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F-54506 Vandœuvre lès Nancy cedex, France

September 15, 2003

Abstract. We study the non-equilibrium time evolution of the classical XY spin model in two dimensions.
The two-time autocorrelation and linear response functions are considered for systems initially prepared
in a high temperature state and in a completely ordered state. After a quench into the critical phase, we
determine, via Monte Carlo simulations, the time-evolution of these quantities and extract the temperature
dependence of the slope of the parametric plot susceptibility/correlation in the asymptotic regime. This
slope is usually identified with the infinite fluctuation-dissipation ratio which measures the violation to the
equilibrium fluctuation-dissipation theorem. However, a direct measure of this ratio leads to a vanishing
value.

PACS. 75.40.Gb Dynamic properties
05.70.Ln Non-equilibrium and irreversible thermodynamics

1 Introduction

Non-equilibrium properties of classical spin systems have
received a lot of interest these last years, especially
in the context of aging[1,2] and from the point of
view of fluctuation-dissipation theorem (FDT) and its
extensions.[3] The main feature of non-equilibrium dy-
namics is the breakdown of time-translation invariance,
which is a characteristic that has been used recently,
together with space-symmetries in order to build a
space-time conformal like theory for some scale invariant
systems.[4] This theory has given some predictions that
have been already tested on some systems, like the Ising
with Glauber dynamics or spherical model.[5] A system
relaxing towards its equilibrium state shows, in the ag-
ing regime, a dependence in the two-time functions on
both the observation time t and the so called waiting time
tw < t. In this context, an extension of the fluctuation-
dissipation theorem (FDT) was proposed.[6] At equilib-
rium, the FDT relates the correlation function to its con-
jugate linear response function via

R(t − tw) = β
∂

∂tw
C(t − tw) , (1)

where the time enters only through the difference t − tw.
Out of equilibrium, the generalisation takes the form

R(t, tw) = X(t, tw)β
∂

∂tw
C(t, tw) , (2)

defining the factor X(t, tw), the so called fluctuation-
dissipation ratio which measures the violation of the FDT.

It measures the ratio between the actual response and the
expected response if the FDT was valid. Recently, a lot of
interest was put in the asymptotic value of the FDT ratio,
defined by

X∞ = lim
twջ∞

lim
tջ∞

X(t, tw) . (3)

In particular, Godrèche and Luck[7] proposed that this
quantity should be universal for a critical quench. Evi-
dences to support this universality were obtained on ex-
actly solvable spin systems quenched from infinite tem-
perature, numerically on 2d and 3d Ising model with
Glauber dynamics[8] and also checked from field-theoretic
two-loop expansion of the O(n) model[9] and the 2d voter
model.[10] This universality was tested recently for a wide
class of initial states in 1d Glauber Ising model.[11]

However, going on more complex systems the linear
response function itself is not accessible by numerical, nor
experimental analyses and one is forced to look on inte-
grated response functions, that is measuring susceptibili-
ties:

χ(t, tw) =

∫ t

tw

dt′R(t, t′) , (4)

where the perturbation field is applied between time tw
and t, that is a zero-field-cooled (ZFC) scenario. To ex-
tract information from the susceptibility on the FDT ra-
tio, one usually plots the susceptibility versus the corre-
lation function and defines from the asymptotic slope of
the curve, a number

Xχ
∞ = − lim

Cջ0

dχ

dC
(5)
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which is often identified with the FDT ratio X∞. The idea
behind that is coming from the analyses of infinite-range
glassy systems[12] where asymptotically, the fluctuation-
dissipation ratio depends on time only through the corre-
lation function. One has for those systems

X(t, tw) = X(C(t, tw)) . (6)

In this context, the limiting ratio X∞ was interpreted as
a temperature ratio between the actual inverse tempera-
ture β and an effective inverse temperature seen by the
system:[14] βeff = βX. From the dependence (6), on ob-
tains for the susceptibility the expression

χ(t, tw) = β

∫ 1

C(t,tw)

dC ′X(C ′) . (7)

This last equation strictly holds if the violation ratio is a
function of C(t, tw) only and in this case, one can identify
X∞ with Xχ

∞. It is in particular the case at equilibrium
since X = 1 is a pure constant and it gives χ = β(1−C).

