
HAL Id: hal-00000601
https://hal.science/hal-00000601v1

Submitted on 15 Sep 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Probing complex RNA structures by mechanical force
S. Harlepp, T. Marchal, J. Robert, J.-F. Leger, A. Xayaphoummine, H.

Isambert, D. Chatenay

To cite this version:
S. Harlepp, T. Marchal, J. Robert, J.-F. Leger, A. Xayaphoummine, et al.. Probing complex RNA
structures by mechanical force. European Physical Journal E: Soft matter and biological physics,
2003, 12, pp.605-615. �hal-00000601�

https://hal.science/hal-00000601v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

00
60

1 
(v

er
si

on
 1

) 
: 1

5 
S

ep
 2

00
3

Probing complex RNA structures by mechanical force
S. Harlepp, T. Marchal, J. Robert∗, J-F. Ĺeger, A. Xayaphoummine, H. Isambert† and D. Chatenay

Laboratoire de Dynamique des Fluides Complexes, CNRS-ULP,
Institut de Physique, 3 rue de l’Université, 67000 Strasbourg, France

RNA secondary structures of increasing complexity are
probed combining single molecule stretching experiments
and stochastic unfolding/refolding simulations. We find that
force-induced unfolding pathways cannot usually be inter-
pretated by solely invoking successive openings of native he-
lices. Indeed, typical force-extension responses of complex
RNA molecules are largely shaped by stretching-induced,
long-lived intermediates including non-native helices. This
is first shown for a set of generic structural motifs found in
larger RNA structures, and then for Escherichia coli’s 1540-
base long 16S ribosomal RNA, which exhibits a surprisingly
well-structured and reproducible unfolding pathway under
mechanical stretching. Using out-of-equilibrium stochas-
tic simulations, we demonstrate that these experimental re-
sults reflect the slow relaxation of RNA structural rearrange-
ments. Hence, micromanipulations of single RNA molecules
probe both their native structures and long-lived intermedi-
ates, so-called “kinetic traps”, thereby capturing –at thesin-
gle molecular level– the hallmark of RNA folding/unfolding
dynamics.

Keywords: RNA folding/unfolding; Single molecule experiments;
Stochastic simulations; Non-native helices and kinetic traps; 16S ri-
bosomal RNA.

Introduction
Recent developments of micromechanical experiments on single

biomolecules have provided structural insights into alternative struc-
tures of DNA[1, 2, 3, 4] and mechanical properties of proteins[5, 6,7].
In principle, such techniques could also provide new tools to probe
RNA structures which remain by and large refractory to many crys-
tallization schemes. However, this prospect requires one to relate me-
chanically induced unfolding pathways to RNA structural features. Al-
though it could be done successfully for small RNA structures by solely
invoking successive openings of native helices[8], probing more com-
plex RNA structures by mechanical force is expected to involve non-
native structural rearrangements of the initial secondary structure upon
stretching[9, 10, 11]. Local rearrangements, such as the formationof
simple stem-loops, occur quite fast (< 1 ms) under low pulling force
(or in the absence of force) and the number of possible hairpins (with
small loop) is proportional to the length of stretched region of the
RNA molecule. Thus, alternative hairpins, not present on the initial
structure, should inevitably form under partial stretching of long RNA
molecules (e.g., > 1000 nucleotides). Conversely, more global rear-
rangements, which involve the coordonated removal and formation of
different sets of helices, might occur much more slowly (e.g., after a few

∗Corresponding author: robert@fresnel.u-strasbg.fr
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FIG. 1: The three structural motifs with the schematic setup (see Ma-
terials and Methods) and a force-extension curve of two ligated pUC19
in the absence of RNA insert.

minutes)[12, 13]. Hence, under typical pulling rates (i.e., full extension
within a few seconds), most stretching experiments likely occur under
out-of-equilibrium conditions and should exhibit unfolding/refolding
hysteresis curves.

To study the full potential and limitations of these micromechanical
techniques so as to probe complex RNA structures, we have combined
single RNA molecule stretching experiments and out-of-equilibrium
stochastic simulations. Three small artificial structures,M1, M2 and
M3 (Fig 1), representing prototypes for the main structural modules
of larger RNA secondary structures, were first designed and studiedin
details. The mechanical response ofE. coli’s 1540-base long 16S ribo-
somal RNA was then studied using the same experimental setup and a
somewhat simplified numerical approach. The generic structural mo-
tifs M1, M2 andM3, correspond to three different arrangements of two
15 base pair long helices consisting almost exclusively of either GC or
AU base pairs, Fig 1.M1 corresponds to two adjacent stem-loops with
respect to the external single strand joining the molecule ends. By con-
trast,M2 andM3 present the same nested organisation with either the
strong (GC) helix or the weaker (AU) helix connected to the external
single strand.

The 5’ and 3’ ends of either these small RNA motifs orE. coli’s
16S rRNA were hybridized to two pUC19 dsDNA extensions labelled,
respectively, with biotin and digoxygenin (see Materials and Methods).
The force-extension experiments were then done by grafting the ends
of these extended molecular constructs between the antidigoxygenin
coated glass surface of a capillary and a micrometer size silica bead
coated with strepavidin. The capillary was moved by a piezo-electric
stage (50 to 300 nm/s) and the resulting force exerted by the molecule
on to the bead was measured with an optical tweezer.

