it is 

important to precise an important fact about the calculus of the 
prediction error auto-correlation. In fact in the case of 2D 
signal a recurrent relation exist in a way that enhance the 
calculus cost of both Levinson or Burg Algorithm, according 
to [15][16] 
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b
n APP ∆+= −1  (66) 

By this, and according to the previous sections, Numerically 
we can consider the equivalent steps in each iteration of both 
Levinson Algorithm and Burg Algorithm, as the steps 
concerning the calculus of relations 26, 29, 66, while the 
difference between the two algorithms reside in the way with 
which the error cross correlation Matrix is calculated; using 27 
in Levinson Algorithm, and 34, 35, 37 in Burg Algorithm, the 
same type of discussion also apply to the 1D case.  

After demonstrating the Asymptotic In Results Equivalency 
between Levinson Algorithms, and Burg Algorithms in both 
1D and 2D case, it is now simple to see the needed 
modifications to realize this equivalency in the case of limited 
size signal, in fact the principle modification to the existing 
Burg algorithms reside in the way relations (11), and (12) in 
the 1D case, (34), and (35) in the 2D case, are used. 

A. 1-D case  

For a finite size signal, ( ) [ ]1,0, −∈ Nkkx , the current 
version of burg Algorithm, express the relation (11), and (12) 
in the form of: 
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[ ]1,1 −+∈ Nnk . 
As a result of this, the size of the new calculated error signals; 
diminish with each new order. And as result of this the relation 
(10) is expressed in the form  [6] 
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The Correction to this is to proceed with the calculus until the 
last non-zero value, so instead of error signal size diminishing 
we produce an augmentation in the size of both the forward 
and backward error signals 
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and the corrected form of the relation (10) becomes 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

6

( ) ( )

( )∑

∑
−+

=
−

−+

=
−−








−−
= 1

0

2

1

1

1

*
11 1

nN

k

f
n

nN

k

b
m

f
n

n
n

ke

keke
a . (70) 

B. 2D Case 
The same discussion of the 1D case is applied to the 2D 

case also. In the case of finite size signal 
 ( ) 10,10,, 21 −=−= NtNktkx ��  (71) 
according to the new modified algorithm, the relations (34) 
(35) are applied according to 
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and the relation (36) is expressed in the form 
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Also to achieve the equivalency in the calculus results with 2D 
Levinson Algorithm, the 2D Signal need to be distributed into 
the multiple-vectors X Matrix, in a way that guarantee the 
Toeplitz block Toeplitz structure of the correlation matrix, so 
for a limited size 2D signal defined in (71), the definition (25) 
is applied to the signal according to: 
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So that each row of the signal is repeated and shifted into the 
next line of the matrix, with zero filled elsewhere. 
 

V. NUMERICAL EXAMPLES 
It is important to note, that numerically the modified algorithm 
is totally equivalent in result to Levinson Algorithm, in both 
1D and 2D case. Our objective in this section is to compare 
Levinson Algorithm application to the Original Burg 
Algorithm toward spectral estimation, and prediction 
efficiency. We did apply both of algorithms on a 20 sample of 
a noised one-sinusoid signals with a relative frequency 
positioned at 25.0=f . The noise signals where generated 
artificially and added to the spectrum, and the signal samples 
where obtained using IFFT. Also care has been taken so that 
all generated signals had precisely a signal to noise ratio equal 
to 30db. 

Figure 1, and 2 represent the spectral estimation versus phase 
change, resulting from applying Original Burg algorithm, and 
Levinson Algorithm respectively. The sinusoid phase was 
changed over 100 equal intervals from zero to 360°. For each 
phase change the same signal was submitted to each of the two 
algorithms, while the used prediction order equal to 15. We 
notice in this case the inaccuracy of Burg Algorithm toward 
phase change, and toward different noise realisations, on the 
other hand the Levinson Algorithm manifested much more 
stable results, toward noise change, and a stable pattern toward 
phase change. In fact the results displayed in Figure 1 are only 
readable together because of the use of the log function.  
Figure 3, and 4 represent the spectral estimation versus Order 
change, resulting from applying Original Burg algorithm, and 
Levinson algorithm respectively. The same signal was 
submitted to both algorithms with consecutive orders from 1 
up until 19, we notice that with order change the frequency 
identification is stable for both algorithms applied to the same 
signal, on the other hand Burg algorithm in this case suffer 
from inconsistency in the frequency power value across 
different orders.   
Finally Figures 5, and 6 displays the Mean square residual 
error in function of the used Order, resulting from applying 
Original Burg algorithm, and Levinson algorithm respectively. 
These results are obtained for the same simulations 
corresponding to Figure 3, and 4. The error signal was 
calculated according to relation (1) using the prediction 
coefficients given by each algorithm, with zero values given 
for samples outside the provided support. We notice that the 
original burg algorithm fail to minimize the Mean Square 
Error for order value above 2, while the Levinson Algorithm 
continue the minimization with order elevation. This comes to 
illustrate the Original Burg Algorithm handicap when applied 
to short data records, or what we can call the border effect, this 
effect is due to the application of the recursive relation (7) 
without applying the Needed Modifications that we explained, 
failing to apply the modification (68), (69) will result in a 
mistaken cross correlation value, and it is simple to see that the 
effect of this will diminish with augmenting the samples 
number N , relatively to a given Order value n .   

 
Figure 1 
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Figure 2 

 
Figure 3 

 
Figure 4 

 
Figure 5 

 
Figure 6 

 
 
 
 

VI. CONCLUSION 
 
The presented work, establish a theoretical and practical 

connection between Levinson Algorithm and Burg Algorithm, 
in 1D and 2D cases. The fact that Unmodified Burg Algorithm 
fail to minimize the residual error, for certain Order, is of a 
great importance to multiple application, especially, spectral 
estimation, where the precision and solution stability is 
required, and signal compression where error minimization is a 
priority. In future works we will study the numerical efficiency 
aspect of the Burg approach relative to the Levinson approach, 
and present novel ways of applying Levinson and Burg 
algorithms that do not suffer from Line Splitting phenomena 
[17]. 
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