In a recent work, [15] an exact expression was derived
for Glauber-like dynamics which enables to calculate di-
rectly the linear response function to an infinitesimal field.
The advantage of this approach is obvious since it gives
direct access to the linear response, non-linear effects are
avoided, and not only to the susceptibility as in the ZFC
scenario.

In this context, we have performed a Monte Carlo
study of the nonequilibrium evolution of the two-
dimensional classical XY system. We have studied the evo-
lution of the system after a quench from infinite tempera-
ture toward the low temperature critical phase, up to the
Kosterlitz-Thouless point. We have also considered the re-
laxation from a completely ordered initial state. For that
purpose, we have calculated two-point correlation func-
tions, susceptibilities and response functions. From these
data, we have checked the violation of the FDT and com-
pared our numerics with theoretical predictions (spin wave
approximation) and previous numerical works when avail-
able. The paper is organised as follows: in the next section,
we present the dynamics of the model and its solution for
two-time quantities in the spin wave approximation. The
following section deals with the numerical analyses for the
ordered initial state. We turn then to the infinite tem-
perature initial condition. We summarise and discuss our
results in the last section.

2 Two-dimensional dynamical XY model

The two-dimensional ferromagnetic XY model is defined
via the Hamiltonian

H = −
∑

<ij>

Si ⋅ Sj (8)

where the sum is over nearest neighbour pairs ij on a
square lattice and where the classical spin variables Si are
two-dimensional vector fields of unit length. Introducing

angular variables, one can rewrite the original Hamilto-
nian in the form

H = −
∑

<ij>

cos(θi − θj) . (9)

The equilibrium properties of this model are well-known
since the pionneering work of Berezinskii,[16] Kosterlitz
and Thouless and others.[17] At a temperature TKT , the
system undergoes a continuous topological transition due
to the pairing of vortex and anti-vortex excitations. Below
the transition temperature, the system is characterised by
a line of critical points reflecting a quasi-long range or-
dered phase with algebraic correlation functions. The spin-
spin correlation critical exponent η is continuously varying
with the temperature field. Although for the spin-spin η
exponent spin-wave approximation gives an accurate an-
alytic prediction at low temperature,[16] only numerical
estimates are known for the full temperature regime.[18]

The dynamics of the model was studied extensively in
the context of coarsening.[19] The two-time spin-spin au-
tocorrelation function and the associated linear response
function have been studied only recently in ref.[20]. In the
spin-wave approximation, valid at low temperature(T ≪
TKT ≃ 0.89), the nonconserved dynamics of the angular
variable is given by the Langevin equation[19]

∂

∂t
θ(x, t) = −

δF (θ)

δθ
+ ζ(x, t) (10)

where ζ(x, t) is a Gaussian thermal noise with variance
〈ζ(x, t)ζ(x′, t′)〉 = 2Tδ(x−x′)δ(t− t′) and the free energy
functional is given by[19]

F (θ) =
ρ(T )

2

∫

d2x[∇θ]2 (11)

where ρ(T ) is the spin-wave stiffness, related to the η(T )
exponent by the relation 2πρ(T ) = T/η(T ).

Taking as initial condition a completely ordered state
θ(x, 0) = θ0, using the previously defined spin-wave func-
tional, it is possible to obtain analytical expressions for the
two-time autocorrelation and response functions. These
reads, at enough long times, for the autocorrelation func-
tion C(t, tw) = V −1

∫

d2x〈cos[θ(x, t) − θ(x, tw)]〉:[20]

C(t, tw) =
1

(t − tw)η(T )/2

(

(1 + λ)2

4λ

)η(T )/4

, (12)

where tw is the waiting time, t is the total time and λ =
t/tw is the scaling ratio. This behaviour can be explained
in the following way. At short time difference t− tw ≪ tw,
the fluctuations of small wavelength (≪ ξ(tw)) have equi-
librated and we are in a quasi-equilibrium regime with a
correlation function decaying as C(t, tw) ∼ (t− tw)−η(T )/z

where the dynamical exponent z = 2 for the 2d XY model.
At longer times, when the scaling function significantly
differs from 1, the aging process takes place giving rise to
a full two-time dependence, that is a breakdown of time-
translation invariance. The conjugate response function,
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defined by R(t, tw) = V −1
∫

d2x δ〈S(x,t)〉
δh(x,tw)

