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Abstract

In this paper, we review the roles of collective modes in nuclear re-

actions. We emphaize the strong couplings of various collective states

with the monopole and quadrupole motions. In inelastic excitation,

these couplings can be seen as an important source of anharmonicity

in the multiphonon spectrum. In fusion reaction, the breathing and

quadrupole motions strongly affects the oscillation of protons against

neutrons. Finally, the modification of the collective properties in-

duced by a large amplitude dilution might be the origin of the nuclear

multifragmentation, directly related to the nuclear liquid-gas phase

transition. In the three cases we derive a coupling matrix element

which appears to be in good agreement.

1 INTRODUCTION

Strongly interacting systems with many degrees of freedom are the prototypes
of complex systems. As a consequence of this complexity, their dynamics is
expected to present disorder or chaos. However, in reaction to an external
stress, such systems appear to often self-organize in simple collective motions.
Of particular importance is the occurrence of collective vibrations which, in
general, are surprisingly harmonic despite their chaotic environment.

This paradox is well illustrated by the atomic nucleus. Indeed, on the
one hand, following the Bohr ideas, the compound nucleus resonances sign
the occurrence of quantum chaos already just above the neutron threshold
[1]. On the other hand, in the same excitation energy domain, the nucleus
is known to exhibit a large variety of collective vibrations (called phonons)
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[2]. The first quantum of oscillation is associated with the giant resonances,
anomalously large cross sections observed in some nuclear reactions. The first
one to be discovered was the giant dipole resonance (GDR) [3] interpreted
as a collective oscillation of the neutrons against the protons [4]. Then came
the giant quadrupole resonance (GQR), an oscillation of the nucleus shape
between prolate to oblate deformations [5], and the giant monopole resonance
(GMR) or breathing mode, an alternation of compressions and decompres-
sions of the whole nucleus [6]. Since then many other resonances have been
uncovered [2, 7]. Twenty years ago, giant resonances have also been observed
in hot nuclei up to several-MeV temperature [8]. This demonstrates the sur-
vival of ordered vibrations in very excited system which are known to be
chaotic.

The study of this amazing self-organization of the nucleus in collective
vibrations and its transition from order to chaos is one of the important
subjects in modern nuclear physics.

In this article, we will focus on the onset of disorder through the coupling
between various modes. First we will show that collective vibrations induce
monopole (GMR) and quadrupole (GQR) oscillations. This means that the
coupling matrix elements between a quantum of vibration and a state with
a GMR or a GQR built on top of it are large. We will present results
from two ”orthogonal” approaches, i.e. boson mapping (BM) and time-
dependent mean-field (TDMF), showing the same effect. Then we will move
to larger amplitude motion reached in reactions. First we will discuss the
effect of the large amplitude monopole and quadrupole oscillations induced
by fusion reaction on the GDR. Then, we will move to even more violent
reactions for which a rapid expansion of the produced nuclear system have
been observed and interpreted as the result of fast decompression of the
matter. We will show how this large-amplitude breathing mode affects all
the other collective states, which may even become unstable. We will also
make the bridge between this coupling of collective motions and the liquid-
gas phase transition.

Finally we will connect the three studied phenomena with a non linear
coupling between a vibration and a GMR or GQR built on top of it.
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2 Theoretical framework [9]

In quantum mechanics, harmonic oscillations are associated with boson de-
grees of freedom. From the microscopic point of view, these bosons can be
understood as being built from fermion pairs, which carry boson quantum
numbers. However, the number of possible pairs must be large enough to
insure that the effects of the fermion antisymmetrization do not introduce
significant deviations from a boson behavior. In particular, the excitations
of small fermionic systems are not expected to be well described by a boson
picture, because the Pauli exclusion principle imposes constraints that can-
not be easily accounted for in a boson representation. From a formal point of
view the relation between fermion pairs and bosons can be explicitly worked
out using boson mapping techniques [9]. We will use one of these methods
in the first study we are presenting.

