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Abstract

Even if the tuning between the first and second register of a clarinet has been
noticeably improved by instrument makers, the inharmonicity of the lowest twelfths
(which are too large) is still an unsolved problem. In this paper, we attempt to
understand the physical reasons for this problem and to explore whether or not
it is possible to improve the accuracy of these twelfths. The starting point is a
study of the inharmonicity associated with different bore perturbations inserted in
cylindrical instruments, including bore flare, open and closed holes, etc. This study
shows that the wide twelfths in question result mostly from the effects of the register
hole. Using an elementary model of the clarinet as well as optimization techniques,
an optimum location for the register hole is computed (we do not take into account
the use of the register hole as a B flat tone hole); the result turns out to be close to
the location chosen by the makers. Then small perturbations on the higher part of
the cylindrical resonator are introduced and optimized in order to find out whether a
simple solution exists for the improvement of the harmonic relationship between the
first and quasi-third resonance frequencies. The result is negative, which probably
explains why this fundamental problem of the clarinet has not yet been solved. As
a consequence, one has to resort to more complicated local solutions, for instance
with individual corrections for each tone hole.
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1 Introduction

In the last forty years many contributions, either experimental or theoreti-
cal, have been made to improve our understanding of single reed woodwind
instruments (see e.g.[1,2,3,4]). Our knowledge on the linear behaviour of the
resonator is now very satisfactory, so that most of the recent literature ac-
tually deals with the understanding of the sound production and oscillation
regimes. Nevertheless, interesting questions concerning the resonator can still
be asked in perspective of possible improvements or modifications of the in-
strument design. In this line, Benade [5] proposed in the seventies some basic
ideas and methods allowing to characterize the qualities of a wind instru-
ment (impedance peak alignment); Meynial and Kergomard [6] designed sim-
ple acoustical systems that shift the scale of a woodwind of a given micro-
interval; ref. [7] discusses in general how it is possible to predict the emission
frequencies, and even some aspects of the clean intonation and tone colour,
which naturally leads to the design of modified instruments as soon as ap-
propriate optimization criteria are defined. Recently, optimization techniques
have been used in order to define longitudinal profiles of brass instruments [8].

Concerning the clarinet, many instrumentalists and instrument makers agree
that, even if generally speaking it is now a very well tuned instrument, the
twelfths corresponding to the three lowest notes are slightly too large, some-
times causing problems for the musician. Despite many efforts, this problem
has apparently not yet been solved, so that it sometimes requires artificial cor-
rections from the clarinettists during performance. One could think a priori
of many reason for this problem: deviation of the bore from purely cylindrical
shape, existence of open or closed side holes (cavities), register hole, etc. All
these elements make the problem of perfect twelfths for a clarinet a difficult
task.

The first purpose of the present article is to analyse the origin of this tuning
problem; we will see that the main culprit is actually the register hole. Then
the question is to decide whether it is possible, for a simplified shape of a
clarinet, to design a register hole allowing for the two complete first registers
to be perfectly well tuned (the definition of the registers will be discussed in
the next section). Because it is easy to adapt the exact position of the tone
holes in order to get a correct tuning for one register, what really matters is
the values of the intervals between the two registers. For the sake of clarity,
we will reason with a simplified shape, cylindrical and without tone holes,
the different values of the tones being adjusted simply by choosing different
lengths for the tube.
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Two questions will be discussed successively :

i) what is the location of the register hole optimizing the tuning of the twelfths
intervals between the two first registers?

ii) which simple system, located upstream from the smallest length (corre-
sponding to the highest tone hole), can correct for the best the residual
tuning defaults?

A great simplification is obtained if we assume that the playing frequencies
are the resonance frequencies of the input impedance of the air column (i.e.
the first one for the first register and the second one for the second register).
This is a good approximation for low intensity (piano) playing levels, but not
necessary for high intensities (forte), where other impedance peaks play a role.
The outline of this paper is as follows: the second section recalls some general
features of the clarinet; the third section analyzes the length corrections and
their variation with frequency for the main kinds of discontinuities encountered
in wind instruments. The important rôle of the register hole can be deduced,
as well as the possible corrections which can be explored. Finally section 4 and
5 answer to the above questions i) and ii), respectively. Some useful formulae
are given in appendix A.

2 Generalities on the clarinet and on the work method

2.1 Description of a clarinet

The clarinet became of major importance in the orchestra at the end of the
eighteenth century. Its history is younger than other modern woodwinds, such
as flute, oboe or bassoon. This is probably due to its capital characteristic:
when the instrumentalist overblows, the clarinet gives an interval of one twelfth
(often called fifth) instead of one octave given by the other instruments. A
consequence is the compass of 19 semi-tones for the first register, and the
difficulty to provide a system of keys adapted to 10 fingers.

For a given length of the tube, several resonance frequencies of the resonator
exist, thus several oscillation regimes can be obtained for a given fingering. We
call register the set of tones obtained for the same regime: the first register
involves the tones corresponding to the first mode (i.e. the first resonance
frequency) of the resonator, the frequencies being noted f1 , and the second
register involves the tones corresponding to second mode, the frequencies
being noted f2 , and close to 3f1 . The opening of the register hole allows
to jump from a given tone of the first register to the corresponding tone
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of the second register, one octave and a fifth above, the two first registers
covering ideally more than 3 octaves. We notice that while this division into
two registers seems evident to the scientist, the analysis of the characteristics
of the tone colour is not so clear, and musicians divide this musical compass
in four registers: chalumeau, throat, clarinet and extrem [9]. A fact is that
for the fingerings corresponding to the higher tones of the first register, i.e.
for fingerings from f ′# to a ′# 1 , the opening of the register hole is not
sufficient in order to get the proper twelfth, and it is necessary to modify
slightly the fingering in order to ensure the well tuning. Thus, in order to
play the corresponding twelfths (i.e tones from c ′′′#), the third resonance,
corresponding to an interval of a 17th, is used, corresponding to that the
physicist can call the third register (see figure ??). We will understand that
an important reason of this fact lies in the imperfect action of the register
hole.

chalumeau throat clarinet extrem

b’

b’’’’

mode 2

mode 1

mode 3

e

c’’’

c’’’#

a’#f ’#

Fig. 1. Compass and operative resonance frequency for a clarinet.

The most commonly used clarinet is the clarinet in B flat, which sounds
one tone below the written tone. The scope of the paper is limited to this
instrument, using especially the geometrical parameters given by Nederveen
[1]. Five parts can be distinguished on a clarinet : the mouthpiece, the barrel,
the upper and lower joints and the bell. The deviation from a regular, cylin-
drical shape of the instrument bore (see figure 2), the existence of tone and
register holes, the dispersion due to visco-thermal effects alter harmonicity of
the resonance frequencies, with consequences discussed hereafter.

2.2 Sound production

The sound of the clarinet is produced by self-sustained oscillations. By study-
ing these oscillations, it is possible to show that at weak level the playing
frequencies are imposed by the zero values of the imaginary part of the input

1 The notation system adopted in this paper is the same as that used by Baines
[10].
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Fig. 2. Radius of a clarinet as a function of the distance from the reed tip. Measure-
ments by Nederveen [1].