∣

∣

∣

h=0
is

R(t, tw) =
2η(T )

T

C(t, tw)

t − tw
, (13)

with C(t, tw) given in equation (12). It is amazing to
notice at this point that the last equation has exactly
the form obtained from the Fluctuation-Dissipation the-
orem with a power law equilibrium correlation function
C(t, tw) ≃ A(t − tw)−η/z, where z is the dynamical ex-
ponent. The difference from the equilibrium situation lies
in the fact that the nonequilibrium amplitude A is ac-
tually depending on time too. So, by differentiation, one
has also a term arising from the derivative of the ampli-
tude A(tw), leading to a deviation from the FDT. From
equations (12) and (13), it is easy together with the defi-
nition of the fluctuation-dissipation ratio given previously
to obtain

X(t, tw) =

(

1 −
(λ − 1)2

2(1 + λ)

)−1

. (14)

For a quench from an infinite temperature state to a
temperature T < TKT , no such analytical expressions are
available. However, on the basis of scaling arguments,[19]
one can postulate the general expressions

C(t, tw) =
1

(t − tw)η(T )/2
fC

(

ξ(t)

ξ(tw)

)

(15)

and

R(t, tw) =
1

(t − tw)1+η(T )/2
fR

(

ξ(t)

ξ(tw)

)

(16)

where fC and fR are the scaling function and where the
correlation length ξ has a different behaviour if the quench
is done from infinite temperature or from a completely
ordered initial state, namely one has:[21]

ξ(t) ∼

{

t1/2 Ti < TKT

(t/ ln t)1/2 Ti > TKT
(17)

The logarithmic correction in the disordered initial state
case is due to the slowing down of the coarsening caused
by the presence of free vortices,[21] since the approach
toward equilibrium proceeds through the annihilation of
vortex-antivortex pairs, a process which is slower than the
equilibration of spin waves.

We shall concentrate first on checking numerically
these analytical predictions, testing at the same time the
validity of our numerics, and then turn to the numerical
study of the infinite-temperature initial condition.

3 Numerics

3.1 Numerical approach

During the simulations, the system is initially prepared in
two different ways: spin angles θi chosen at random in the

interval [0, 2π] corresponding to the infinite temperature
initial state and constant initial angles, θi = cst. ∀i, corre-
sponding to the zero temperature initial state. For the nu-
merical analysis, we use a standard metropolis dynamics
where a spin chosen at random is turned at random with
an acceptance probability given by min[1, exp(−∆E/T )]
where ∆E is the difference energy between the actual con-
figuration and the former one. As stated before, in order
to go beyond the susceptibility and to access directly the
response itself, we use a different dynamics, Glauber-like,
where the transition probabilities of a configuration with
a spin Si to a new value S′

i is given by

p(Si ջ S′
i) =

W (S′
i)

W (S′
i) + W (Si)

(18)

with

W (Si) = exp



−
1

T
Si

∑

j

Sj



 . (19)

Both dynamics have the same dynamical exponents and
one expect no significant changes for thermodynamical
quantities.

The two-times autocorrelation function is defined by

C(t, tw) =
1

L2

∑

i

〈cos[θi(t) − θi(tw)]〉 (20)

where 〈.〉 is the average over the thermal histories. In the
metropolis simulation, we calculate the ZFC susceptibility
via[22]

χ(t, tw) =
1

L2h2

∑

i

〈hi ⋅ Si(t)〉 (21)

where h is a small bimodal random magnetic field applied
from tw. The overline means an average over the field re-
alizations. Practically in our simulations we use the value
h = 0.04.[23]

The response function itself is obtained numerically
with the help of the Glauber-like dynamics.[15] By defi-
nition, the autoresponse to an infinitesimal magnetic field
applied at tw is given by