Results
Single molecule stretching experiments of small RNA motifs

When structural motifsM1, M2 or M3 are inserted in the molecular
construct, one or two force drops occur on the force-extension curve,
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FIG. 2: A Histogram of the measured rupture forces for the three struc-
tural motifs (3pN bins).B Experimental force-extension curves of the
three structural motifs. Note hysteresis between unfolding (black) and
refolding curves (color).C Corresponding stochastic simulations. The
mechanical stiffness of the optical tweezer and the wormlike chain elas-
ticity of the pUC19 dsDNA extensions (which curves the experimental
force-extension slope at low stretching force) are combined for sim-
plicity into an effective stiffness with a slop fitted on the experimental
curves (0.1 pN/nm).

Fig 2. A histogram of the rupture force and a set of unfolding and re-
folding force-extension curves are shown for each motif on Fig 2A and
Fig 2B. For each set, variations between force-extension curves cor-
respond to stochastic fluctuations between either successive stretchings
on the same molecule or different experiments on equivalent molecules.

A comparison of the different rupture force histograms and the cor-
responding unfolding curves (black on Fig 2B) shows thatM1 and
M2 present very similar unfolding responses with two sequential drops
or inflexion regions around 11� 3 pN and 22� 3 pN, whereasM3
presents a single and larger force drop at about 22� 3 pN. These values
are in very good agreement with ref.[14] although these latter experi-
ments concern the opening of DNA hairpins. ForM1 andM2, these
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FIG. 3: Interpretation of the experimental unfolding/refolding hystere-
sis for the structural motif M3 (see text). Regions under tension are
drawn on a circle for convenience[19].

results can be simply attributed to the first opening of the weak (AU)
helix followed by the stronger (GC) helix at a higher applied force.
Indeed, the applied tension being uniformly distributed along the ex-
ternal single strand joining the molecules ends, the weaker (AU) helix
is expected to break first onM2, while it should certainly do so by
construction onM1. Besides, by calibrating the stiffness of the optical
trap, both force drops on these curves can be converted into a distance
released by the molecule, taking into account the angular inclination
of the setup (30◦ to 40◦). This corresponds to the expected 20 nm in
both cases. Substracting the net free-energy contribution stored in the
stretched single strand[15], we find in term of pairing energy, around
1.7 kT/bp for AU and 3 kT/bp for GC, in good agreement with known
parameters[16]. By contrast forM3, the strong (GC) helix shields the
weaker (AU) stem from the applied force and no significant unzipping
is observed until the whole molecule suddenly unfolds at the critical
force to break GC stacking base pairs.

The refolding curves forM1 (blue) andM2 (red) show most often a
small hysteresis below the force drop associated with the strong (GC)
stem’s opening. ForM2, a second small refolding hysteresis occurs also
usually below the force drop associated with the weaker (AU) stem’s
opening. By contrast, a much stronger hysteresis is systematically ob-
served forM3 (magenta), even at the lowest loading rate achieved,
3 pN/s. Moreover, in this case, the refolding event around 10 pN does
not usually fold back onto the initial stretching curve. This suggests
that the stretching ofM3 involves long-lived intermediate structures
including non-native helices (see Fig 3 and next section on stochastic
simulations of small RNA motifs). Still, all three molecules eventually
fold back in their initial native structure after a few seconds, as shown
by the reproducibility of force extension curves in successive pulls on
the same molecule.
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Stochastic unfolding/refolding simulations of small RNA motifs
We have performed stochastic simulations of these out-of-

equilibrium unfolding/refolding experiments for the shortM1, M2 and
M3 structural motifs. The heart of the numerical method, following the
approach detailed in[17], consists in simulating the stochastic unfold-
ing and refolding of helices not only present on the initial RNA struc-
ture but also forall other heliceswhich can possibly pair on the RNA
sequence of interest (see also RNAKinefoldserver athttp://kinefold.u-
strasbg.fr ). Common pseudoknots (i.e., helices interior to loops)
are also allowed following the structural modeling approach proposed
in[17]. In addition, the region of the RNA structure underdirect me-
chanical tension (corresponding to the “on-net” backbone in[17]) is
modelled as an inextensible wormlike chain with a 1.5 nm persistence
length[2] and 0.7 nm/base contour length[18]. Stretching is induced
by a slowly varying rigid constraint on the end-to-end distance of the
RNA-dsDNA-tweezer construct (rate� 300 nm/s in� 2 nm steps). It
is also important to take into account the acquisition rate (300 Hz) and
to model the statics and dynamics of the optical tweezer trap, although
time scale separation allows to consider that the micromechanical setup
responds to a slow time average of the fast RNA dynamics, which cor-
responds to stochastic closing and opening of single helices[17]. To
avoid overfitting with non essential parameters, we have simply mod-
elled the trapped bead and the two dsDNA extensions of the construct
as an ideal spring with a slow viscous relaxation time (1 ms) and an
effective stiffness (typically 0.1 pN/nm) fitted on the individual force
extension curves.