Fermionic approaches can also be followed. For example, giant resonances
are often described using time dependent mean field approaches like the
Time Dependent Hartree-Fock approximation (TDHF). Indeed, they corre-
spond to the response of the system to an external (collective) one-body
field and mean-field approaches are tailored to take care of such excitations.
Moreover, giant resonances directly affect the time evolution of one-body
(collective) observables which are well predicted by mean-field approaches.
The small amplitude reduction of these approaches is equivalent to the ran-
dom phase approximation (RPA) [9]. Being a linearization of the equation of
motion, it corresponds to a harmonic picture. However, since the mean-field
depends upon the actual excitation, TDHF is a non linear theory and hence
contains couplings between collective modes. For example the quadratic re-
sponse takes into account the couplings between one and two phonon states
coming from the 3-particle 1-hole and 1-particle 3-hole residual interaction.
In fact TDHF is optimized for the prediction of the average value of one
body observables. Through non-linearities and time dependence, it takes
into account the effects of the residual interaction as soon as the considered
phenomenon can be observed in the time evolution of a one body observable.
This was already the case for the RPA, which through the time dependence
takes into account the particle-hole residual interaction and goes beyond the
static mean field which is limited to the hole-hole terms. In this article, we
will go beyond the RPA treatment either working out the quadratic response
to TDHF or directly performing full TDHF calculations [10].
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3 Multiphonon anharmonicities due to the

coupling with GMR and GQR

Let us start with a direct manifestation of the coupling between collective
states: the anharmonicity of multiphonon spectra.

3.1 TDHF picture

τ3

Figure 1: Evolutions of the monopole, quadrupole and dipole moments (solid
lines) as a function of time for monopole (a), quadrupole (b) and dipole (c)
excitations in 40Ca.

Time dependent approaches provide an intuitive understanding of collec-
tive motions [11]. Let us for example look at the TDHF dynamics for the
40Ca nucleus which has been initially perturbed by a collective boost. For
this simulation we have used the TDHF 3D code developed by P. Bonche
and coworkers [10] with the SGII Skyrme force [12].

In Fig. 1, we followed the monopole, quadrupole and dipole response for
three initial conditions:

• A monopole boost using Q0 = 1√
4π

∑

i(r
2
i − 〈r2

i 〉(t = 0)) as a boost
generator. Because of the spherical symmetry, a monopole boost can
only trigger monopole modes. Therefore, we only observe 〈Q0〉(t).

• A quadrupole boost generated by Q2 =
∑

i r
2
i Y

2
0 (́i, ̞i) . The parity

conservation forbids any dipole excitation when a quadrupole velocity
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field is applied to a spherical nucleus. Conversely, breathing modes can
be triggered by the quadrupole oscillation so that we do follow both
the quadrupole 〈Q2〉(t) and the monopole 〈Q0〉(t) responses.

• An isovector dipole boost induced by QD = Z/A
∑

n zn − N/A
∑

p zp.
This excitation can be both coupled to the quadrupole and monopole
oscillations so that we monitor the three moments, 〈Q0〉(t), 〈Q2〉(t) and
〈QD〉(t).

3.1.1 Linear response and collective states

In Fig. 1, we observe that the collective boosts induce oscillations of the
associated moments as expected from the RPA picture. They are only slightly
damped in the GQR and GDR cases (fig. 1-b and 1-c respectively) while
in the GMR case (fig. 1-a) beatings, characteristic of a Landau damping
[11], are observed. This means that the dipole and quadrupole strengths
are mostly concentrated in a single resonance while the monopole one is
fragmented.

Figure 2: Monopole, quadrupole and dipole spectra obtained through the
Fourier transform of the time dependent response for a monopole, quadrupole
and dipole excitation in the 40Ca.

Looking at the amplitude of the first oscillation 〈Qν〉max as a function
of boost strength (kν) confirms the linearity of this response [13]. To get a
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deeper insight into the response, we study the Fourier transform Fν(̒) of
〈Qν〉(t)/kν which is nothing but the RPA response when the velocity field kν

is small enough to be in the linear regime. We see in Fig. 2 that the dipole
and quadrupole modes are concentrated in a unique peak. The monopole is
fragmented but the various peaks are in the same energy region so that they
can be approximated by a single mode with a large Landau width.