R(t, tw) =
δSi(t)

δhi(tw)
. (22)

With the help of the master equation

P ({θ′}, t + 1) =
∑

{θ}

p({θ} ջ {θ′})P ({θ}, t) (23)

and following the lines of ref.[15], it is easy to arrive at

R(t, tw) = β〈cos θi(t) [cos θi(tw + 1) − cos θw
i (tw + 1)]〉

+ β〈 sin θi(t) [sin θi(tw + 1) − sin θw
i (tw + 1)]〉 (24)

where cos θw
i (t) and sin θw

i (t) are the components of the
Weiss magnetisation given by

Sx,y
i =

1

β

∂

∂hx,y
lnZi

∣

∣

∣

∣

h=0

. (25)
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Zi = exp(−βH(θi, h)) + exp(−βH(θ′i, h)) is the local par-
tition function in the field.

The thermodynamical quantities are calculated on
square samples with periodic boundary conditions of lin-
ear size up to L = 512 and averaged typically over 1000
thermal histories.

3.2 Ordered initial state

We start with a completely ordered state and set the tem-
perature T < TKT , in order first to check the compati-
bility of our numerics with the analytical predictions in
the spin-wave approximation. In figure 1, we present the
results obtained for the autocorrelation function in the
asymptotic regime t − tw ≫ tw ≫ 1 for a temperature of
T = 0.3 where the expression (12) is expected to hold. For
different waiting times, the collapse of the data is fairly
good and the power-law behaviour in terms of the variable
(1 + λ)2/(4λ) gives a very good agreement with the XY
η(T ) exponent, as it can be seen on figure 2.

1 10 100

(λ+1)
2
/4λ

1

1.05

1.1

C
(t

,t
w
)*

(t
−

t w
)η(

T
)/

2

t
w
=1000

t
w
=300

t
w
=100

t
w
=30

y~x
0.015

Fig. 1. Rescaled autocorrelation function at T = 0.3 for a
system of linear size L = 512 and for different waiting times.
The solid line is guide for the eyes corresponding to the value
η(0.3) ≃ 0.015.

In the asymptotic regime, the two-times response func-
tion is expected to be given, at least at low temperature by
the spin-wave approximation formula (13). In figure 3, we
give the numerical results obtained for a final temperature
of T = 0.3 for different waiting times. The aging part of
the response is very small in the accessible regime and the
deviation from a time-invariant process is very difficult to
be seen as the collapse of the data for different waiting
times in figure 3 attests. Nevertheless, we have plotted in
figure 4 directly the numerical response function together
with the analytical prediction. The superposition of both
curves seems to validate the expected law. Although, in
ref.[20] this case was considered quite extensively, it was
done only for one temperature. Here we have extended the
results to the whole low temperature regime.

0 0.2 0.4 0.6 0.8 1

T/T
KT

0

0.1

0.2

0.3

η(
T

/T
K

T
)

Fig. 2. Dependence of the η exponent on temperature ex-
tracted from the two-time autocorrelation function (symbols).
The solid line corresponds to numerical values given in ref.[18].
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)
t
w
=1000

t
w
=300

t
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t
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w
)

−1−η(T)/2

Fig. 3. Response function at T = 0.3 for different waiting
times.

3.3 Infinite temperature initial state

The infinite-temperature initial state is more canonical in
the study of coarsening and aging effects. After the quench
in the critical phase, the correlation length will grow in
time with a logarithmic correction due to the interaction
of walls with free vortices as mentioned in ref.[21]. That is,
ξ(t) ∼ (t/ ln t)1/2 and leading to the conjectures (15,16)
for the correlation and response functions. Berthier et al

have checked this conjecture for the correlation length only
for one final temperature, namely T = 0.3. In figure 5
we show the results obtained for several quench tempera-
tures, ranging from T = 0.1 up to T = 0.7. The collapse
of the rescaled correlation functions (t − tw)η/2C(t, tw)
as function of the variable ξ(t)/ξ(tw) is very satisfactory.
From these curves, we can extract the scaling function
fC , see equation (15), and find the power law behaviour
fC(x) ∼ x−κ with a temperature independent exponent
κ = 1.05(10). In ref.[20] the value κ = 1.08 was given
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t
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Fig. 4. Response function for different waiting times for a sys-
tem of linear size L = 512. The quench temperature is T = 0.3.
The solid lines correspond to the analytical expression (13).