The simulated force-extension responses for theM1, M2 and M3
motifs (Fig 2C) are in good agreement with the unfolding and refolding
experimental results (Fig 2B). In particular, they allow for the identi-
fication of likely intermediate structures involved in the refolding hys-
teresis, which primarily correspond to the formation of two non-native
helices originating from each strand of the strong (GC) helix, Fig 3.
The transition from these alternative helices back to the strong initial
(GC) stem is facilitated under high external force, hence the small hys-
teresis forM1 and M2. By contrast forM3, the transition can only
occur at a lower force after the weak (AU) stem has refolded and is,
therefore, slower, as observed experimentally. Note, the small experi-
mental differences in the hysteresis responses ofM1 andM2 are well
reproduced on their simulated force-extension curves, suggesting that
elementary unfolding/refolding events are reliably captured by these
stochastic simulations devised to probe RNA molecular dynamics on
second to minute time scales. It should be emphasized that such long
time scale simulations could not be achieved for other molecules, such
as proteins, for which elementary unfolding/refolding transitions are
not so easily defined and also much more frequent. For instance, the
best molecular dynamic simulations of proteins are currently limited to
around 100 ns[20].

The force-induced unfolding of these three generic structural mo-
tifs M1, M2 and M3, reveals the potential and limitations of single
molecule experiments to probe the main folded features of more com-
plex RNA structures. The comparison betweenM2 and M3’s force-
extension responses illustrates that the order of helix stability along a
single secondary structure branch can be readily identified, while the
bifurcation arrangements of helices or the presence of multibranched
loops are not so easily distinguished from single branches with in-
creasing helix stability (as inM1 versusM2). Moreover, the formation
of non-native rearrangements under stretching likely affects the force-
extension responses of most RNA structures (as forM3).

In this context, combining experimental and numerical approaches
to study RNA mechanical unfolding pathways seems promising insofar
as transient structural rearrangements (under stretching) are difficult to
probe with traditional chemical or enzymatic techniques.

On the other hand, for long RNA molecules (e.g.,>1000 bases),
it has been argued[9, 10, 11] that such structural rearrangementsun-

800 1000 1200 1400
5

10

15

20

F
or

ce
  (

pN
)

20

140012001000

Extension   (nm)

800600

15

10

5

FIG. 4: Experimental unfolding ofEscherichia coli’s 1540-base long
16S ribosomal RNA by mechanical stretching (rate 300nm/s). Colors
correspond to successive stretching rounds of thesamemolecule (re-
folding hysteresis are not shown for clarity). An increasing maximum
extension was applied at successive stretching/refolding rounds to avoid
early breakage by overstretching. As a result, the RNA molecule was
not entirely unfolded until the sixth stretching/refolding round. Force-
extension curves are slightly shifted vertically and horizontally to best
display the overall reproducibility between successive extensions. The
mechanical unfolding over the full extension range of the molecule
presents a characteristic unfolding plateau between 11 and 15pN. This
is the mechanical unfolding signature ofE. coli’s 16S rRNA. The brown
curve (bottom) corresponds to the average of the colored curves above.

der stretching should ultimately smooth out the observed characteristics
completely by continuous adjustments to the applied constraint, assum-
ing that quasi-equilibrium stretching is achieved.

To investigate this issue and test whether large structures of biolog-
ically relevant RNA molecules are also amenable to convergent stud-
ies in both single molecule experiments and stochastic simulations, we
decided to study the mechanical unfolding ofEscherichia coli’s 1540-
base long 16S ribosomal RNA.

Single molecule stretching experiments ofE. coli 16S rRNA
The force-induced stretching ofE. coli 16S ribosomal RNA was

studied using a similar molecular construct and micromechanical setup
as for the stretching of the small structural modulesM1, M2 andM3
(see Materials and Methods). No ribosomal proteins which associate
to 16S rRNA to form the 30S subunit[21] of the ribosome[22] were in-
cluded for these stretching experiments. As the piezo stage is displaced,
the force begins to rise due to the elastic response of the DNA han-
dles. The results on Figs 4-5 show a well-structured and reproducible
unfolding pathway under mechanical stretching, in about 50% of the
tested constructs for which more than two unfolding/refolding rounds
could be performed before molecular breakage. In these cases (total 44
stretching curves), a∼ 1 µm-long quasi plateau is observed around 11-
15 pN, with force fluctuation amplitude of about 20%. This signal is the
signature of 16S rRNA unfolding by mechanical force. Other stretch-
ing curves exhibit somewhat more erratic behaviors, presumably due
to non-specific interactions of the construct with the glass surface of
the capillary (data not shown) Extension beyond the unfolding plateau
corresponds to the combined elastic response of the dsDNA handles
and the opened ssRNA molecule. Most refolding curves exhibit strong
hysteresis depending on stage velocity (50-300 nm/s).