admittance of the resonator. Therefore they are very close to the frequencies
of the maxima of the input impedance modulus. It can be said that the in-
strument is excited by a ” weak reed”, because the frequency is imposed by
the resonator. Actually the reed has a small influence on the tuning, by two
different ways: on one hand the volume velocity created by the reed move-
ment is added to the one produced by the pressure difference across the reed
opening; on the other hand the damping of the reed acts also on the playing
frequency. It is classically shown that the two effects can be taken into account
as corrections to the length of the instrument, almost independently of the fre-
quency, i.e. of the played tone (see [1,7,11]). When the player blows stronger
the playing frequency can slightly change, partly because of the inharmonicity
of the resonances of the resonator and the damping and inertia of the reed.
This question is intricate because of the influence of many parameters, but in
what follows, the considered tuning corresponds to low levels, the goal being
to achieve a satisfactory tuning at least for pianissimo levels. We notice that
to achieve a proper harmonicity of the two first resonances is important for a
note alone: the frequency can remain independent of the playing level and no
intonation difficulty occurs when the two first resonances have similar magni-
tude.
For the present purpose, the problem of inharmonicity of the two first res-
onances is slightly different: the first resonance is when the register hole is
closed and the second one is when the hole is open, in order to overblow with
a correct tuning. The targeted interval is almost exactly a pure twelfth, i.e.
a ratio of 3. Actually for a tempered scale, the ratio f2/f1 is not exactly 3,
because the tempered intervals are different from the natural ones, except for
the octave: the exact value is 219/12 = 2.9966 . The relative difference is 0.11%,
i.e. 2 cents (it is the difference between the tempered fifth and the harmonic
one, called the ”skhisma”). Nevertheless this difference is very small and for
simplicity in what follows the ratio 3 is considered. We notice that 2 cents
are inaudible, and anyway the instrumentalist, by adjusting his embouchure,
has a certain ”liberty extent”, certainly larger than that, especially for higher
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notes.
As a conclusion, an important work of the maker is to make identical the
resonance frequencies of the air column and the desired playing frequencies,
ensuring that the relationship f2 ≃ 3f1 is satisfied. If this goal is imperfectly
reached, the maker can chose to favour one or another register, by adapting
the location of the tone hole: in practice it seems that it is the first register
which is ”sacrificed”, as shown by the tuning diagram presented in the follow-
ing subsection. Finally because of the residual rôle of the open register hole
it is necessary to find a compromise between a correct tuning of the twelfths
when using the register hole and harmonicity of the two first resonances for
the notes of the first register, wanted for a correct tuning at fortissimo levels.
The first requirement is probably the most important, and the present paper
focused on it.

2.3 Tuning diagram

Figure 2 shows an example of tuning and inharmonicity diagrams obtained
with an instrument Buffet Crampon Prestige, played by Pierre Mallet. Mea-
surements where done playing each twelfth in an ascending chromatic scale,
softly. We present results for the part of the scale where musicians use the
same fingering to play the fundamental and the associated twelfth, the only
difference being in the register key: closed for producing the first register tone
and open for producing the associated twelfth.
The first thing to note about the tuning is the intermediate compromise made
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Fig. 3. Deviation of the tempered scale expressed in cent for the playing frequency
and measured deviations of the second resonance frequency for a clarinet Buffet
Crampon Prestige.

by the maker in order to get an accurate twelfth between tones in the low and
second register. The tuning of the first register tones appears to be sacrificed
in order to improve the register jump. However, the diagram of inharmonicity
between the undisturbed first and the shifted second resonance frequencies
shows that the register jump is not so perfect across the entire scale. It ap-
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pears clearly that the register hole opening pulls mode 2 upward in frequency
at both ends of the scale. The associated twelfths are widened, but thanks to
the ”liberty extent” of the musician, only the first lower twelfths, which are
too high an amount to about 30 cents, are musically annoying. Even if this
tuning default appears to be more or less important according to the player
embouchure and the dynamic level (piano, mezzoforte or fortissimo), it has
also been reported by many authors [12,13,7] who used an artifial mouth al-
lowing to maintain a constant embouchure. As a consequence, the origin of
this problem appears to lie in the physic of the clarinet only. Then, makers
are presented with a dilemma: either they give clarinets a good low register
or a perfect clarinet register. Finally, it should be mentioned that even if each
instrument has its own harmonic structure, this problem of the register hole
effect is a general feature for a lot of clarinets.

2.4 Work hypotheses

A perfectly cylindrical tube is considered as a starting point, with effective
length ℓeff , the ideal playing frequencies being given by the following approx-
imations:

f1 =
c

4ℓeff

; f2 =
3c

4ℓeff

,

where c is the sound speed in air. The effective length ℓeff is the length between
the effective input, defined by taking into account the length corrections due
to reed and mouthpiece, and the effective output, located at the distance 0.6R
of the end of the tube, taking into account the radiation of the tube. When
a tone hole is open, a first approximation is to consider that the tube is cut
at the centre of the hole, the corresponding length correction being now well
known [14] and almost independent of the frequency. The goal is to achieve
harmonicity of the two frequencies f1and f2 , for the effective lengths corre-
sponding to each hole, i.e. between two extreme values of ℓeff , written ℓmin

and ℓmax. The precise intermediate values of the length is without importance
for the present objective. As a consequence, the absolute effect of small dis-
continuities, e.g. cavities or tapers, is not important as well, only their relative
effect between these two registers being important. It is therefore convenient
to consider a continuous variation of the length between the two extreme val-
ues. After the optimization of the intervals between the two registers between
these two values, it will be possible to find the precise location of the tone
holes achieving the desired scale. On this point of view, the method is similar
to that used for the design of micro-interval systems provided at the input of
an instrument [6].

7



How do achieve harmonicity of the frequency f1 of the tone of the first
register and the frequency f2 of the tone obtained when the register hole
is open, for all lengths between ℓmin and ℓmax? First we will find an optimal
location for the register hole, located upstream of ℓmin, secondly we will study if
a correction system can compensate the residual defaults of this register hole.
The dimensions of the hole are considered to be optimized by the practice
of makers, and therefore are regarded as imposed. It is actually a difficult
question, related to nonlinear effects as well as water effects, the important
fact being that the linear behaviour, at low level, is well known. We do not take
into account the use of the register hole as a B flat tone hole. The correction
systems are sought in order to be without manipulation by the instrumentalist,
and therefore to act on both the first and the second registers, contrary to the
register hole itself.

All calculations are done ignoring the different kinds of dissipation (due to
visco-thermal effects in the boundary layers, to radiation, etc...): dissipation
is known to have a negligible effect on the resonance frequencies. In Appendix
B the effect of the resistance of a small hole is discussed, and even if nonlinear
effects are taken into account, it is shown to be negligible. A consequence
is the systematic use of purely imaginary impedances. Perturbation to the
planar mode theory is classically taken into account using lumped elements
representing the effects of higher order, evanescent modes of the tubes.

For the study of any perturbation, the used method, very simple and intu-
itive, is to convert the perturbation effect into length correction.

3 Length correction and inharmonicity produced by the insertion

of a discontinuity

3.1 Length corrections: definition and general theoretical formulation

Modifying an air column alters the resonance frequencies and their relationship
from the original values provided by the non-perturbed system. This effect
may be expressed conveniently in terms of a length correction, noted ∆ℓ,
that must be added to the length L of the perturbed system, in order to
compute easily its eigenfrequencies as if it was not perturbed (see figure 4).
The concept is ideally independent of the frequency, but can be extended when
it is not the case. Using an exact formulation of ∆ℓ is possible, the prediction
of the resonance frequencies being possible by an exact, iterative procedure.
In the present study, we prefer looking for an approximation of the length
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corrections to the first order. This gives a sufficiently accurate determination
of the resonance frequencies and the advantage is that the length corrections
associated with different perturbations can be simply added. The method used
by Meynial and Kergomard [6] to translate a complete register from a given
value was based on calculation of length corrections looking backward from
the open end to the top-end (the mouthpiece) of the instrument where the
impedance must be infinite for self-sustained oscillations. The interest lies in
the fact that the expression of the length corrections depends on the fingering
only via the playing frequency.

Considering the problem of a tone hole, or any discontinuity in parallel,
branched on a straight cylindrical tube (see figure 4), the following equation
can be written at the location of the discontinuity (x = ℓ)

Yup = Y + Ydown , (1)

where

• Yup and Ydown are the main tube admittances upstream and downstream the
discontinuity, respectively (throughout the paper the admittance is defined
as a ratio of an acoustic volume velocity and an acoustic pressure);

• Y is the admittance of the inserted discontinuity.

Yup Ydown

∆ + 
���
���
���
���
���

���
���
���
���
���

Y

Fig. 4. Small perturbation on a straight cylindrical tube and equivalent (ℓ + ∆ℓ)
non-perturbed system: the two systems have the same eigenfrequencies.