which is of course compatible with our data. However,

1 10

[(t ln t
w
)/(t

w
ln t)]

1/2

0

1

C
(t

,t
w
)*

(t
−

t w
)η(

T
)/

2

Fig. 5. Scaling plot of the two-times autocorrelation function
for a quench from infinite temperature towards T < TKT . The
three different collapsed curves are obtained for T = 0.3, T =
0.5 and T = 0.7 from top to bottom. The different waiting
times for each temperature are tw = 100 circles, tw = 300
diamonds and tw = 1000 crosses. The solid line corresponds to
1/x.

one has to be careful in this statement since the exponent
is very close to 1. For example, if one takes as the scal-
ing variable x−1 = ξ(tw)/ξ(t) instead of x = ξ(t)/ξ(tw),
then the scaling limit we are interested in is x−1 ≪ 1
and what is seen could be very possibly the leading ex-
pansion terms of an analytical scaling function, that is
g(x−1) ≃ g(0) + αx−1. Moreover, numerically the extrap-
olated value g(0) seems to be very close to zero (less than
0.01) and it is impossible to test this value in the time
range explored in this work. The same is true for the refer-
ence [20]. So if g(0) is not vanishing, finally at long enough

times, the decay of the autocorrelation function has the
same power law dependence as in the equilibrium situ-
ation. Otherwise, the decay is faster with a power law
t−η/2−1/2 up to logarithmic corrections.

The parametric plot of the susceptibility times the
temperature versus the correlation function does not
collapse for different waiting times, showing that the
fluctuation-dissipation ratio is not a function of C only
but rather has a dependence on both t and tw. How-
ever, after an initial quasi-equilibrium regime, where the
different waiting time curves are collapsing and lead to
the equilibrium value X(t, tw) = 1, they have a constant
slope, Xχ

∞, independent of tw. This number Xχ
∞ corre-

sponds, when X(t, tw) = X(C(t, tw)) only, to the asymp-
totic limit X∞ = limtwջ∞ limtջ∞ X(t, tw). In figure 6,
where we have represented Xχ

∞ versus the reduced temper-
ature T/TKT , we clearly see a linear behaviour, starting
at Xχ

∞ = 0 for T = 0 and finishing at the value Xχ
∞ = 1/2

at the Kosterlitz-Thouless point. It can be noticed that
this continuous dependence of the FDT ratio on a model
parameter was also observed in the spherical model.[24]

0 0.5 1

T/T
KT

0

0.5

X
χ 8

Fig. 6. Fluctuation-dissipation ratio versus reduced temper-
ature T/TKT . The line is the conjectured function.

Finally, we present the data obtained for the linear
response function and the fluctuation-dissipation ratio
X(t, tw). The simulations are done on lattices of linear size
up to L = 100 averaged over 11000 realizations in order to
have a good enough statistics for X. In figure 7, we show
the result obtained for a final temperature T = 0.1. Very
similar curves are obtained for other temperatures. The
collapse of the data for different waiting times is very good,
which confirms the scaling conjecture (16). Although the
number of different histories we have realized is quite huge,
the noise on the points is still important. The range of time
used is from t = 100 up to t = 2500, which explains the
very short window of the x-axis in figure 7. Nevertheless,
what it is seen after an initial short time regime is a linear
behaviour in terms of the scaling variable ξ(t)/ξ(tw), that
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Fig. 7. Rescaled response function at T = 0.1 for a linear
system size L = 100 averaged over 11000 realizations.
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X
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w
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Fig. 8. Fluctuation-dissipation ratio at T = 0.1 as a function
of the scaling variable t ln tw/tw ln t for tw = 10 (stars), tw = 30
(circles) and tw = 100 (diamonds).