We have quantitatively evaluated the statistical reproducibility of
unfolding curves between successive stretchings of thesame 16S
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FIG. 5: Reproducibility of the experimental unfolding ofE. coli 16S
ribosomal RNA under mechanical stretching (rate 50-300nm/s). Col-
ors correspond to stretching responses ofdifferent16S molecules taken
from independentsample preparations andindependentmicromechan-
ical experiments (refolding hysteresis are not shown for clarity). The
force-extension curves have been shifted vertically and horizontally to
best display the overall reproducibility between these independent mea-
surements. The black curve (bottom) corresponds to the average of the
four colored curves above.
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FIG. 6: Statistical comparison of stretching responses.A: Two inde-
pendentunfolding curves of 16S rRNA with different sampling rates
(green and red curves from Fig 5).B: Extraction of unfolding plateau
signals from the overall non-specific stretching curves and uniform
smoothing (N=300 regularly sampled points). This enhances correla-
tion sensitivity to the specific unfolding signatures around the median
line fits (i.e., line minimizing absolute deviations[23]).C: Deviations
from the median line fits are used to calcule therelativeSpearman cor-
relation coefficientrs [23] between unfolding curves (see text). In the
example shown,rs=60.5% which corresponds to a very good correla-
tion between the two experimental deviations relative to the median line
fits. Evaluating, instead,absolutecorrelations between actual unfolding
responses (above curves) yields an even larger,yet less discriminating,
Spearman coefficientrs=90%, due to the small positive slopes of both
unfolding plateaux.

molecule (Fig 4) and betweenindependentunfolding curves fromdif-
ferent 16S molecules (Fig 5) (i.e., different sample preparations and
differentmicromechanical experiments). The analysis is based on the
calculation of Spearman nonparametric correlation coefficientrs [23]:
rs = ΣN

i (Ri − R̄)(Si − S̄)/(ΣN
i (Ri − R̄)2ΣN

i (Si − S̄)2)1/2, where
Ri, R̄ andSi, S̄ are chosen as the rank-ordereddeviationsand averages
from themedian line fitsof the unfolding plateaux (Fig 6). Suchrelative
Spearman correlation coefficient is much more sensitive to the specific
unfolding signals, as compared to theabsoluteSpearman correlation of
the actual unfolding curves which yields higher, yet less discriminating
correlation coefficients (see Fig 6 for details).

In the context of comparing 16S unfolding curves, we found that
this relative Spearman correlation coefficients correspond to good cor-
relations above 50% and excellent ones above 70%, while|rs| <15%
reflects little or no correlation between unfolding pathways irrespec-
tive of the overall inclination of their unfolding plateaux. Stochastic
reproducibility between successive stretchings of thesamemolecule
is remarkably high (rs=75�4.6%, Fig 4) and still quite good between
unfolding curves ofdifferent16S RNA (rs=53�9.1%, Fig 5) despites
inherent variations betweendifferent sample preparations anddiffer-
ent micromechanical experiments. For instance, correlation between
independentgreen and red unfolding curves on Fig 6 is:rs=60.5%,
while the correlation distributions of allindependentcurves of Fig 5
(colors) with theiraverageunfolding response (black) is even higher:
rs=70�4.7%. See Table 1 for further correlation data and quantitative
comparison with stochastic simulations.

Before discussing the stochastic unfolding/refolding simulations of
16S rRNA, we want to emphasize that force fluctuations from the
plateau median line cannot be attributed to dehybridization of the DNA
handles for the following reasons:i) we never recorded such signals on
simple pUC19 dimer without RNA insert (see Fig 1 inset).ii ) experi-
ments done by other groups with the same infrared laser power have
preserved nucleic acids’ integrity[2, 24].iii ) recalling that we pull
on opposite DNA strands, the average force magnitude at which the
plateau appears is too low to originate from DNA denaturation[1, 2, 3].
Moreover, no torque is applied on the molecules using our optical
tweezer[4]. In addition, experimental force fluctuations cannot corre-
spond to the unzipping of a long structureless double stranded RNA
molecules; an analysis based on G+C contents as in ref.[25] does not
account for the experimental signal, nor does a thermal equilibrium en-
ergy calculations.

Stochastic unfolding/refolding simulations of 16S ribosomal RNA
The unrestricted stochastic simulations discussed above to model the

mechanical unfolding and refolding of small structural motifs are nu-
merically unpractical in the case of much larger RNA structures like
those of ribosomal RNAs. Hence, we have made the following three
additional assumptions to study the force-induced stretching ofE. coli’s
1540-base long 16S ribosomal RNA:i) the initial structure before me-
chanical stretching is assumed known from independent sources;ii)
Unfolding and (re)folding dynamics is restricted to the formed helices
underdirect mechanical tensionand to all potential helices that would
be underdirect tension once formed. Hence, large scale structural re-
arrangements can only originate and propagate from helices directly
coupled to the applied mechanical tension, as expected under strong
stretching conditions;iii) For each intermediate structure along the un-
folding pathway, the actual base pair extent of each helix under direct
tension isnot globally optimizedto best fit the end-to-end molecular ex-
tension imposed by the mechanical setup (this would become exponen-
tially difficult in the number of such helices). Instead, a local heuristics
extending the most stable base pair stacks and shrinking the weakest
helix ends is used iteratively to minimize free energy. This approach,
which yields a linear optimization in the number of helices under direct
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FIG. 7: Simulated force-extension responses ofE. coli’s 16S rRNA starting from the known native structure[21, 26] (left) andfrom a low energy
control structure (right). Two stretching curves are plotted for each simulation conditions (various colors) to illustrate reproducibility.
Cross-correlations between unfolding curves in each simulation conditions and quantitative comparison with experiments are presented in Table 1
Red curves (see below) for the native structure (left) resemble most closely the experimental curves (brown from Fig 4 and black from Fig 5)
also plotted for comparison.
(Green): the stochastic simulation is restricted to the sole helices formed on the initial structure assuming, in addition, that those cannot refold
once broken (78 helices for the native structure; 86 helices for the control structure).
(Blue): the initial helices and some 1,500 additional stems longer than 3bp and containing the most stable stack (5’-GC/GC-3’) can form and
break stochastically during stretching.
(Magenta): all additional helices longer than 3bp and stronger than 15kT are also included; total: 6,500 helices.
(Red): all additional helices longer than 3bp and stronger than 10kT are also considered; total: 18,000 helices. The lowest red curve corresponds
to the average of four independent stretching simulations starting either from the native structure (left) or the control structure (right).