Looking backward from x = ℓ to x = 0 as mentioned earlier and writing
Ydown = −jYc tan k(ℓ + ∆ℓ) , equation (1) becomes:

−jYc tan kℓ = Y − jYc tan k(ℓ + ∆ℓ) , (2)

where

• ∆ℓ is the length correction;
• j =

√
−1 ;

• Yc = S/̊c is the characteristic admittance of the main tube (̊ is the density
of air, c is the speed of sound and S the cross section area of the main tube);

• k = 2̉f/c is the wavenumber.
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After some algebra, the following result is deduced:

k∆ℓ = Arctan





−j Y
Yc

cos2 kℓ

1 − 1
2
j Y

Yc
sin 2kℓ



 , (3)

which can be approximated in the limit of small Y/Yc by

k∆ℓ ≃ −j
Y

Yc

cos2 kℓ . (4)

Therefore, the discontinuity is described by a quantity called ”length correc-
tion” which depends on the pitch of the played tone, the geometry and the
location of the discontinuity. It can be reminded that the formula of the first
order perturbation (see equation (4)) can be directly deduced from the well
known Rayleigh variational principle. Otherwise the previous formula is use-
ful for different kinds of discontinuities, but for some particular cases, other
formulae need to be derived, as it will be seen below.

Remark 1 When the discontinuity is in series, the admittances Y and Yc

need to be replaced by the impedances Z and Zc, respectively.

3.2 Inharmonicity of the resonance frequencies

Inharmonicity can be defined as the relative difference between the resonance
frequency fn and n times the first resonance f1, as follows:

IH =
fn − nf1

nf1

=
ℓeff + ∆ℓ1

ℓeff + ∆ℓn

− 1 = −∆ℓn − ∆ℓ1

ℓeff

+ o(
∆ℓ

ℓeff

) , (5)

where ℓeff is the acoustic length of the non-perturbed system and ∆ℓn is the
length correction associated to the nth resonance.
In the case IH > 0 the basic intervals are enlarged. On the contrary, when
IH < 0 the intervals are reduced. In the present paper, results are given in
cent. The cent is the micro-interval equal to one hundredth of a tempered
semi-tone:

1 cent = 5, 78.10−4 and IH)cents =
IH

5, 78.10−4
.

A fact to be mentioned is that the smallest frequency deviation perceptible
by human hear is estimated to be 4 cents corresponding to IH ≃ 0.25% [15].
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’ SSs

Table 1
Acoustic basic systems and associated length corrections.

3.3 Length corrections and inharmonicity formulae for acoustic basic systems

This section is devoted to the analysis of inharmonicity associated with simple
acoustical systems depicted in table 1. The starting point is the calculation
of first order length corrections. Then analytical expressions of inharmonic-
ity between the first and second resonance frequencies are derived for each
case. For exact formulations of length corrections, the reader is invited to see
appendix A.

3.3.1 Open or closed hole

Since the size of a tone hole is much smaller than the wavelength in the fre-
quency range of interest, the acoustic effect of the hole may be represented
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by means of the common T-shaped circuit shown in figure 5. The series and
shunt impedances Za and Zs correspond to the antisymmetrical and symmet-
rical field in the chimney, respectively [16]. As mentioned earlier, energy losses
are ignored in this study so that the real parts of the tone hole impedances
are equal to zero. Under these assumptions, the series impedance Za appears
to be a negative inertance. Concerning the shunt impedance Zs, it is written
as

Zs = Zh0 + Zs0 ,

where Zh0 is the planar mode impedance at the input of the side branch and
Zs0 is an inertance due to the higher order modes in the tube and the chimney.
The impedance Zh0 is inductive for the case of an open tube, or capacitive for
the case of a closed tube. Moreover, due to the smallness of the correction as-

Za Za

Zs

Fig. 5. Equivalent electrical circuit for a branched tube: the series and shunt
impedances Za and Zs correspond to the antisymmetrical and symmetrical field in
the chimney.

sociated with the series impedances [17], only the impedance Zs is considered.

Open hole Even if the acoustical rôle of a register hole and a tone hole are
strongly different, their modelling uses the same formalism. However, in the
limit of zero frequency, it is important to note that the effect of an open hole
increases to infinity (see equation (3)): the main tube behaves as if it was cut
at the location of the hole. For the resonance frequencies, the hole has a finite
effect which depends on two quantities, the ratio Y/Yc and the location ℓ of
the hole. Assuming Y/Yc ≪ 1 et kℓ ≪ 1, equation (4) is valid: this is the case
of a register hole.
For tone holes, the ratio Y/Yc becomes large and equation (4) cannot be used.
As a consequence, in order for the length correction to be small, its calculation
differs from the general case: the considered non-perturbed tube is the tube
cut at the location of the hole instead of the tube with total length. For an
open hole of height h, radius r at distance ℓd from the open end, the length
correction is no longer obtained from equation (3), but from the following
equation:

−jYc cotan k∆ℓ = Yh − jYc cotan kℓd , (6)

where Yh is the open hole admittance.
By rewriting equation (6) and using Taylor’s formula to the third order in kℓd
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and to the first order in k∆ℓ, the following result is obtained

∆ℓ ≃ 1

q + 1
ℓd(1+(kℓd)2/3)

, (7)

where q = r2/R2h′ is relative to the geometry of the tone hole.
In the lower frequency limit, the length correction becomes a constant value
given by ∆ℓ = ℓdℓhole/(ℓd + ℓhole) , where ℓhole = (S/s)2 h′. When frequency
increases, the length correction increases too so that the resonance frequencies
are lowered.

Concerning the f2/f1-mode frequency ratios, equation (7) leads to an ex-
pression for inharmonicity in terms of the tone hole geometry q and its location
ℓd given by:

IH ≃ − 16

3̉

k3
1ℓ

3
d

(1 + qℓd)2
, (8)

where k1 is the wavenumber of the fundamental frequency of the played tone.
Finally, inharmonicity associated with an open hole is negative and decreases
with the frequency as shown on figure 6.
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Fig. 6. Length corrections (left) and corresponding inharmonicity (right) for a tone
hole of radius r = 3 mm, height h = 3 mm, located at a distance ℓd = 30 mm from
the open end.

Register hole Since the tone hole dimensions are small, the shunt impedance
for an open side chimney appears to be an acoustic inductance (or acoustic
mass) given by L = ̊h′/s where h′ = h+hr +hm is the height of the chimney
including the length corrections associated with radiation, hr, and with the
matching volume hm. Then, the admittance Y to substitute in equation (4) is
given by Y = 1/jL̒. Since Y/Yc ≪ 1 is valid, the length correction becomes:

k∆ℓ ≃ − sℓ

Sh′

cos2 kℓ

kℓ
, (9)

where
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• s is the cross section area of the register hole;
• ℓ is the distance of the hole from the clarinet reed tip.

Equation (9) states that a small open side hole entails systematically a negative
length correction, i.e. an increase in the resonance frequencies (see figure 7).
It also shows that ∆ℓ decreases as the inverse of the square of frequency.
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Fig. 7. Deviation of the second resonance frequency due to a register hole of radius
r = 1.75 mm, height h = 12.5 mm, located a distance ℓ = 135 mm down the reed
tip. For the acoustic length corresponding to fingering b , the register hole does not
alter the second vibration mode: the register hole is located at one third the effective
length for this fingering.

Using equation (9) and noting that the register hole has no effect on tones
of the first register, for which it is closed, the frequency shift of the second
resonance frequency due to the register hole opening can be derived as follows:

IH ≃−∆ℓ2

ℓeff

,

≃ 2

3̉

s

Sh′

cos2k2ℓ

k2

, (10)

where k2 = 3k1 is the wavenumber of the played tone. This expression points
out that the frequency deviation depends on 2 parameters, s/Sh′ and ℓ, as for
a tone hole. Moreover, the register hole generates positive inharmonicity by
pulling the second vibration mode upward in frequency at both ends of the
register scale and has no effect at a pressure node (see figure 7).

Closed hole The input impedance of the planar mode in a closed hole is
given by Zs = 1/jC̒ , where C = v/̊c2 is the acoustic compliance due to

14



volume v, equal to the closed-hole volume. Using equation (3) and noting
X = v/Sℓ, the length correction is given by:

∆ℓ ≃ Xℓ cos2 kℓ . (11)

This expression shows that the effect of a closed hole inserted on a cylindrical
tube is described by a positive length correction entailing a decrease in the
resonance frequencies. In addition, since kℓ ≪ 1, the effect of a cavity is
proportional to the ratio of the inserted volume to the volume of air included
between the reed tip and the closed hole. At low frequencies, equation (11)
also states that the virtual volume of air corresponding to the flow induced by
the reed movement introduced by Nederveen, does not produce inharmonicity.