3.1.2 Quadratic response

In Fig. 1, one can see that large amplitude dipole (fig. 1-c) and quadrupole
(fig. 1-b) motion induces variations of the nucleus radius 〈Q0〉. Looking at
the matter distribution one can see that the central density ̊0 is affected by
the dipole or quadrupole motion. Since the central density can be modified
only by monopole states this imposes that the large amplitude motion gets
coupled with such breathing modes. In the same way a large amplitude
dipole oscillation induces a quadrupole deformation of the nuclear potential
and so gets coupled with the GQR. These observations lead to the conclusion
that we are in the presence of a non-linear excitation of a giant resonance
(GMR or GQR, generically called ̅ in the following) on top of the collective
motion (GQR or GDR, generically called ̆ in the following) initially excited
through the collective boost Qν . As expected from the quadratic response
theory [13], the amplitude of the first oscillation of 〈Qµ〉(t) is quadratic in the
excitation velocity kν and its time dependence corresponds to (cos(̒µt) − 1),
i.e. it is initially in phase quadrature with 〈Qν〉(t) but it is oscillating with
the frequency of the mode ̅ and not the one of the initially excited collective
state ̆.

This interpretation is confirmed by the Fourier transform of 〈Qµ〉(t) as-
sociated with the excitation of Qν (Fig. 2). Let us first start with the
quadrupole strength non-linearly excited by a dipole boost. The observed
peak is identical to the GQR-response. This is a clear indication that the
observed state is indeed a GQR built on top of the GDR. It should be noticed
that this frequency is different from the one of the underlying dipole motion.
The monopole case is more complex because of the presence of a strong Lan-
dau spreading and it seems that the strengths of the various monopole states
depend upon the considered boost. This indicates that the coupling leading
to the excitation of an additional monopole state depends upon the collective
mode initially excited.
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|̆〉 ̒ν qν 〈̆|V |̆0〉 〈̆|V |̆2〉
(MeV) (MeV) (MeV)

|0〉40Ca 22.9 11.6 - 0
|2〉40Ca 18.6 21.4 −4.28 -
|D〉40Ca 17.2 3.47 −4.58 −3.92
|0〉208Pb 15.7 57.1 - 0
|2〉208Pb 11.1 99.0 −2.17 -
|D〉208Pb 13.0 8.94 −2.40 −0.70

Table 1: Energies, transition probabilities qν and coupling coefficients of the
GMR, GDR and GQR in the 40Ca and 208Pb. qν is expressed in fm2 for the
GMR and GQR and in fm for the GDR.

3.1.3 Quadratic response and Couplings between states

Assuming for each multipolarity a unique state |̅〉 non linearly excited one
can use the quadratic response theory [13] to extract the residual interaction
matrix element vµ between |̆〉 and |̆̅〉 from the amplitudes of the induced
oscillations 〈Qµ〉max using

vµ =
〈Qµ〉max̒µ

2k2
νq

2
νqµ

(1)

where qη is the transition matrix element between the ground state |−〉 and
the collective state |̀〉, qη = 〈−|Qη|̀〉, which can be derived from the linear
response with ̀ = ̆ since

q2

ν =
〈Qν〉max

2kν

. (2)

The results for the 40Ca and 208Pb are presented in table 1. The ̒ν are
computed from the time to reach the first maximum of 〈Qν〉(t). The relative
sign of vµ and qµ is given by the early evolution of the moments 〈Qµ〉 (see
Eq. 1). They appear to be all negative. The couplings vµ are large of the
order of few MeV. As we will see those findings are in qualitative agreement
with the results of ref. [14] which is using a completely different approach.
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|̆〉 Jπ T Eharm EWSR 〈̆|V |̆01〉 〈̆|V |̆02〉 〈̆|V |̆2〉
(MeV) (%) (MeV) (MeV) (MeV)

|01〉40Ca 0+ 0 18.25 30 −2.13 −2.36 −
|02〉40Ca 0+ 0 22.47 54 −2.03 −3.96 −
|11〉40Ca 1− 1 17.78 56 −1.38 −2.12 −1.25
|11〉40Ca 1− 1 22.03 10 −1.48 −2.16 +0.73
|2〉40Ca 2+ 0 16.91 85 −1.36 −2.49 −0.36