tension, is usually very good as long as there are few mutually incom-
patible helices competing for the same bases, a typical situation under
strong mechanical stretching. Overall, we found that these restricted
stochastic simulations give virtually identical results for the smallM1,
M2 andM3 motifs (results not shown).

Adopting this heuristic numerical approach for the bareE. coli

16S rRNA, we simulated the force-induced unfolding pathway
starting either from the known native secondary structure inside
the ribosome[21, 22] or from a low free-energy structure pre-
dicted by mfold, referred at, hereafter, as the “control structure”
(http://bioinfo.math.rpi.edu/∼mfold/). The comparison between the
force-extension responses of these two structures was primarily in-
tended to probe the stochastic simulation’s sensitivity to the initial
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TABLE I: Statistical correlations between 16S rRNA mechanical responses under stretching. Spearman correlation coefficientsrs[23] are given
between the deviations from the median line fits of the unfolding plateaux (seetext and Fig 6). Statistics are made from: 4 to 10 unfolding curves
for each of the 4 stochastic simulation conditions (A, see text and Fig 7);independentexperiments on 4different16S rRNA molecules (B, from
Fig 5); and 6 successive stretchings from thesame16S molecule (C, from Fig 4). Curves are compared both between each other within eachset (to
evaluate “stochastic reproducibility”) and with the experiment average response (black curve on Fig 7).

16S rRNA unfolding response Stochastic reproducibility Comparison with experiment average(black)

Deviation from median line Ensemble cross-correlation (mean� std dev.) Correlation distribution (mean� std dev.)

A Simulations including: Native structure Control structure Native structure Control structure

∼ 80 initial helices (green) 20 � 21 % 20 � 20 % 23 � 32 % 12 � 12 %

1,500 helicesincl. 5’GC/GC3’ (blue) 22 � 28 % 48 � 21 % 31 � 30 % -1.7 � 8.5 %

6,500 helices>15kT, 3bp (magenta) 12 � 22 % 27 � 12 % 21 � 17 % 14 � 8.6 %

18,000 helices>10kT, 3bp (red) 57 � 3.8 % 15 � 10 % 47 � 8.8 % -7.2 � 12 %

simulation average (red) NA NA 55 % -1.1 %

B Experimentsondifferentmolecules 53 � 9.1 % 70 � 4.7 %

experiment average (black) NA 100 % (reference)

C Experimentson thesamemolecule 75 � 4.6 % 71 � 4.7 %

experiment average (brown) NA 75 %

structure. In both cases, the role of helices not initially formed on the
starting structure was studied, by allowing a variable number of he-
lices to form and break during different stochastic simulations. The
results in Fig 7 and Table 1 show that a reasonable agreement exists
between the experimental measurements (black and brown curves) and
the simulated force-extension responses starting from the known native
structure, whenall helices longer than 3bp and more stable than 10kT
(i.e., 6 kcal/mol) are includeda priori in the simulations (red curves).
This demonstrates that some of these 18,000 different non-native he-
lices play a significant structural role along the unfolding pathway.
More quantitatively, cross-correlations amonsgt 4 independent simu-
lated stretching curves (i.e., about 3 weeks of CPU on a 1.2GHz PC)
reveal a good stochastic reproducibility in these simulations starting
from the native structure and including about 18,000 possible helices:
rs=57� 3.8%. This is comparable to observed variations between ex-
perimental unfolding curves (see Table 1). Then comparing these indi-
vidual simulations with the experiment average curve (black curve on
Fig 5 from 4 independent experiments), we obtain a significative corre-
lation coefficient:rs=47�8.8%, while correlating the experiment aver-
age (black) directly to the simulation average clearly reflects common
features between the experimental response and the simulated unfold-
ing pathway curve starting from the native structure:rs=55%. In ad-
dition, restricting simulations to the 6,500 possible helices longer than
3bp and stronger than 15kT (magenta curves) or including even fewer
helices (blue and green curves), produces marked differences onthe
simulated stretching curves (Table 1 shows lower averages and larger
standard deviations for the simulation stochastic reproducibility and for
the correlations with experimental response). By contrast, equivalent
stochastic simulations starting from the control structure (Fig 7) present
clearly distinct results from experimental observations,i.e., |rs| <15%
(even for a large number of possible helices included in the simula-
tions). The fact that the stochastic reproducibility of these control sim-
ulations happens to decrease with the number of possible helices taken
into account (Table 1) reflects the concomitant decrease of specific un-
folding signal relative to the median line fit of the plateau (Fig 7). A de-
creasing signal over noise ratio naturally leads to a lower reproducibil-
ity of the simulated curves. The same trend is also visible between blue

and magenta curves for simulations starting from the native structure.