With the use of equation (11), the inharmonicity between first and second
resonance frequencies is derived as follows:

∆ℓ1 − ∆ℓ3 =− v

S
(cos2 3k1ℓ − cos2 k1ℓ)

=
2v

S
sin2 2k1ℓ cos 2k1ℓ ,

so that:

IH ≃ 4

̉

v

S
k1 sin2 2k1ℓ cos 2k1ℓ . (12)

The first thing to notice about equation (12) is that the f2/f1 ratio depends on
2 parameters, the location ℓ and the ratio v/S. Moreover, as a consequence of
the term cos 2k1ℓ, either negative or positive inharmonicity is associated with a
closed hole (see figure 8) the critical point being k1ℓ = ̉/4. An additional fact
to be mentioned is that since the magnitude is proportional to the wavenumber
k1, inharmonicity increases with the fundamental frequency of the played tone.
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Fig. 8. Length corrections (left) and corresponding inharmonicity (right) for a closed
hole whose volume v = 0.6 cm3 as a function of k1ℓ.
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3.3.2 Abrupt change in cross section in the upper part of the instrument

Calculating the length correction to the main tube, it can be written at the
discontinuity (x = ℓ):

−jY ′
c tan kℓ = −jYc tan k(ℓ + ∆ℓ) ,

where Y ′
c = S ′/̊c and Yc = S/̊c are the characteristic admittances of the

tube located upstream and downstream the discontinuity, respectively. In the
limit of ˺ = S ′/S approaching unity, it follows:

k∆ℓ ≃ 1

2
(˺ − 1) sin 2kℓ . (13)

Under this assumption, ∆ℓ can be added either to the tube above or below
the discontinuity.

Inharmonicity associated with a change in cross section is derived from
equation (13) and results in

IH ≃ 4(˺ − 1)

3̉
sin3 2k1ℓ . (14)

In this equation, the term sin 2k1ℓ still remains positive since kℓ ∈ [0 , ̉/2].
As a consequence, the kind of inharmonicity associated with the discontinuity
depends only on the value of ˺ as it is shown on figure 9. As expected, the
behaviour of an enlargement is similar to that of a closed cavity.
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Fig. 9. Inharmonicity between the first and second resonance frequencies due to a
abrupt change in cross section area as a function of k1ℓ : S′ = 0.98 S (left) and
S′ = 1.02 S(right).

3.3.3 Localized enlargement/contraction

Consider a localized enlargement (or contraction) of length ℓ′ located at dis-
tance ℓ from reed tip in a cylindrical air column and let ˺ = S ′/S be the ratio
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of the cross section area of the enlargement (or contraction) over the one of
the main tube respectively. Assuming the discontinuity in cross section ˺ close
to the unity, the change in resonance frequencies can be expressed by means
of length correction with the expression

k∆ℓ = (1 − ˺) sin kℓ′ cos k(2ℓ + ℓ′) . (15)

When ℓ = 0, one can note that equation (15) gives the expression obtained for
an abrupt change in cross section area in the case S ′ < S (see equation (13)).

Concerning the relationship between first and second resonance frequencies,
equation (15) leads to the following expression for the inharmonicity:

IH ≃ 4

3̉
(˺ − 1)(sin3 2k1ℓ − sin3 2k1(ℓ + ℓ′)) , (16)

which states that the two diameter discontinuities located at points ℓ and ℓ+ℓ′

entail either positive or negative inharmonicity as shown on figure 10.
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Fig. 10. Length corrections (left) and corresponding inharmonicity (right) for a lo-
calized enlargement as a function of k1ℓ (R = 7.5 mm, ℓ′ = 10 mm, S′ = 1.04 S).

3.3.4 Change in taper close to the tube input

The acoustical behaviour of a change in taper over a length ℓc can be repre-
sented by means of an equivalent electrical circuit (see figure 11) including two
inductances of opposite sign and the elements of a cylindrical tube of length ℓc

[18]. Writing X1 = ℓ/x1 and X2 = (ℓ+ ℓc)/x2, the length correction calculated
to first order is given by

k∆ℓ ≃ X2
cos2 k(ℓ + ℓc)

k(ℓ + ℓc)
− X1

cos2 kℓ

kℓ
. (17)

Equation (17) is valid either for a positive or negative taper change, the dif-
ference being in the sign of the xi. The xi quantities are positive for a positive
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Fig. 11. Equivalent electrical circuit for truncated cone involving a pair of inertances
of opposite sign and a non tapered tube.

cone and negative for a negative cone. With equations (9) and (17), we notice
that a single taper change is equivalent to an open side hole.

In order to evaluate inharmonicity generated by a small truncated cone, it
is convenient to reformulate the expression of the length correction in terms of
two control parameters by rewriting equation (17). Since the approximations
kℓc ≪ 1 and ℓc/x1 ≪ 1 still remain, it is possible to write:

cos2 k(ℓ + ℓc) = cos2 kℓ − k(ℓ + ℓc) sin 2kℓ + o(kℓc) ,

and
1

kx2

=
1

kx1(1 + ℓc/x1)
≃ 1

kx1

.

Therefore a simplified expression for the length correction is derived

k∆ℓ ≃ − ℓc

x1

sin 2kℓ , (18)

where ℓc/x1 and ℓ are the two parameters. Under these conditions and with
the use of equation (18), inharmonicity is given by:

IH ≃ − 8

3̉

ℓc

x1

sin3 2k1ℓ . (19)

Looking at figure 12 and equation (18), one can notice the equivalence between
a positive truncated cone and an abrupt change in cross section for the case
S ′ < S.

3.4 Inharmonicity associated with radiation and dispersion

Because of dispersion due to visco-thermal effects, the eigenfrequencies of the
cylindrical air column cannot be exactly harmonically related. Taking into
account dispersion leads to write the speed of sound with respect to frequency
as follows

c = c0

(

1 − 1

R
√

2k
(
√

ℓv + (˼ − 1)
√

ℓh)

)

, (20)
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Fig. 12. Inharmonicity between first and second resonance frequencies for a positive
troncated cone as a function of k1ℓ (R = 7.5 mm, ́ = 1.7◦, ℓc = 5 mm).

where c0 is the speed of sound into infinite space, ℓv and ℓh are the viscous and
thermal characteristic lengths, R is the tube radius, ˼ = Cp/Cv and k = ̒/c0

is the unperturbed wavenumber of the played tone. Equation (20) implies that
dispersion entails positive inharmonicity which can be evaluated by

IH =
Γ1 − Γ3

1 − Γ1

, (21)

where Γn = 1
R
√

2kn

(
√

ℓv +(˼−1)
√

ℓh) is the dispersion factor associated to the
nth eigenfrequencies. As shown in figure 13, inharmonicity decreases as the
inverse of the square root of the playing frequency.

Finally, since radiation of wind instruments depends on frequency, radiation is
also a cause of inharmonicity. The radiation length correction given by Caussé
et al [19] in the case of unflanged circular pipe is

k∆ℓ = Arctan
(

0.6133kR − 0.036(kR)3 + 0.034(kR)3 ln kR − 0.0187(kR)5
)

.

(22)
As a consequence, inharmonicity appears to be positive and very small (see
figure 13).
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Fig. 13. Inharmonicity associated with visco-thermal dispersion (left) and radiation
(right) for a cylindrical tube of radius R = 7.5 mm.
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Basic perturbation Sign of IH Effective parameters

open side hole < 0 s/Sh′ and ℓd

closed-hole
kℓ < ̉/4 ⇒ IH > 0

kℓ > ̉/4 ⇒ IH < 0
v/S and ℓ

abrupt change in cross section S′ > S ⇒ IH > 0
S′/S and ℓ

in the upper part of the instrument S′ < S ⇒ IH < 0

localized enlargement/contraction > 0 or < 0 S′/S and ℓ

diverging troncated cone < 0 ℓ/x1 and ℓ

converging troncated cone > 0 ℓ/x1 and ℓ

register hole > 0 s/Sh′ and ℓ

Table 2
Inharmonicity associated with basic acoustical perturbations close to the tube input.