Table 2: RPA one-phonon basis for the nucleus 40Ca. For each state, spin,
parity, isospin, energy and percentage of the EWSR are reported in addition
to the coupling coefficients.

|̆〉 Jπ T E EWSR 〈̆|V |̆01〉 〈̆|V |̆02〉 〈̆|V |̆2〉
(MeV) (%) (MeV) (MeV) (MeV)

|01〉208Pb 0+ 0 13.61 61 −1.87 −0.92 −
|02〉208Pb 0+ 0 15.02 28 −1.32 −1.16 −
|11〉208Pb 1− 1 12.43 63 −0.79 −0.59 −0.68
|12〉208Pb 1− 1 16.66 17 0.00 0.00 −0.64
|2〉208Pb 2+ 0 11.60 76 −0.64 −0.48 −0.74

Table 3: Same as table for the nucleus 208Pb.
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3.2 Comparison with boson mapping calculations

In ref. [14] a completely different approach is used to infer the same matrix
elements: the fermionic Hamiltonian is first mapped into a bosonic one mak-
ing a connection between any particle-hole excitation and a boson. Because
of the fermionic anticommutation relations (Pauli principle) a particle-hole
excitation operator is mapped into an infinite series of boson operators. As a
consequence, even if the fermionic Hamiltonian is containing only two body
interaction, the boson Hamiltonian is a infinite series with many boson inter-
actions not conserving the boson number. To be manageable this series has to
be truncated and, in the application presented in [14], only the terms contain-
ing up to four boson creation or anihilation operators have been conserved.
Then a RPA transformation is applied, introducing collective phonons which
optimizes a harmonic picture to the system properties [15]. Using those col-
lective degrees of freedom, the Hamiltonian then contains an harmonic part
plus various interactions. An important one is the coupling between one-
and two phonon states.

For practical reasons only the most collective phonons have been selected
in ref. [14] some of them are presented in table 2 and 3 for 40Ca and 208Pb.
To illustrate their degree of collectivity the part of the energy weighted sum
rule (EWSR) they are exhausting is given together with their energy. Table
2 and 3 also give the coupling matrix elements between different collective
states and one of the two GMRs or the GQR built on top of them.

From the quantitative point of view, the non-linear coupling extracted
from TDHF appears to be 50% larger than the one reported in Table 2
and 3 [14]. This is a reasonable agreement since TDHF re-sums all the
individual couplings as shown in [13]. Summing the contributions of the
different collective states considered in ref. [14] reduces the difference between
the reported values. However, the phonon basis studied in ref. [14] being
incomplete , it is expected that the TDHF results remains higher. It should
be also noticed that some differences can remain due to the approximations
involved in the different approaches.

3.3 Consequences on the multiphonon spectrum

The couplings between phonon states can be used to derive the energies of the
various phonon states. It appears that the very large matrix elements exciting
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a GMR or a GQR on top of any state are the main source of anharmonicites.
As far as the two-phonon states are concerned the coupling with the three-
phonon states coming from such a non-linear coupling induces an energy shift
of about 2 MeV for Ca and 1/2 MeV for Pb. This might be the explanation
of the phonon anharmonicity puzzle discussed by many authors [16, 17, 18]
and summarized in [14].

4 Pre-equilibrium GDR in fusion reactions

It has been recently proposed that GR can play an essential role in fusion
reactions. In particular, fusion reactions with N/Z asymmetric nuclei may
lead to the excitation of a GDR because of the presence of a net dipole mo-
ment in the entrance channel [19]. Experimental indications of the possible
existence of such new phenomenon have been reported in refs. [20, 21, 22]
for fusion reactions and [23, 24] for deep inelastic collisions.