Fig 8 compares more closely a simulated force-extension response of
the known native structure (red) and an experimental stretching curve
(black). Again, both simple visual comparison and calculation of their
correlation coefficient as above (herers=61%) strongly suggest that the
experimentally probed structure shares, indeed, more structural features
with the actual native structure than with the control structure (Fig 7),
in spite of the absence of ribosomal proteins in these single molecule
stretching experiments ofE. coli’s 16S rRNA. Analysing the unfolding
pathway during the simulated force-extension response reveals that the
main predicted unfolding events (corresponding to abrupt force drops
on the red curve) are either related to thecooperative opening of several
native helices(as in the unfolding ofM3) or to thesimultaneous rear-
rangements of mainly non-native helicesleading to a stepwise increase
of the predicted extension of the molecule along the direction of pulling
(violet curve). This is illustrated with 12 successive snapshots of inter-
mediate structures along the stretching-induced unfolding pathway. In
particular, the 3’ major (III ) and 3’ minor (IV) domains are shown to
break and partially rearrange at the start of the stretching plateau (in-
termediates 2 to 4) while the 5’ domain (I), partially unfolded between
intermediates 4 and 5, remains then largely intact until most other na-
tive and non-native helices have been opened under stretching (inter-
mediate 11). Finally, the central domain (II ) exhibits a more distributed
unfolding fate which extends from intermediates 1 to 10. Hence, me-
chanical breaking of the native structure doesnot occur through suc-
cessive openings of entire native domains. Instead, native helices con-
tribute to a more complex (yet largely reproducible) sequence of force
drops, reflecting also the rearrangements of non-native helices. Forin-
stance, this is the case for the recorded signal between intermediates 8
and 10 which is largely caused by successive rearrangements of weak
non-native helices between 10kT and 15kT (compare magenta and red
curves for the native structure on Fig 7 and experimental and simulated
curves on Fig 8). In retrospect and more generally, these results un-
derline the possible pitfalls in attempting to assign specific structural
features of large RNA molecules by studying the mechanical unfolding
of their independently folded domains separately.
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FIG. 8: Comparison between simulated force-extension response from the known native structure[21, 26] (red) and an experimental stretching
curve (black) ofE. coli’s 1540-base long 16S ribosomal RNA. Spearmann correlation coefficient on this example:rs=61%. The simulated
end-to-end molecular extension of the 16S rRNA is also plotted (violet). Twelve intermediates on the simulated unfolding pathway are drawn
starting with the known native structure. Single stranded regions under tension are not drawn for convenience, hence the overall decreasing size
of the structure under stretching.

Discussion

We have measured the force range to unfold RNA secondary struc-
tures by mechanical stretching experiments. It extends from 10 pN for
AU rich to 25 pN for GC rich regions in agreement with intermediate
values reported for intermediate G+C contents. We also showed that
non-native rearrangements have a large influence on force-extension
measurements of complex RNA structures, as in the case ofE. coli’s
16S rRNA presented here.

Interestingly, this force-induced unfolding process of the bare 16S
rRNA’s domains seems to mirror, only in reverse order, the predominant
5’ to 3’ polarity of the in vitro assembly of 16S rRNA into 30S ribo-
somal subunits[27]. From a more general perspective, the high repro-
ducibility of the mechanical unfolding curves shown here (e.g., Figs 4-
5) sharply contrasts with the multiple folding and misfolding pathways
usually experienced by RNA molecules of this size during thermal re-
naturation. This reflects the fact that unfolding/refolding pathways un-
der mechanical constraint solely explore a restricted number of pos-
sible intermediate structures, as compared to unconstrained denatura-
tion/renaturation folding experiments. In other words, single molecule
unfolding and refolding experiments under mechanical control probe
particular, well-defined pathways due to the slowly varying external
constraint applied onto the ends of the RNA molecule. In addition,
we found that the overall unfolding curves did not critically depend on
the rate of pulling used (typically 300 nm/s); for instance, imposing

an extension rate twice as fast or twice as slow did not significantly
modify the force-extension curves (data not shown). In retrospect,this
restricted set of unfolding pathways and their relative insensitivity to the
precise values of external parameters also explain why we could simu-
late these force-induced unfolding pathways starting from a given sec-
ondary structure, while predicting such 1540-nucleotide initial structure
a priori is still beyond the current limitations of secondary structure
prediction algorithms.