Remark 2 The influence of the temperature on the inharmonicity has not
been investigated in this study whereas an axial temperature drop has previously
been reported [20]. Assuming the perturbation being small, the effect of this
gradient may be evaluated by means of a length correction in the limit that the
expression of the temperature profile in the tube is well known.

3.5 Conclusion

The previous results concerning inharmonicity are taken up again in table 2
for clarity. This table appears to be very useful to predict the effect on the two
first resonance frequencies of small change. In particular, it allows to improve
the harmonic structure of a clarinet and for our purpose, it may give clue to
understand the origin of the clarinet tuning shortcoming.

Figure 14 illustrates inharmonicity associated with the main kinds of pertur-
bations encountered in a simplified clarinet except for the flaring horn at the
open end. The instrument is considered perfectly cylindrical with 18 tone holes
of fixed size to play a complete register and a register hole in order to achieve
tones of the second register. We focus our attention on the effect associated
with the set of closed or open tone holes, the register hole and dispersion.
Examination of inharmonicity due to closed side holes shows the tendency to
produce negative inharmonicity accross the entire register: the mode ratios
fall between −25 and −20 cents flat for tones in the middle of the register and
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increase to zero for tones at both ends.
As expected, open holes also generate negative inharmonicity but the effect
becomes significative for the highest tones only.
Concerning the effect of dispersion, positive inharmonicity of an amount to
about +10 cents accross the entire register is produced.
As a conclusion, when the register hole effect is ignored, the f2/f1-mode fre-
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Fig. 14. Predicted inharmonicity associated with : dispersion (△), closed holes (¤),
open holes (⋆). Black squares (¥) represent the sum of all these inharmonicites.

quency ratios appears to be less than 3 for every fingerings except for the
three lowest tones (see figure 14). An important fact to be mentioned is that
calculations have been performed on a simplified clarinet without a flaring
horn whose effect narrows the relationship between first and second resonance
frequencies for lowest tones only. Then, considering a flaring horn would give
negative inharmonicity for the lowest tones as it has been reported earlier
[21] with measurements. Moreover, figure 15 shows the measured deviation
of the second resonance frequency due to the register opening on a clarinet
reported by Dalmont et al. [7]. Experimental results are in good agreement
with the predicted values given by the only equation (10). It shows that the
main explanation for the tuning problem of the clarinet lies in the register hole
opening and that inharmonicities associated with open holes, closed holes and
dispersion are apparently compensating troubles on a real clarinet. Finally, it
leads to the conclusion that if positive inharmonicity is observed on a clarinet,
this is mainly due to the effect of the register hole which tends to enlarge the
f2/f1 ratios across the entire register. Then, in the following, the register hole
is considered as the only inharmonicity source.
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Fig. 15. Measured and theoretical deviations of the second resonance frequency due
to the register hole opening for a clarinet (see equation (10) for the predicted values).
The register hole location is 140 mm down the reed tip.

4 Optimization of the location of the register hole and tuning cor-

rections : statement of the problem

4.1 Formulation of the optimization problem

Optimization techniques are used to find a set of design parameters x⋆ =
{x⋆

1, . . . , x
⋆
n} that can in some way be defined as optimal. These parameters

are obtained by minimizing (or maximizing) an objective function F which
may be subject to constraints and/or parameter boundaries.
In the present paper, we use optimization to give suggestions on how to im-
prove the harmonic relationship between the first and the second resonance
frequencies by first optimizing the location of the register hole and then by
inserting perturbations in the higher part of the resonator. Thus, the design
parameters are subjected to the following requirements:

• small changes location must be less than the distance between the reed tip
and the first tone hole;

• dimensions of the acoustical systems must be reasonable for the realization;
• geometrical dimensions are positive.

Our optimization problem is formulated as follows:











min
x∈IRn

F (x) where F is the objective function

lbi ≤ xi ≤ ubi i=1,. . . ,n
(23)
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where x is the vector of design parameters (x ∈ IRn) and lbi and ubi are the
lower and upper parameter boundaries respectively, for the design parameter
xi.

4.2 Objective functions

4.2.1 Location of the register hole

The first aim of this paper is to find the optimum register hole placement on a
cylindrical tube in order to play two registers accurately in tune with the same
fingering. As previously shown, the presence of the register hole means that it
is impossible to built a clarinet in such a way. Thus, the objective is to find the
register hole location that entails the smallest frequency shift of the second
resonance frequency for all fingerings. As a consequence, the first optimization
is performed in order to play a 19-tone compass i.e a complete register. Then,
a second optimization is performed restricting attention to fingerings from e
to f ’ (above this fingering, clarinettists do not use the same fingering to play
the fundamental and the associated twelfth).
Assuming that the height and the radius of the register hole are fixed according
to the practice of instrument makers, the distance ℓ of the hole from the
clarinet reed tip is the only optimization variable. The optimization problem
deals with equation (10) which predicts theoretically the frequency deviation
associated with the opening of the register hole. It can be formulated with one
of the two following objectives:

• objective 1: to minimize the maximum of the frequency deviation;
• objective 2: to minimize the mean of the square of the derivative with respect

to k of equation (10).

The first objective consists in limiting the most important tuning default of
the instrument. This objective, which is very simple and intuitive for anyone
who is interested in instrument design, can be written:

Objective 1: F1 = sup

(

2

3̉

s

Sh′

cos2k2ℓ

k2

)

. (24)

An interesting point about objective 1 is that the solution can be approximated
analytically as it is shown in section 5.1.1. On the contrary, once the maximum
of the deviation is achieved for a fiwed register hole location, the frequency
deviations associated with other fingerings are not taken into account for the
evaluation of the function.
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Concerning objective 2, the objective function to minimize is written as

Objective 2: F2 =
1

2

∫ kmax

kmin

[

∂

∂k2

(

2

3̉

s

Sh′

cos2k2ℓ

k2

)]2

dk2 , (25)

where ∂/∂k is the derivative with respect to the wavenumber k, kmin and
kmax being related to the playing frequency via the effective length by kmin =
3̉/2ℓmax and kmax = 3̉/2ℓmin respectively. Contrary to objective 1, this ob-
jective function takes into account the deviation associated with all fingerings
for its evaluation. The global minimum of this objective function is achieved
when the integrand is zero, i.e when the frequency deviation is constant for
all fingerings. Nevertheless, noting that equation (10) is necessarily equal to
zero for k2ℓ = 3̉/2, it appears that the register hole location given by this
objective function is the one that minimizes too much important inharmonic-
ity variations around the zero deviation and may lead to a more homogeneous
register jump across the entire register.

4.2.2 Correction of the register hole effect

The second aim of this optimization is to give suggestions on how to com-
pensate for the register hole effect. We are looking for geometrical dimensions
of acoustical systems whose effects alter the resonance frequencies in order to
restore the original f2/f1-mode frequency ratio. Denoting IHreg and IHpert,
inharmonicity associated with the register hole and the perturbation respec-
tively, the objective function can be written as

Objective 1: F1 =
1

2

∫ kmax

kmin

[IHreg + IHpert]
2 dk . (26)

The minimum of equation (26) is reached when inharmonicity associated with
the inserted perturbation is of the same magnitude as the register hole devi-
ation and in the opposite direction.
Moreover, similarly to the study of the location of the register hole, a sec-
ond objective function has also been investigated by minimizing the function
defined as

Objective 2: F2 = sup (|IHreg + IHpert|) , (27)

which deals with the maximum of the total inharmonicity.

5 Results and discussions

For the optimization, the radius of the main tube was taken as R = 7.5 mm.
The height of the register hole was 12.5 mm and its radius 1.65 mm. Con-
cerning the upper bound for the acoustical system location, it has been set to
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147 mm which is the first tone hole location according to measurements made
by Nederveen. The other parameter boundaries for all perturbations have been
chosen in order to make the realization possible .

