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Compression modulus of macroscopic fiber bundles.
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We study dense, disordered stacks of elastic macroscopic fibers. These stacks often exhibit non-
linear elasticity, due to the coupling between the applied stress and the internal distribution of
fiber contacts. We propose a theoretical model for the compression modulus of such systems, and
illustrate our method by studying the conical shapes frequently observed at the extremities of ropes
and other fiber structures.

Threadlike objects are the constituents of many natural and synthetic materials [1, 2]. At the microscopic level,
filaments such as actin, microtubules and other semi-flexible polymers control not only the elastic and viscous prop-
erties of different biological architectures [3] but also of polymer melts, surfactant solutions and gels [4]. These are
collective properties that can be understood from the individual characteristics of the filaments like the bending and
stretching elasticity or the friction coefficient [5]. At such small scales, thermal disorder plays a key role that has been
successfully described within the framework of statistical mechanics. For instance, the reptation theory for polymer
melts and solutions [4, 6] or the description of rigid gel elasticity [7] successfully account for the collective macroscopic
behavior, based on a few, microscopic parameters of the single polymers. Surprisingly, macroscopic threadlike systems
have been much less studied, in spite of their abundance in the natural and synthetic realms: hair, wool, cotton and
other natural fibers or Nylon strings, ropes and textiles or glass wool belong to this class of systems [2]. Here also
the elastic or friction constitutive parameters of the individual objects are well known. For instance, bending and
stretching modulii of human hair, wool, Nylon and steel fibers can easily be found in the literature. But theories that
predict collective fiber properties such as the compressibility of a hair tress, or studies that explain what forces play
a role in a disentanglement action like combing or carding, are scarse [8, 9]. In this letter we argue that methods
developed for fiber microscopic systems [10] are also useful at the macroscopic level, and draw an analogy between the
effect of thermal fluctuations and the effect of the intrinsic disorder carried by the spontaneous shapes of the fibers.

We consider a two dimensional fiber bundle as illustrated in figure 1. Discussion in two dimensions allows for a
simpler presentation of the methods, while retaining the main ingredients of the problem. Extension to the three
dimensional case will be discussed later. The bundle is composed of a large number N of elastic strands of length L,
in a space of height d·N , where d is the average distance between two fibers. The shape of the fiber is described by
the function ˿n(x) that measures heigth deviations from the line of average position at height d·n. This description
in the Monge parametrization is well adapted to the shapes of interest, with a weak gradient d˿n(x)/dx ≪ 1. In the
absence of interactions between fibers, each filament n has a spontaneous shape, described by the function ˿0,n(x). It
is the disorder associated with the spontaneous shapes of the different fibers that leads to a non-trivial compression
behavior of the whole system. Under an external force, the spontaneous shape of the fiber ˿0,n(x) will be transformed
into the actual shape ˿n(x). Within the elastic limit, the deformation of a segment of length dx around the natural
shape will cost an elastic energy dUb, proportional to the bending modulus ̃ and to the curvature differences,
dUb = ̃/2(˿ ′′n(x) − ˿ ′′0,n(x))2dx.

The bending modulus ̃ is a constitutive property of the fiber, that depends on the shape of its section and on the
Young modulus of the material [5]. For instance, for a cylindral filament of radius a and Young modulus E one has
̃ = Ea4/4. The total bending energy of the N filaments can then be written as :

Ub =
̃

2

N∑

n=1

∫ L

0

dx
[
˿ ′′n(x) − ˿ ′′0,n(x)

]2
. (1)

If one assumes that different fibers interact through a two body potential V , then the total interaction energy Uint

can be written as

Uint =
N∑

n,m=1

∫ L

0

dx

∫ L

0

dx′ V [˿m(x) + md − (˿n(x′) + nd)] . (2)

In order to bring the structure of the interaction energy to a tractable level, we follow a simple mean-field approxi-
mation, similar to the Helfrich treatment of thermally activated fluid membranes and fibers [11, 12]. We assume that
forces between first-neighbors dominate the interaction energy, an exact assumption for excluded volume potentials
and a good approximation for other short range forces such as those given by screened electrostatic potentials. Then
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FIG. 1: Dense fiber bundle. The function ζn(x) describes the shape of the nth fiber with respect to a reference average level.