is asymptotically

(t − tw)1+η/2R(t, tw) ≃ AR

(

t ln tw
tw ln t

)1/2

, (26)

with an amplitude AR slowly varying with the temper-
ature. In figure 8, we present the fluctuation-dissipation
ratio X(t, tw) as a function of t ln tw/tw ln t obtained nu-
merically at the same temperature, T = 0.1, for waiting
times t = 10, 30, 100. Since in the calculation of X, we
have to do a derivative, the results obtained are much more
noisy and it is difficult to go on very long waiting times.
Nevertheless, we clearly see a good collapse on a master
curve, leading to a vanishing fluctuation-dissipation ratio
in the asymptotic limit. The same is obtained for other
temperatures.

4 Summary and outlook

We have studied numerically the non-equilibrium relax-
ation properties of the two-dimensional XY model initially
prepared on two distinct ways: completely ordered and
fully disordered state. In both cases, the two-time spin au-
tocorrelation function and the associated linear response
function were determined.

In the initial ordered case, we have fully confirmed the
analytical predictions obtained in the spin wave approxi-
mation, strictly valid at very low temperature. Neverthe-
less, the scaling form given in equation (12) seems to be
valid in a wide range of temperature below the Kosterlitz-
Thouless transition. From it, we have extracted the equi-
librium exponent η(T ) with a quite good accuracy as seen
in figure 2. Using the Glauber-like dynamics defined previ-
ously, we have obtained directly the linear response func-
tion itself. This permits a direct comparison of our data
with the analytical expression (13). With this approach,
we avoided difficulties inherent in the use of susceptibil-
ities, which can be affected by short-time contributions.
Although the aging part of the response seems to be very
small, as attested in figure 3, the plot in figure 4 shows a
very good agreement between the numerical data and the
analytical prediction.

Starting with a fully disordered state, we have ex-
tended the conjecture checked in ref.[20] for one partic-
ular temperature to the whole low temperature regime.
For temperature ranging from T = 0.1 up to T = 0.9, we
have numerically confirmed the forms (15) and (16) of the
correlation and response functions with a scaling variable
given in (17). As discussed previously, we found numeri-
cally for the asymptotic behaviour of the autocorrelation
scaling function fC , defined in (16), a behaviour which is
compatible with a purely algebraic decay with a temper-
ature independent exponent very close to one. The linear
response scaling function, in the time-range studied here,
has a linear behaviour in the scaling variable ξ(t)/ξ(tw).
Those asymptotic behaviours of the correlation and re-
sponse scaling functions are supporting, up to logarithmic
factors, the forms given by local scale-invariance theory.[4]
Utilising the notations of [8], one has

C(t, tw) ≃ t−a
w FC(t/tw) (27)

R(t, tw) ≃ t−a−1
w FR(t/tw) , (28)

where the scaling functions FC and FR have the asymp-
totic forms

FC,R(u) ≃ AC,R u−λC,R/z u ≫ 1 . (29)

From our data, we obtain a = η(T )/2 and λC = λR =
η(T )+1 confirming the general scenario depicted in ref.[4,
8,25]. Finally, we extracted Xχ

∞, from the parametric sus-
ceptibility/correlation plot in the long-time limit. The re-
sult we obtained is well fitted by the linear behaviour
Xχ

∞ = (1/2)T/TKT . The direct use of the response func-
tion gave a different answer, as seen in figure 8. Al-
though the fluctuation-dissipation ratio X(t, tw) is a func-
tion of both t and tw, this dependence seems to enter only
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through the scaling ratio t ln tw/tw ln t. From the numer-
ical results we obtained on the correlation and response
functions, it is clear that in the asymptotic regime the fluc-
tuation dissipation ratio X∞ = limtwջ∞ limtջ∞ X(t, tw)
is vanishing. A result which is different from what is ob-
tained from the parametric susceptibility/correlation plot.
This vanishing is due to the breakdown of scaling in-
duced by the presence of the logarithmic factors in the
scaling functions. In practice, one has to take care when
discussing those plots, especially when no master curve is
ever reached for different waiting times.
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