5.1 Register hole location

5.1.1 Objective 1: maximum of the frequency deviation

As mentioned earlier, an optimum of objective 1 defined by equation (24)
can be derived analytically. In order to achieve the solution, we rewrite the
frequency shift as follows

IH =
2

3̉

s

Sh
ℓ

cos2k2ℓ

k2ℓ
, (28)

and note that the magnitude of the deviation is proportional to ℓ and varies
as the function F (x) = cos2 x/x where x = k2ℓ. We will first proof that the
maximum of F (x) does not depend on ℓ for a certain interval of values of k2ℓ
and therefore the optimum value of IH is the minimum of ℓ on this interval.

The effective length of the tube varies between ℓmax = L, the total length
of the instrument, and ℓmin. If the compass of a register is one twelfth minus
one semi-tone, the two extreme values of the effective length are related by
ℓmin = ℓmax/2

18/12 which for simplicity we assume first to be ℓmin = ℓmax/3.
The location of the register hole, defined by ℓ, is in the upper part of the
instrument and satisfies ℓ < ℓmin.
Then, for a given effective length, ℓeff lying between ℓmin and ℓmax, the
wavenumber is defined as k2 = 3̉/2ℓeff , and therefore the argument of F (x)
varies follows :

3̉ℓ

2ℓmax

< k2ℓ <
3̉ℓ

2ℓmin

, (29)

thus
3̉

2

ℓ

L
< k2ℓ <

9̉

2

ℓ

L
. (30)

Because the ratio ℓ/L is less than 1/3, the maximum value of interest for
x = kℓ is therefore 3̉/2 for which F (x) = 0. Figure 16 shows the variation
of F (x). From ℓ = L/3, for the interval defined by inequalities (30), F (x)
varies between 0 and 0, with a maximum value equal to 0.327, for x0 = 2.975.
When ℓ decreases from L/3, figure 16 shows that the maximum values remains
constant, equal to F (x0), except if ℓ becomes so small that the value of F (x)
for the minimum value of k2ℓ reaches the value 0.327. This corresponds to
ℓ⋆ = 0.205 L . Below this value, the maximum of F (x) grows rapidly.
As explained before, the optimum of IH for the objective 1 is finally the value
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Fig. 16. Perturbation function F (x) = cos2 x/x. The same local maximum is reached
for x0 = 2.97 and x⋆ = 0.97.

ℓ⋆ = 0.205 L . Nevertheless, this value is not so critical, because the objective
function F1 for objective 1 is linear with ℓ, over the interval [0.205 L,L/3] ,
thus the variation is not strong. Moreover, it appears clearly that any other
objective relative to the maximum of the frequency deviation will lead to a
value within the interval, because the maximum is reached two times instead
of one only.
Finally, taking into account that the interval [ℓmin, ℓmax] corresponds actually
to a slightly smaller interval than a twelfth i.e 218/12, a numerical study leads
to the optimal value for objective 1 slightly smaller than ℓ⋆ = 0.205 L, i.e
ℓ⋆ = 0.2041L . Figure 17 confirms that for objective 1, the function F1

increases linearly above this optimum value but increases strongly when ℓ
decreases below it.

0 0.05 0.1 0.15 0.2 0.25
40

50

60

70

80

90

100

110

120

130

M
ax

im
im

 o
f t

he
 fr

eq
ue

nc
y 

de
vi

at
io

n 
(c

en
ts

)

Fig. 17. Maximum of the frequency deviation as a function of ℓ/L. Above
ℓ/L = 0.205, the maximum value of the frequency shift increases linearly with the
register hole location.

The register hole deviation obtained with this ”optimal” position is plotted on
figure 18. As expected, the maximum of deviation appears at the beginning of
the register and is almost equal to a quarter tone. Moreover, this result shows
that the register hole is located close to its ideal position to produce the c ′/g ′′

transition: the register hole (i.e the pressure node) is located at one third the
effective length for this fingering so that the frequency shift is zero.
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5.1.2 Objective 2: mean of the square derivative of the deviation

The register hole location achieved with the minimization of (25) is found to
be

ℓ⋆

L
= 0.2481 ,

which is not only larger than the previous result but also larger than the one
found with numerical data given by Nederveen (ℓ/L = 0.2292). However, the
frequency deviations obtained with this optimal position and the one found
in literature [7,13] are very similar: the a-e ′′ transition is correct and the
frequency shift at the beginning of the register is about 20 cents (see figure
18).
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Fig. 18. Frequency deviations associated with the register hole. The register hole is
found to be located at ℓ⋆ = 120.45 mm from the top end for objective 1 (¤ ) and
ℓ⋆ = 146.4 mm for objective 2 (◦).

5.1.3 Conclusion

Performing optimization by minimizing the objective functions defined by (24)
and (25) gives different results and indicates that the final location of the reg-
ister hole is the result of a compromise. However, as expected with equation
(28), the magnitude of the maximum of deviation increases with the distance
ℓ but very slightly for location larger than ℓ/L = 0.2041. As a consequence,
above this critical value, the location of the register hole is not so essential
on this point of view. Finally, it appears that a register hole location far from
the reed tip and above the critical value should be an interesting compromise
in order to accurate the first twelfths of the register. Hence, we choose the
location given by the optimization of objective 2 that is ℓ⋆ = 146.4 mm.
Restricting now attention to fingerings from e to f ′ (and not to a ′#) may
be interesting in order to understand what instrument makers do. The re-
sult is that the optimization process converges to a position for the register
hole between the two previous extreme values for the two objective functions.
Moreover, in the case of the minimization of the maximum of the frequency
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deviation, the distance from the clarinet reed tip is found to be ℓ = 133.7 mm.
This result corresponds very well to the location used by Nederveen in its cal-
culation [1] and to the one chosen by many makers. For that case, the twelfths
at the bottom of the scale are still very large but the maximum of the fre-
quency deviation, which is also obtained for the lowest tone, has noticeably
fallen to 35 cents (see figure 19).
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Fig. 19. Frequency deviation associated with the register hole in the case of a real
clarinet i.e restricting our optimization to fingering from e to f ′. Above f ′, fingerings
are modified to ensure the well tuning and the third resonance is used. Optimal
positions are ℓ⋆ = 133.7 mm (¤ ) and ℓ⋆ = 145.0 mm (◦)

5.2 Adjustements of natural frequencies by means of small changes

5.2.1 Overview of the possibilities

As mentioned earlier, the objective of this part is to compensate for the fre-
quency deviation due to the register hole by means of small changes. We are
looking for a solution localized in the upper part of the instrument, i.e a so-
lution acting for all fingerings. Looking at table 2, only three systems give
inharmonicity in the right direction: an abrupt change in cross section area
with S ′ < S, a change of conicity at the top end, and a localized enlargement
or contraction. Concerning the case of a closed-hole, it has been shown (see
figure 8) that both positive and negative inharmonicity can be generated. In
order to produce negative inharmonicity, the condition k1ℓ > ̉/4 which cor-
responds to playing frequencies larger than f1 = c/8ℓmax must be valid. Thus,
the accuracy of the twelfths at the end of the second-register scale (from e’
fingering) would be improved only.

5.2.2 Abrupt change in cross section area: S ′ < S

Fixing the radius of the tube downstream the discontinuity equal to 7.5 mm,
the upstream tube radius R′ and the location ℓ of the discontinuity are used
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as optimization variables.
Performing optimization leads to the following results :

• objective 1 : ℓ⋆ = 73.9 mm and R′⋆ = 7.1 mm.
• objective 2 : ℓ⋆ = 69.0 mm and R′⋆ = 7.0 mm.

The deviation from the tempered scale of the first resonance frequencies and
inharmonicity between the first and second resonance frequencies for each fin-
gering are plotted on figure 20. Results show that even if ”optimal” parameters
are quite different, the shape and the magnitude of final inharmonicities ob-
tained with the two objective functions are very similar. The f2/f1 frequency
ratio is noticeably improved for all fingerings except for the twelfth associ-
ated with the lowest tone which is still 20-cent large. An interesting result is
that the discontinuity in the diameter is found to be located near the barrel
joint which is at a distance of 60 � 4 mm from the closed-end on a clarinet.
This result agrees with the practice of many makers: Nederveen noticed that
change in cross section area are mostly found near the embouchure for reed
instruments.
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Fig. 20. Frequency deviation for the first register (left) and inharmonicity between
first and second resonance frequencies : abrupt change in cross section area.