Despite clear similarities, the agreement between simulated and ex-
perimental force-extension responses in Fig 8 is uneven. In fact, vari-
ations between predicted (red) and measured (black) curves might re-
flect real differences between the probed structure and the actual na-
tive secondary structure inside the ribosome[21, 22] used here as the
intial structure in the simulations. In particular, deviations at the begin-
ning of the stretching plateau might originate from alternative base pair
(re)folding of the 3’ major domain (III ) due to the absence of essential
ribosomal proteins (e.g., as s7[28]) and Mg2+ ions. Moreover, the rel-
atively short time scales (few seconds) of these stretching-induced un-
folding/refolding experiments might not be sufficiently long to let 16S
rRNA find its lowest free energy structure between successive pulls.

These results illustrate what should be expected, in general, when
RNA secondary structures are probed by mechanical force. Stronghe-
lices resist until their breaking exposes weaker regions, which are un-
able to withstand such high forces. This leads to the unfolding of a
significant domain with a concomitant force drop. A fraction of the
unpaired bases then typically reform different helices, which compen-
sate,in part, for the sudden relaxation of the mechanical tension. Yet,
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force-extension responses arenot completelysmoothed out, as initially
suspected[9, 10, 11], by these local rearrangements. Instead, they re-
veal the slow dynamics of large scale cooperative changes in complex
RNA structures. Tertiary interactions, likely marginal here due to the
absence of Mg2+ ions, are expected to strengthen the unfolding coop-
erativity between interacting domains and, concomitantly, increase the
reformation of non-native helices upon stretching.

Local rearrangements of RNA molecules, similar to those reported
here, likely occurin vivo as well, in particular, during translation when
large domains of messenger RNAs become unfolded upstream of the
ribosome. In fact, the influence of long-lived intermediate structures
is likely ubiquitous to the RNA folding problem itself, as slow struc-
tural rearrangements are known to occur in the context of bothin vitro
and in vivo RNA folding processes[12, 13]. New experimental tools
are needed to better understand the strategies of RNA molecules in
circumventing such kinetic traps (for instance through specific inter-
actions with ions or proteins[29], through RNA chaperones[13] or co-
transcriptional encoded folding pathways[17]).

By exploring RNA structure energy landscapes[30], micromanipu-
lations combined with appropriate stochastic simulations can help ad-
dress such questions, reflecting both structural and metastability fea-
tures of single RNA molecules.

Added note:
Onoaet al[31] have recently reported experimental results on the

mechanical unfolding of the L-21 derivative ofTetrahymena ther-
mophila ribozyme, a 390-nucleotide catalytic RNA. By contrast with
the present study which strictly focuses on the RNA secondary struc-
ture level (no Mg2+ added), Onoaet alprimarily investigate the tertiary
fold of this selfsplicing ribozyme in the presence of Mg2+. A variety of
hysteresis responses to the applied force is presented for various parts
of the molecule or in the presence of specific antisense oligos. A direct
correlation between Mg2+-dependent unfolding events and the opening
of specific native helices is proposed.

Materials and Methods

Sample displacement:Sample displacement is driven and monitored
by a nanometer resolution piezoelectric stage with capacitive position
sensor (P530-3, Physik Instrument). The piezoelectric stage position is
controlled and monitored by a 0-10V voltage.

Optical tweezer: The optical tweezer consists of a Nd:Yag infra-red
laser beam (TOPAZ, SpectraPhysics) focussed inside the capillary by a
1.3 N.A. x100 objective (Zeiss). The laser is always set at full power
(2.5 W) and the stiffness of the trap is controlled by the amplitude of an
acoustic wave generated by an acousto-optic modulator (A-A) placed
right after the laser head. The experiments described here were per-
formed with a 50% attenuation of the laser intensity, which sets the op-
tical trap stiffness around 7·10−5 N/m. The bead displacement from
the laser beam focus point is measured as follows: after passing through
the sample, the bead diffused light is collected by a 0.6 N.A. x40 objec-
tive (Zeiss). The objective back focal plane is imaged by a lense of 40
mm focal length onto a two-quadrant photodetector (S5980, Hamma-
matsu). The whole experiment setup is mounted on an invar table so as
to minimize thermal position drift. The photodiode electric currentsIA

andIB are converted into voltage and amplified by a home made am-
plifier. The voltage differenceVA − VB which is proportionnal to the
distance of the bead away from the trap center is further amplified and
filtered at 300 Hz by low noise amplifier (SR-50, Stanford Research In-
strument). The total light intensity that is collected by the x40 objective
measured by the voltage sumVA + VB is also amplified.

3’

5’3’

5’

TGGAGGAATCTACTGTGATAGATGACGTG−−−GTTAA
−−−GAUCACCUCCUUAGAUGACACTATCTACTGCAC−−−CAAUU

CTGTGATAGATGCCCTTT AACTTC3’ 5’
5’ 3’AATTG−−−GGATCGACACTATCTACGGGAAAUUGAAGAGUU−−−

pUC 19

biotin

Pst I

digoxygenin

BamH I

pUC 19

3’

5’

UUAAC−−−CCTAG

RNA

RNA

FIG. 9: Detailed molecular junctions between RNA 3’ end and digoxy-
genin labelled pUC 19 (top) and between RNA 5’ end and biotin la-
belled pUC 19 (bottom). Blue: pUC 19 DNA; Yellow: ssDNA oligos;
Green: RNA insert.