the sum of the bending (1) and interaction (2) terms can be written as the effective energy

Eeff =
̃

2

N∑

n=1

∫ L

0

dx
[
˿ ′′n(x) − ˿ ′′0,n(x)

]2
+

B

2

N∑

n=1

∫ L

0

dx [˿n+1(x) − ˿n(x)]
2

. (3)

Because of the weak gradients involved, inter-fiber interactions take place only at the same x coordinate. B is the
strength of the mean-field quadratic potential, to be determined by the self-consistent prescription B = d·∂2 〈e〉 /∂d2

where 〈e〉 = 〈Eeff〉 /(LNd), is the average energy density. The equilibrium state of the fiber stack correponds to the
minimum of the effective energy functional (3) with respect to the fiber configurations {˿n(x)}, given the spontaneous
shapes {˿0,n(x)}, or more precisely, given the spontaneous curvatures {˿ ′′0,n(x)}. The spontaneous curvatures are to
be treated as the random functions responsible for disorder in the system. Averages, denoted by 〈〉, will then be
performed with the probability associated with the spontaneous curvature distribution. Before carrying forward the
outlined procedure, it is of interest to review results for the thermal case, as this will help to build intuition for the
key quantities controlling the stack structure.

In thermal stacks or bundles of fibers, disorder is introduced by the random Brownian motion of the fibers, which
would otherwise be flat, i.e. {˿0,n(x) = 0}. The shape of a single fiber in solution is described by a persistent walk, a
class of statistical walks where tangent correlations vanish exponentially over a persistence length ℓp, related to the
fiber rigidity through ℓp = ̃/(kBT ). A persistent walk primarily moves along the forward direction for a short enough
distance ℓ, but it performs also side excursions of size D. From the equipartition theorem one has ℓpD

2/ℓ3 ≃ 1. In
a stack, lateral excursions are limited by near-neighbors setting D = d. Typically, there is one interaction between

fibers over a collision distance ℓc ≃ ℓ
1/3
p d2/3. The energy density of the thermal stack 〈eT 〉, being of the order of kBT

per collision area, 〈eT 〉 ≃ kBT/(dℓc), one gets a compression modulus:

BT ≃ kBT

d3

(
d

ℓp

)1/3

= (kBT )4/3̃−1/3d−8/3, (4)

which holds for large enough rigidities, ℓp ≫ d.
In macroscopic fiber stacks, the disorder is quenched and introduced by the spontaneous disordered shapes ˿0,n(x).

Lets consider a typical shape of amplitude ˿0 and wavelength q−1
0 . Clearly, there are no interactions for distances

larger than the shape amplitude, d ≫ ˿0. For smaller distances the local gradients are of order of ˿0q0, leading to a
collision length ℓc ≃ d/(˿0q0). The energy density is thus given by 〈e〉 ≃ ̃˿2

0q4
0ℓc/(dℓc) = ̃˿2

0q4
0/d, independent of ℓc.

It follows that the compression modulus reads:

B ≃ ̃q4
0

(
˿0

d

)2

. (5)
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It is worth at this stage to stress several striking differences and similarities between the thermal and the macroscopic
cases. First, contrary to thermal stacks, where the compressibility is only governed by the persistence length ℓp and by
the distance between fibers d, in macrosocopic fiber stacks the spacial scale associated with disorder inhomogeneities
plays also an important role. As a matter of fact, the scale for compressibility is set by the combination ̃q4

0 : stiffer
fibers lead to harder macroscopic materials, quite at the opposite of thermal stacks where increasing fiber stiffness
reduces fluctuations and softens the stack. Also, while the cost of confinement for thermally controlled fluctuations
diverges as the confinement distance vanishes, only a finite amount of energy is required to completely flatten a
macroscopic fiber. But in both cases, the compression modulii increase with the degree of disorder, measured by the
temperature in the thermal system, and by the square amplitude of spontaneous shapes, ˿2

0 for the quenched bundle.
And finally, the power law dependence of the thermal modulus is larger than the macroscopic one: quenched disorder
appears to lead to more “robust” materials as these are less susceptible to variations in stack density. We now return
to a more detailed calculation of the compression modulus.