5.2.3 Localized enlargement/contraction

The optimization variables used in this case are the location ℓ of the pertur-
bation, its length ℓ′ and the radius R′ as indicated on table 1. Performing op-
timization for the case of a localized enlargement leads to the conclusion that
small enlargement does not improve the relationship between first and second
resonance frequencies. Even if optimization process converges with both ob-
jective functions, final inharmonicities are not satisfactory. Figure 21 shows
the tendency of the bottom notes to widen the f2/f1 ratio which is musically
unacceptable. On the contrary, contracting the air column causes negative in-
harmonicity across the entire register and tends to improve the register jump
(see figure 22). The optimization process converges to the following parameters
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Fig. 21. Final inharmonicity between first and second resonance frequencies : local-
ized enlargement.

:

objective 1



























ℓ⋆ = 60.0 mm

ℓ′⋆ = 22.41 mm

R′⋆ = 7.0 mm

objective 2



























ℓ⋆ = 62.74 mm

ℓ′⋆ = 36.76 mm

R′⋆ = 7.17 mm

When minimizing the objective function defined by equation (24), an inter-
esting result is that the design parameters given by the optimization process
are very similar to those of a clarinet barrel. As for an abrupt change in cross
section, the contraction is located at a point near the barrel joint. In addi-
tion, the acoustic length of the contraction is the same as a common barrel
(ℓbarrel ∼ 30 mm). When looking at what makers do, their practise varies
considerably concerning the geometry of the barrel. However, some makers
insert narrower barrel than the cylindrical portion of the entire instrument
in order to get accurate twelfths in the upper part of the scale [22]. While
the results given by the minimization of (26) generate negative inharmonicity
(see figure 22), the optimization process converges to two lower boundaries
(Rprime⋆ = R′

max and ℓ⋆ = ℓmin). When enlarging the domain where optimiza-
tion variables are looking for, a new minimum (lower than the one found) is
achieved. Thus, we do not consider this solution in the next. Finally, the mean
value of inharmonicity is about -0.6 cents and the standard deviation of the
mean value is equal to 11.9 cents.

5.2.4 Change in conicity at the input

The optimization variables used for the case of tapered perturbation (see table
1) are the radius of the upper end of our model R′, the top angle ́ and
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Fig. 22. Frequency deviation for the first register (left) and inharmonicity between
first and second resonance frequencies : localized contraction.

the location point ℓ. For each objective function, the optimization process
converges to the following design paremeters :

objective 1



























ℓ⋆ = 73.05 mm

́⋆ = 0.22◦

R′⋆ = 7.37 mm

objective 2



























ℓ⋆ = 98.5 mm

́⋆ = 0.10◦

R′⋆ = 7.46 mm

The lengths of the tapered perturbations corresponding to objective 1 and
objective 2 are about 44.5 mm and 46.5 mm which are both larger than the
length of a classic barrel. Concerning the location point, it is near the barrel
joint for objective 1 and slightly below this point for objective 2. An important
thing to note is that the location achieved by the optimization process is always
close to the barrel joint whatever small change is used.
Figure 23 shows final inharmonicities obtained with the minimization of the
two objective functions. The f2/f1 frequency ratio is improved globally across
the entire scale for both objective functions except for the first fingering which
is deteriorated slightly for objective 1. As a consequence, only the design
parameters given by the minimization of objective 2 are considered. The mean
value of the total inharmonicity is found to be 3.6 cents and the standard
deviation of the mean value is about 11 cents.
Finally, results indicate that the 20-cent deficiency still remains for the notes
at the bottom of the scale whatever acoustic system is used in order to alter
the resonance frequencies. Thus, no improvement can be done to compensate
for the effect of the register hole except for tones at the end of the scale.
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Fig. 23. Frequency deviation for the first register (left) and inharmonicity between
first and second resonance frequencies (right): positive truncated cone.

6 Conclusion

As many deviations from the standard cylindrical tube can be observed on a
woodwind instrument, the present paper aims to give some theoretical results
concerning the effects of small changes of air column shape on the relationship
between the two first resonance frequencies. This work has been focused on
small perturbations which avoid flow problems on vibrating mechanical sys-
tems only.
Calculations of length corrections associated with small perturbations allow
to analyze the origin of the tuning defaults of a wind instrument and can be
used to investigate, for a clarinet, the tuning deficiency of the twelfths at the
bottom of the scale.
In addition, the use of simple optimization techniques can also be interest-
ing in order to improve instrument qualities. However, optimization is very
sensitive to the definitions of the objectives, and, for our purpose, performing
optimization on the accuracy of the twelfths does not impose a unique possi-
ble criterion. For instance, the use of optimization techniques with weight for
the lowest tones is of course possible and would probably give other results.
Instrument making is clearly an act of compromise at first.

The main results of the present work can be summarized as follows:

- designing an new instrument having a compass for the two registers of a
twelfth with the same fingering except the register hole opening, is probably
impossible without tuning deficiencies;

- if the aim is the improvement of a common clarinet, the use of contractions
in the barrel, often used by makers, is a good solution; nevertheless, no
solution located in the upper part of the instrument can ensure the perfect
tuning of the twelfths corresponding to the first lowest tones. This result
confirms the practice of instruments makers.
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Finally, combining global and local solutions, i.e solutions acting mainly on
one particular tone, is necessary in order to achieve the best tuning.
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Appendix

A Exact calculation of length corrections

The aim of the appendix A is to give some exact formulae for some elements
often encountered on wind instruments. Exact formulae can be useful for the
computation of resonance frequencies by using an iterative procedure. The
geometries of the different elements are shown in table 1.

Open tone hole

In the case of an open hole, equation (6) gives the result

k∆ℓ = Arctan

(

tan kℓd

1 + s
Sh′k

tan kℓd

)

, (A.1)

where s and S are the cross section area of the tone hole and of the main tube
respectively and h′ is the height of the hole including radiation and higher
order modes length corrections.

Closed-hole

A closed-hole is considered to be an acoustic compliance C whose volume is
equal to the volume of the hole. If Y = jC̒ in equation (3) the following
result is obtained:

k∆ℓ = Arctan

(

Xkℓ cos2 kℓ

1 + 1
2
Xkℓ sin 2kℓ

)

, (A.2)

where X =
v

Sℓ
, k is the wavenumber and ℓ is the closed-hole location.
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Coupled closed-holes

Denoting ℓ1 and ℓ2 the location points of the closed-holes, the expression of
the length correction associated with two coupled closed-holes is derived from
the following system



























Yup1
= Y1 + Ydown1

at point ℓ1 ,

Yup2
= Y2 + Ydown2

at point ℓ2 ,

Ydown2
= −jYc tan k(ℓ2 + ∆ℓ) ,

where Yi is the admittance of the closed-hole i, Yup abd Ydown are the admit-
tances upstream and downstream the discontinuity respectively. After some
algebra, the length correction is given by

k∆ℓ = Arctan

(

A1 + A2 + X1X2k
2ℓ1ℓ2 cos kℓ1 cos kℓ2 sin k(ℓ1 − ℓ2)

1 + B1 + B2 + X1X2k2ℓ1ℓ2 cos kℓ1 sin kℓ2 sin k(ℓ1 − ℓ2)

)

(A.3)

where Ai =
vi

Sℓi

kℓi cos2 kℓi and Bi =
1

2

vi

Sℓi

kℓi sin 2kℓi is relative to the closed-

hole i.
In the limit of small perturbations, it can be pointed out that this result is
given by the sum of the length correction associated with each closed-hole. It
is also valid in the limit that the distance between hole is much smaller than
the wavelength.

Abrupt change in cross section

Looking for a equivalent system of section S, one can write at the discontinuity

−jY ′
c tan kℓ = −jYc tan k(ℓ + ∆ℓ)

where Y ′
c = S ′/̊c and Yc = S/̊c. Manipulating the above expression gives

result in

k∆ℓ = Arctan

(

1
2
(˺ − 1) sin 2kℓ

1 + (˺ − 1) sin2 kℓ

)

, (A.4)

where ˺ = S ′/S is the ratio of cross sections of the tubes located upstream
and downstream the discontinuity.