Data acquisition: The monitoring voltage coming out of the piezoelec-
tric driver, the voltage differenceVA−VB and the voltage sumVA+VB

coming out of the low noise amplifier are each directed into a separate
channel of an acquisition board (ATMIO-16X, National Instrument).
The driving voltage of the piezoelectric stage is generated by the same
board. The acquisition rate is 300 Hz which sets the duration of the
stretching/relaxing experiment around 10-20 seconds.

Calibration: The fourier power spectrum of a free bead inside the
trap follows a lorentzian law as expected for brownian fluctuations.
Fitting this curve with two parameters provides both the trap stiff-
ness and the voltage/distance conversion factor. In the case of a
pulling experiment, these two parameters are used to convert the ra-
tio (VA − VB)/(VA + VB) directly into piconewtons. The maximum
force that can be measured with our setup is 60 pN. The bead position
resolution inside the trap is� 5 nm which sets the force resolution at
� 0.4 pN. The bead is captured at about 500-1000 nm from the capil-
lary interior surface. The pUC19 dimer contour length is 1742 nm (0.33
nm/pb). The geometry imposes to displace the piezo stage by 48.8-56
nm and 985-1108 nm to completely unfolded the small RNA motifs and
16S rRNA, respectively.

Molecule synthesis and functionalization: RNA molecules were
synthesized by in vitro ”run off” transcription of EcorV linearized
DNA plasmids. These plasmids were constructed by inserting DNA
oligomers (IBA GmBh) starting with a T7 promotor region inside the
BamHI-PstI region of pUC19. The RNA sequence was flanked by 12
nucleotides at both extremities to allow for the ligation with the double-
stranded DNA arm extensions. In the case of 16S rRNA, the gene was
isolated by PCR from pKK3535 plasmid (courtesy of K. Lieberman
and H.F. Noller). It was cut by BstEII-BclI and then inserted in pUC19
together with oligomers carrying a T7 promotor with the DNA arm ex-
tensions and the complementary ends of the 16S sequence. The recon-
structed plasmids were produced in competent DH5 alpha bacteria and
were extracted and purified using Jetstar purification kit. They were
further sequenced. Due to the small length of RNA molecules, there
were extended with digoxygenin or biotin labelled dsDNA at, respec-
tively, the 3’ and 5’ ends to enable grafting between the capilary glass
surface and the silica bead. In practice, DNA oligomers (Fig 9) were
first ligated to Pst I restricted digoxygenin labelled pUC19 to yield a
12-nucleotide 3’ extension complementary to the RNA 3’ end. Then,
the DNA/RNA hybridization and ligation protocol was the following:
RNA was heated to 90◦C for 5 minutes then quenched on ice. It was
incubated with the former prepared pUC19 (molar ratio 100/1) at 70◦C
for 20 minutes and then slowly cooled (≪0.6◦C/min) to 16◦C. At this
temperature, T4 DNA ligase and buffer were added and the ligation re-
action was carried over 4 hours at 16◦C. The band corresponding to
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the pUC19 molecular weight on a 0.7% agarose gel was purified us-
ing Qiaquick (Qiagen). The whole procedure was repeated with the
RNA 5’ end using a BamH I restricted biotin labelled pUC19 DNA
(Fig 9). The band corresponding to a pUC19 dimer molecular weight
on a 0.7% agarose gel was purified using Qiaquick (Qiagen). In the case
of the 16S RNA, the functionalization protocol was slightly modified.
The oligomers were first hybridized with the RNA 3’ end following
the heat-cooling protocol described above. The excess oligomers were
washed away by 2 consecutive centrifugations at 4000·g and 16◦C
using GS-200 microspin column. The Pst I restricted digoxygenin la-
belled pUC19 DNA, T4 DNA ligase and buffer were added and the
ligation reaction was carried over 4 hours at 16◦C. The same procedure
was repeated with the 5’ end and the molecule was purified on an 0.7%
agarose gel by cutting the band corresponding to a pUC dimer molec-
ular weight. Prior to the experiment, the molecules are incubated with
the streptavidin coated beads (Bangs Laboratories) for 30 minutes. The
solution is introduced in the rectangular capillary by a peristatic pump
which allows buffer circulation. All experiments were performed at
room temperature and in Tris 10 mM pH 7 NaCl 250 mM buffer.

Acknowledgements
We thank K. Lieberman and H.F. Noller for kindly providing us with

the pKK3535 plasmid, D. Evers and R. Giegerich for the use of their
“RNAMovies” software, and L. Bourdieu, C. Ehresmann, S. Lodmell,
T. Pan, M. Poirier and E. Westhof for discussions and suggestions. This
work was supported in part by an ACI “Jeunes Chercheurs” grant from
Ministère de la Recherche (France), an NOI grant from the CNRS, and
by the “Physique et Chimie du Vivant” program of the CNRS.

[1] Cluzel, P., Lebrun, A., Heller, C., Lavery, R., Viovy, J.-L., Chate-
nay, D. & Caron, F. DNA: an extensible molecule.Science271,
792 (1996).

[2] Smith, S.B., Cui, Y. & Bustamante, C. Overstretching B-DNA: the
elastic response of individual double-stranded and single-stranded
DNA molecules.Science271, 795 (1996).
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