4.1 Collective dynamics in fusion.

As an example [25], we have computed the central collision of 20O +20 Mg
at 1 MeV per nucleon with the TDHF approach. The system rapidly fuses
producing an excited 40Ca nucleus. It presents a strong quadrupole oscillation
around a slowly damped deformation. Since 20O has a N over Z ratio different
from this of 20Mg (respectively 1.5 and 0.67), the center of mass of the protons
is initially different from the neutrons one. As the time goes on this dipole
moment Qd (i.e. the distance between the neutron and proton center of
mass) oscillates (see Fig. 3). To study the induced motion one can plot the
dipole moment Q

d
as a function of the velocity of protons against neutrons

which can be considered as its conjugated moment, P
d
. We observe a spiral

in this collective phase space (Q
d
, P

d
) , i.e. oscillations in phase quadrature

of the conjugated dipole variables. This is a clear signal of the presence of a
damped collective vibration.

The period of the observed oscillations is around 150 fm/c while for the
40Ca nucleus in its ground state it is almost half this value. This large dif-
ference can be explained by the deformation of the fused system. Indeed,
in the TDHF simulations the compound nucleus only slowly relaxes its ini-
tial prolate elongation along the axis of the collision. The averaged value
of the observed quadrupole deformation parameter is around ˾ = 0.23. For
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Figure 3: Time evolution of the dipole vibration. Dipole moment Qd and its
conjugate Pd are plotted in the phase space (a) and Pd is plotted in function
of time (b).

symmetry reasons, the dipole oscillation occurs only along the deformation
axis of the nucleus formed by fusion in head on head reactions. Therefore,
a lower mean energy is expected for this longitudinal collective motion ac-
cording to the following relation EGDRZ

= EGDR (1 − ˾)2 The energy of the
GDR along the elongation axis EGDRZ fullfils this relation with ˾ ≈ 0.26 in
a good agreement with the previous calculation of ˾.

4.2 Dynamical coupling of the GDR with the nucleus

deformation

To get a deeper insight in the dipole oscillation observed in fusion reactions
we have analyzed the time evolution of the period. From each point on the
collective trajectory in the collective phase space (Q

d
, P

d
) this quantity can

be inferred from the time needed to reach the opposite side of the observed
spiral (see Fig. 3). The resulting evolution is plotted in Fig. 4 − a. This
period presents oscillations too. These variations of the GDR period are
almost in phase with the observed oscillations of the monopole moment Q0

and the quadrupole moment Q2 presented in Fig. 4 − b. This points to a
possible coupling between the dipole mode and another mode of vibration.
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The evolutions of the monopole and quadrupole moments are very similar.
In particular, they present the same oscillation’s period around 166 fm/c.
Therefore, they originates from the same phenomenon, the vibration of the
density around a prolate shape. This oscillation modifies the properties of
the dipole mode in a time dependent way.

O+ Mg
20 20

Figure 4: (a) Time behaviour of the dipole period (solid line) and its mod-

elisation with the Mathieu’s equation (dashed line). (b) Time evolution of
the monopole (dashed line) and quadrupole moments (solid line).

In order to investigate if this is the origin of the observed behavior we can
model the induced mode coupling. Let us consider a harmonic oscillator of
average frequency ̒0 and let us replace the influence of the density oscillation
characterized by the frequency ̒ by assuming that its spring constant varies
in time at a frequency ̒. In such a model, the equation of the motion
becomes the Mathieu’s equation

ẍ

̒2
0

+ [1 + ˽ cos(̒t)]x = 0 (3)

where ̒0 is the pulsation without coupling and ̒ the pulsation of the den-
sity’s oscillation while ˽ corresponds to the magnitude of the induced fre-
quency fluctuations. We have computed the numeric solution of Eq. 3 with
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the typical external frequency of the monopole and quadrupole oscillations.
The bare frequency ̒0 and the coupling strength ˽ have been tuned in order
to get the same oscillation frequency and typical amplitude. Indeed, because
the presence of the oscillating term the observed frequency is different from
the bare one. The solution (see Fig. 4-a) well reproduces our observations
with ˽ = −0.32 and ̒0 changed by a factor 1.2 from the observed value
EGDRZ

. From this analysis it appears that the observed dipole motion cor-
responds to a giant vibration along the main axis of a fluctuating prolate
shape.