It is convenient to perform the functional minimization of the effective energy (3) in the space of the eigenfunctions
{Φq} for the biharmonic operator, (∂4/∂x4 − q4)Φq(x) = 0. We choose also boundary conditions ensuring that

there are no forces nor torques on the strands extremities: Φ
(2)
q (0) = Φ

(2)
q (L) = 0 and Φ

(3)
q (0) = Φ

(3)
q (L) = 0. The

orthonormal set of eigenfunctions can be written as

̏q(x) =
cosh(˺p) − cos(˺p)

sinh(˺p) − sin(˺p)

[
sinh

(
˺p

x

L

)
+ sin

(
˺p

x

L

)]
−

[
cosh

(
˺p

x

L

)
+ cos

(
˺p

x

L

)]
, (6)

where the numerical coefficients ˺p are determined from the relation cos (˺p) cosh (˺p) = 1. The solutions obey
approximately ˺p ≡ qL ≃

(
p + 1

2

)
̉ with p ∈ N. We first develop the shapes ˿n(x) and ˿0,n(x) on the basis of the

eigenfunctions (6),

˿n(x) =
1√
NL

+∞∑

q= π

2L

π

d∑

Q=−π

d

˿qQ̏q(x)eiQnd (7)

˿0,n(x) =
1√
NL

+∞∑

q= π

2L

π

d∑

Q=−π

d

˿0,qQ̏q(x)eiQnd , (8)

where Q is a wavevector along the stack direction, then minimise with respect to the coefficients ˿qQ and finally
compute the average energy density:

〈e〉 =
1

2LNd

∑

q,Q

q4
〈
˿0,qQ

2
〉
B(Q)

q4 + B(Q)
κ

, (9)

where B(Q) = 2B(1− cos Qd). Equation (9) shows how the spatial inhomogeneities of spontaneous shapes determine
the energy density of the stack: the harmonic, elastic nature of the energy penalty for shape distortion and interfiber
interactions translates into the sole dependence of the energy density on the values of the second moment of the shape
disorder distribution, weighted by the classical correlation kernel for bending elasticity. A practical consequence of
equation (9) is that it allows to connect fiber geometric information, available from a simple statistical analysis on
fiber shapes, with collective properties such as the compression modulus B. As an example, we now calculate the
compression modulus for monomodal structures of uncorrelated fibers, for which the standard square deviation is

written as
〈
˿0,qQ

2
〉

= NL˿2
0˽qq0

. In the limit where N ≫ 1, the dimensionless compression modulus B̃ = B/(̃q4
0)

obeys the self-consistent differential equation:

B̃ = d̃
∂2

∂d̃2

1

2d̃

[
1 −

(
1 + 4B̃

)−1/2
]

, (10)

where ˿0 now sets the natural distance units, d̃ = d/˿0. At short distances, the compression modulus is high, and
equation (10) leads to the asymptotic form discussed in (5), B = ̃q4

0˿2
0/d2. For distances larger than the natural

amplitude for spontaneous shape disorder, ˿0, the fibers don’t interact significantly, and the compression modulus
vanishes exponentially B = ̃q4

0(d/˿0) exp[−d/˿0]. A numerical solution of equation (10) interpolating between these
two regimes is presented in figure (2).

We now illustrate our results by studying the shape of the cones that appear at the end of ropes and other fiber
bundles. The cones are generated by the expansion of the fibers, under the repulsive field that we discussed previously.
The repulsive field experienced by one fiber, U(d) = B(d)d2/2, can be roughly approximated by a step function of
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FIG. 2: Full line is the compression modulus B of a fiber stack vs interfiber distance d. Dashed lines represent the asymptotic

behaviours at short distances, eB ed2
≃ 1, for ed ≪ 1 and at large distances eB ∼ ed exp[−ed ], for ed ≫ 1. Plots are for dimensionless

quantities eB = B/(κq4

0) and ed = d/ζ0, with κ the fiber rigidity, q0 and ζ0 the typical wavevector and amplitude of spontaneous
shape disorder.