Localized enlargement/contraction at the input of the instrument

Considering a localized enlargement or contraction of length ℓ′ and cross sec-
tion area S ′ located at point ℓ and denoting ˺ = S ′/S the change in diameter
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where S is the cross section area of the main tube, it can be written:











Yup1
= −jYc tan kℓ at point ℓ

Ydown2
= −jYc tan k(ℓ + ℓ′ + ∆ℓ) at point ℓ + ℓ′ .

The use of the transfer impedance formula of Yup1
between ℓ and ℓ+ ℓ′ results

in

k∆ℓ = Arctan

(

tan kℓ′
TT2 − ˺(1 + TT2) + ˺2

−T tan kℓ′ + ˺(1 + TT2) + ˺2 tan kℓ′T2

)

,

where T = tan kℓ and T2 = tan k(ℓ + ℓ′).
Denoting ˺ = 1 + X, the expression of the length correction becomes

k∆ℓ = Arctan

(

X sin kℓ′
cos k(2ℓ + ℓ′) + X cos kℓ cos k(ℓ + ℓ′)

1 + X cos2 kℓ′ + X(X + 2) sin kℓ′ cos kℓ sin k(ℓ + ℓ′)

)

.

(A.5)
In the limit that ˺ is close to the unity, an approximation of equation (A.5)
is given by equation (15).

Truncated cone at the input

This paragraph deals with the case of a perturbation in taper of length ℓc

located at distance ℓ from the reed tip. Calculations for a positive and a
negative taper are identical. The unique difference is that the sign of both
quantities X and X ′ has to be inverted.
Assuming the quantities xi to be positive and x2 > x1, and noting that the two
inductances located at points ℓ and ℓ+ℓc are positive and negative respectively,
the following system is derived :



























Yup2
= Y2 + Ydown2 at point ℓ + ℓc (x2 > 0) and L > 0 ,

Yup1
= −Y1 + Ydown at point ℓ (x1 > 0) and L < 0 ,

Ydown1 = −jYc tan k(ℓ + ℓc + ∆ℓ) ,

where ∆ℓ is the global length correction.

Denoting X =
ℓ

x1

and X ′ =
ℓ + ℓc

x2

, the result is

k∆ℓ = Arctan Λ , (A.6)

where

Λ =





X cos2 k(ℓ+ℓc)
k(ℓ+ℓc)

− X ′ cos2 kℓ
kℓ

+ XX ′ cos kℓ
kℓ

cos k(ℓ+ℓc)
k(ℓ+ℓc)

sin kℓc

1 − 1
2
X ′ sin 2kℓ

kℓ
+ 1

2
X sin 2k(ℓ+ℓc)

k(ℓ+ℓc)
+ XX ′ cos kℓ

kℓ
sin k(ℓ+ℓc)

k(ℓ+ℓc)
tan k(ℓ + ℓc) sin kℓc



 .
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In the limit of small perturbation, the length correction for a truncated cone
is the sum of the length correction associated with both changes in taper.

B Effect of the resistive term in the hole impedance on resonance

frequencies

The aim of this appendix is to give an analytic expression of the playing
frequency in term of the resistive part of the hole impedance. This can be
interesting especially when resistive effects are large and can occur at high level
when nonlinear effects appear, especially for narrow holes, like the register
hole. This appendix describes the calculations which lead to the following
expression for the frequency of the played tone

f =
fo + Afc

1 + A
(B.1)

where fo and fc are the frequencies obtained when the tube is open or closed
respectively, and A is a coefficient depending on the resistive term R.

Looking at figure 4, it can be written at the discontinuity point the impedance
equivalent Zeq to the tone hole impedance and to the tube downstream the
discontinuity as

Zeq = Zh //Zdown ,

where Zh = R + jX is the tone hole impedance and Zdown the impedance
of the tube donwstream the discontinuity. Then, using the tranfer impedance
formula, the input impedance Ze of the system can be derived as follows:

Ze =

−t + jZhT

(

1 + t2

T − t

)

Zh

(

1 + t2

T − t

)

+ j

, (B.2)

where

• Ze is the input impedance of the system ;
• Zh = R + jX is the tone hole impedance ;
• t = tan kℓ ;
• T = tan kL .

For the resonance frequencies, the imaginary part of the input impedance
vanishes, i.e

Im(Ze) = 0 ⇐⇒
(

T − t

1 + t2
+ X

) (

t
T − t

1 + t2
+ XT

)

+ TR2 = 0 . (B.3)
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Denoting
A = sin k(L − 2ℓ) + sin kL + 2̐ cos kL ,

B = cos k(L − 2ℓ) − cos kL + 2̐ sin kL ,

C = 2R2 sin 2kL ,

where ̐ = kℓhole, equation (B.3) can be rewritten in the form

AB + C = 0 . (B.4)

By writing kL = k0L + ǫ1 where k0 is the wavenumber of the fundamental
frequency of the played tone defined as A = 0 (when R vanishes):

sin k0(L − 2ℓ) + sin k0L + 2̐ cos k0L = 0 , (B.5)

the use of Taylor’s formula to the first order for the A and B quantities results
in:

A = ǫ1[(L − 2ℓ) cos k0(L − 2ℓ) + L cos k0L + 2ℓhole cos k0L

− 2̐L sin k0L] , (B.6)

B = cos k0(L − 2ℓ) − cos k0L + 2̐ sin k0L

+ ǫ1[L sin k0L − (L − 2ℓ) sin k0(L − 2ℓ) + 2ℓhole sin k0L

+ 2̐L cos k0L] . (B.7)

Neglecting terms of second order in ǫ1 and using equation (B.5), the quantity
AB becomes:

AB =
(

1

cos k0ℓhole

[L(1 + cos 2k0ℓ) + 2ℓhole cos2 kL − 2ℓ cos k(L − 2ℓ) cos kL
)

(

cos 2k0ℓd − 1

cos k0L

)

. (B.8)

In the limit of k0ℓd ≪ 1 (i.e
ℓd

ℓ
and

∆ℓ

ℓ
are smaller than unity) and noting

k0 =
̉

2(ℓ + ∆ℓ)
, we have:

cos k0L = −̉

2

ℓd
2

ℓ(ℓhole + ℓ)
+ o(

ℓd

ℓ
)

cos 2k0ℓd = 1 + o(
ℓd

ℓ
)

cos k0(L − 2ℓ) = sin
̉

2

∆ℓ + ℓd

2
=

̉

2

∆ℓ + ℓd

2
+ o(

ℓd

ℓ
)

cos 2k0ℓ = −1 + o(
ℓd

ℓ
) .
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Substituting these results in equation (B.4) leads to the following equation

(

̉2ℓhole
ℓd + ∆ℓ

ℓ

)

ǫ1 + 2R2 sin 2kL = 0 .

Noting kL = kcL + ǫ2 where kcL =
̉

2
(kc is the wavenumber when the

hole is closed), it can be written :

̉2ℓhole
ℓd + ∆ℓ

ℓ
(k − k0) + 4R2L(k − kc) = 0 , (B.9)

therefore,

f =
fo + Afc

1 + A
, (B.10)

where

• A =
(

2R

̉

)2 1

ℓhole

Lℓ

ℓd + ∆ℓ
;

• fo is the frequency of the tone with the open hole ;
• fc is the frequency of the tone with the hole being close ;
• c is the speed of sound .

A careful limiting process shows that all is in order in the two extreme cases
i.e when R ջ 0 and R ջ ∞. In the limit that R goes to zero, equation (B.10)
gives the frequency to tend to fo, the frequency of the tone when the hole is
open. In the opposite limit when R tends to infinity, equation (B.10) gives
the frequency to be fc. Figure ?? shows that the playing frequencies given by
equation (B.10) coincide quite well with the playing frequencies obtained by
the zero values of the imaginary part of the input admittance.
Moreover, in the limit that R is much smaller than unity, it follows

f = fo + A(ff − fo) . (B.11)

With the use of experimental results obtained by Dalmont et al. [14] about
the non linear behavior of an open side hole, it appears that the resistive term
of the shunt impedance has small effects in the determination of the playing
frequency. For instance, a 5-cent difference is obtained with R/Zc = 0 and
R/Zc = 0.05.
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