4.3 Couplings between modes

It is interesting to relate ˽ to a coupling matrix element between collective
states. Indeed, the Mathieu’s equation can be seen as the equation of mo-
tion coming from an Hamiltonian containing a coupling term between the
dipole mode and the collective deformation (GMR or GQR called here after
̅) V = k

2
˽ 1

〈Qµ〉max
QµQ

2

d
. This leads to a coupling matrix element between the

GDR and the state ̅ built on top of it which reads V = ˽ ω0

2

qµ

〈Qµ〉max
B†

µB
†
dBd

.

In the studied case for both the monopole and quadrupole, using the ground
state matrix elements qµ, the amplitude of the oscillation 〈Qµ〉max

qµ
is about 5.

Using ̒0 ≃ 13 MeV we get a coupling between the dipole and the monopole
or quadrupole v = ˽ ω0

2

qµ

〈Qµ〉max
= −0.5 MeV. This value is qualitatively in

agreement with the previous observation of a strong coupling. From a quan-
titative point of view, it is lower than the corresponding one (see table 1).
However, it is obtained for a hot and deformed system with a large ampli-
tude monopole and quadrupole motion. Moreover the value derived here
only correspond to the coupling with a unique mode and so should rather be
compared with table 2.

5 GR in diluted nuclei

In violent heavy ion collisions, nuclear matter is excited and compressed.
Then the formed nuclear system expands under the resulting thermal and
mechanical pressure. Matter may also be quenched in the coexistence region
of the nuclear liquid-gas phase diagram and the observed abundant frag-
ment formation may take place through a rapid amplification of spinodal
instabilities. New experimental results pleading in favor of such a spinodal
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decomposition have recently been reported [26, 27]. From the theoretical
point of view, the spinodal instabilities in finite systems are unstable col-
lective motions. They have been mainly studied within semi-classical or
hydrodynamical framework [28, 29, 30, 31, 32]. However, since the relevant
temperatures are comparable to the shell spacing and the wave numbers of
the unstable modes are of the order of Fermi momentum, quantum effects
are expected to be important. Quantum approaches linking the spinodal
instabilities with the giant resonances can be found in [33, 34, 35].

5.1 RPA in diluted systems

To investigate instabilities encountered during the evolution of an expanding
system, one should study the dynamics of the small deviations ˽̊(t) around
the TDHF trajectory ̊(t) [36]. It is more convenient to carry out such an
investigation in the ”co-moving frame” and if we consider the early evolution
of instabilities in the vicinity of an initial state the problem reduces to an
RPA like equation [35]. Then, small density fluctuations are characterized by
the RPA modes ̊ν and the associated frequencies ̒ν . When the frequency
of a mode drops to zero and then becomes imaginary, the system enters an
instability region.

In order to perform an extensive study of instabilities we may parametrize
the possible densities ̊0 either by a static Hartree-Fock (HF) calculations
constrained by a set of collective operators [37], or using a direct param-
eterization of the density matrix. In the following, we follow the second
approach by introducing a self-similar scaling of the HF density as suggested
by dynamical simulations.

First, we solve the HF equation for the ground state [hHF , ̊HF ] = 0,
leading to the single-particle wave functions |̞i〉 and the associated ener-
gies ˾i. Then we introduce the density matrix at a finite temperature T as
̊HF [T ] = 1/

(

1 + exp
((

hHF ˾F [T ]
)

/T
))

, where ˾F [T ] is the corresponding
Fermi level that is tuned in order to get the correct particle number. Then,
we perform a scaling transformation, R [˺] , which inflates the wave functions
in radial direction by a factor ˺ according to 〈r|R [˺] |̞〉 = ˺−1/3〈r/˺|̞〉. We
then define the density matrix for a hot and diluted system by ̊0 [˺, T ] =
R [˺] ̊HF [˺2T ] R† [˺]. The eigenstates of the constrained Hamiltonian are
given by |i〉 = R [˺] |̞i〉, and the corresponding energies and occupation num-

bers are ǫi = ˾i/˺
2 and ni = 1/

(

1 + exp
((

˾i ˾F [˺2T ]
)

/˺2T
))

, respectively
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(see Ref. [35] for more details).

Figure 5: Contour plots of the isoscalar strength functions associated with
the multipolarity L = 2 − 5 as a function of the dilution parameter ˺ and
the collective energy of the mode Eν = ch̄̒ν (c = 1 for stable modes, −i for
unstable modes) for 40Ca (left) and 120Sn (right).

We performed the HF calculations in the coordinate representation using
the Skyrme force SLy4 [38]. The particle and hole states are obtained by
diagonalizing the HF Hamiltonian in a large harmonic oscillator representa-
tion [39], which includes 12 major shells for Ca isotopes and 15 for Sn. We
apply the scaling and heating procedures described above to the density ma-
trix, and calculate the residual interaction in a self consistent manner. We
solve the RPA by a direct diagonalization using a discrete two quasi-particle
excitation representation [40].

5.2 Dilution-dependent GR frequencies

The top part of Fig. 5 shows calculations performed for 40Ca. Top panels
shows contour plots of the isoscalar strength function associated with the
isoscalar operator As

LM =
∑A

i=1 rL
i YLM , with multipolarity L = 2 − 5, as a

function of the dilution parameter ˺. We observe that, in the stable domain,
the energy associated with the dominant isoscalar strength decreases as di-
lution becomes larger, and at a critical dilution it drops to zero. At larger
dilution, the system becomes unstable, and for each multipolarity, one or
two unstable modes appear. This is illustrated in the bottom panel, where
the ”imaginary energy” of the mode Eν = −ih̄̒ν is plotted as a function
of the dilution. Looking at the RPA solution in the coordinate space, it
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appears that the collective motions transform into volume modes when they
become unstable. We observe in fact a quite complex structure of the un-
stable modes: Volume and surface instabilities are generally coupled, as well
as isoscalar and isovector excitations, since protons and neutrons move in
oposite way [35].

5.3 RPA-instabilities ”phase diagram”

We, also, carry out calculations at finite temperature and determine the
dilutions at which different unstable modes begin to appear. This allows
us to specify the border of the instability region in the density-temperature
plane for different unstable modes. Fig. 4 shows phase diagrams for octupole
instabilities in 120Sn. Here, for simplicity, we define the density as ̊ = ̊0/˺

3.

Figure 6: Border of the instability region (full fine) associated with L = 3,
for 120Sn. The dashed line connects the points having the instability growth
time ̍ = 100 fm/c. The dots are associated with ̍ = 50 fm/c.

The full line indicates the border of the instability region. The dashed line
connects points that are associated with the instability growth time ̍ =
100 fm/c, and the dots correspond to situations with a shorter growth time
̍ = 50 fm/c. We observe that in finite nuclei the instability region is quite
reduced as compared to that of nuclear matter. The limiting temperature
for instability to occur is around 6 MeV for Sn and 4.5 MeV for Ca (see [35])
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while it is about 16 MeV in symmetric nuclear matter. As a result, heavier
systems have larger instability region than the lighter ones.

5.4 Link with the coupling between modes

The observed dilution dependence of the GR’s energies can be interpreted
in terms of a coupling between the studied GR and the GMR. Indeed, it
corresponds to the Hamiltonian H = ̒ (˺) B†

dBd
where ̒ (˺) is the GR fre-

quency for a dilution ˺. Using a Taylor expansion of ̒ (˺) around ˺ = 1
and introducing ˾ = ˺ − 1, ̒ (˺) = ̒0 + ˾ ∂α̒|

0
, and the Hamiltonian

becomes H = ̒0B
†
dBd

+ ˾ ∂α̒|
0
B†

dBd
. The dilution factor ˺ can be re-

lated to the collective observables using 〈r2〉 = ˺2〈r2〉0 ≃ 〈r2〉0 + 2˾〈r2〉0
and Qµ = 1√

4π
(r2 − 〈r2〉0) = qµ

(

B†
µ + Bµ

)

so that the Hamiltonian reads

H = ̒0B
†
dBd

+
[√

4πqµ

2〈r2〉0 ∂α̒|
0
B†

µB
†
dBd

+ h.c.
]

. This leads to a coupling ma-

trix element between the GR and a GMR (̅) built on top of it which reads

V =
√

4πqµ

2〈r2〉0 ∂α̒|
0
B†

µB
†
dBd

. Looking at the GQR decrease with the dilution,

we get ∂α̒ ≃ −40 MeV for 40Ca. Using the transition matrix element for
the GMR extracted in table 1, qµ ≃ 12 fm2, and 〈r2〉0/

√
4̉ ≃ 125 fm2 we

get vµ = qµ

2〈r2〉0/
√

4π
∂α̒|

0
≃ −2 MeV. This value is qualitatively in agreement

with the previous observation of a strong coupling. In particular we under-
stand the sign of the interaction since the energy of the modes is reduced in
a diluted system (vµ < 0). From a quantitative point of view, it is a factor
2 lower than the one reproduced in table 1. However one should remember
that we compute here an average matrix element while in table 1 it is more
an integrated one. In fact this result should be compared to the one in table
2 and indeed they are in excellent agreement.

6 Conclusion

In conclusion, we have presented a study of 3 different situations: the excita-
tion of small amplitude motions and the coupling between phonon states, the
excitation of pre-equilibrium GDR in fusion reaction and the modification of
the GDR properties due to the dynamics of the monopole and quadrupole
deformation and finally the early development of spinodal instabilities. The 3
phenomena show that collective modes are strongly coupled to the monopole
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(and quadrupole) degrees of freedom. We have presented original methods to
extract the coupling matrix element between a collective mode and a GMR
(or GQR) built on top of it. The 3 studied phenomena are in qualitative
agreement pointing to a negative coupling of the order of the MeV. The
quantitative difference we observe which might come the differences between
the 3 studied cases is now under study.
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[30] W. Nörenberg, G. Papp and P. Rozmej, Eur. Phys. J. A9, 327 (2000).

[31] M. Colonna, Ph. Chomaz, and J. Randrup, Nucl. Phys. A567, 637
(1994); A. Guarnera, M. Colonna and Ph. Chomaz, Phys. Lett. B373,
267 (1996).

[32] B. Jacquot, S. Ayik, Ph. Chomaz and M. Colonna, Phys. Lett. B383,
247 (1996).

19



[33] S. Ayik, M. Colonna and Ph. Chomaz, Phys. Lett. B353 , 417 (1995).

[34] B. Jacquot, M. Colonna, S. Ayik and Ph. Chomaz, Nucl. Phys. A617,
356 (1997).

[35] M. Colonna, Ph. Chomaz and S. Ayik, Phys. Rev. Lett. 88, 122701
(2002).

[36] D. Vautherin and M. Veneroni, First Int. Spring Seminar on Nuclear
Physics, Sorrento, Italy (1986).

[37] H. Sagawa and G. F. Bertsch, Phys. Lett. B146, 138 (1984); B155, 11
(1985).

[38] E. Chabanat et al., Nucl. Phys. A627, 710 (1997); Nucl. Phys. A635,
231 (1997); Erratum: Nucl. Phys. A643, 441 (1998).

[39] N. Van Giai and H. Sagawa, Nucl. Phys. A371,1 (1981).

[40] D. Vautherin and N. Vinh Mau, Nucl. Phys. A422 , 140 (1984).

[41] Bao-An Li, C. M. Ko, Nucl. Phys. A 618 498 (1997); V. Baran, M.
Colonna, M. Di Toro and V. Greco, Phys. Rev. Lett. 86, 4492 (2001).

20