amplitude ̃q4
0˿0

2/2 and range ˿0. The average path of one fiber is a straight, horizontal line, as long as it remains
inside the constrained zone, as depicted in figure (3). When it escapes confinement, the fiber crosses an expanding
zone where it still interacts with its neighbors. Under the repulsive forces, the fiber bends until it escapes the repulsive
potential, for interfiber distances larger than the range of the potential ˿0. Bending of the fiber is caused by two
localized forces of amplitude f = ̃q4

0˿2
0/2 and opposite signs, applied by the two closest neighbors. After escaping the

expanding interaction zone, the fiber follows a straight line, at an angle that depends on its distance from the center
of the bundle. If one enumerates the fibers in the stack from n = 1 in the center to n = N/2 for the external fiber,
the following set of equations recursively determine the position [ℓn, yn] where a fiber escapes its neighbors potential

(ℓn−1 − ℓn)(3ℓ2n−1 − (ℓn−1 − ℓn)2) =
6̃

f
(yn−1 − (n − 1)d) (11)

(ℓn−1 − ℓn)ℓ2n =
2̃

f
(yn − nd − (˿0 − d)) , (12)

where ℓn is measured from the border of the confinement zone and yn from the center of the stack. The distance
d is the interfiber separation in the confinement zone. Equations (12) and the boundary conditions y1 = ˿0 and
ℓ3
N/2 = (yN/2 − dN/2)3̃/f determine the shape to the boundary yn(ℓn), shown also in figure (3). The extension of

the expansion zone, ℓ1, depends on the number of fibers and on the compression rate ˺ = (˿0 − d)/˿0, but not on the
fiber rigidity: ℓ1 ∼ ˿0N 2/3˺1/3(q0˿0)

−4/3. Similarly, the geometric shape of the cone, given by the slope of the last
fiber ́N/2, does not depend on the fiber rigidity, it is only fixed by the geometric quantites associated with the fiber

disorder, ́N/2 ∼ ˺2/3(q0˿0)
−4/3.

FIG. 3: Cones are formed at the unconstrained ends of ropes and other bundles of fibers, as shown on the left for a Nylon
rope. On the right, the calculated shape in two dimensions. Here, only the average fiber path is represented for simplicity. The
fibers only interact mutually in the expansion zone, to the left of the curved line, and follow a straight path otherwise. The size
of the expansion zone and the angle of the cone are independent of fiber rigidity, they are fully determined by the geometric
properties of fiber disorder.

For high enough fiber density, the compression modulus of a three dimensional bundle can be computed in manner
similar to the two dimensional case. Indeed, if the density is so high as to provide a cage environment for each of
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the fibers, as depicted in figure (4), the forces between fibers are controlled by excluded volume interactions between
near-neighbors. In this case, we define a two dimensional fiber density in the bundle ̌ = N̉a2/A where A is the

area of the bundle section. For a perfectly ordered hexagonal array one would have ̌ = 2̉
√

3/3 a2r−2, where r is the
distance between fiber centers. The maximum close packing density is ̌max ≃ 0.91. The relevant fluctuating distance
d = r − 2a is now a function of the fiber density ̌. In the hexagonal case, the cage would hold up to to distances
d = 2a or densities as small as ̌c = ̉

√
3/24 ≃ 0.23. In this regime, the compression modulus is expected to vary as

B3D ∼ ̃q4
0˿2

0r−3. As explained above, for the non-thermal case, only a finite energy is required to completely flatten
a fiber. Thus, the confinement energy density is here bound to a maximum value < e3D >∼ ̃q4

0˿2
0a−2, contrary to

the three dimensional thermal situation [10], where the energy density diverges as ∼ d8/3. For densities smaller than
̌c, the situation is unclear, even for the thermal case. Large lateral excursions of the fiber are now possible [13], and
there is not yet, to our knowledge, a clear criterium to determine the maximum allowed size of the excursions. We
hope to address this question in future work.

2a

r

d

FIG. 4: Cross section of a three dimensional bundle in the high density limit where each fiber is confined in a cage defined by
its first nearest neighbors.

As a summary, we have shown that stacks of macroscopic disordered fibers behave as a compressible material,
the compression modulus being proportional to fiber rigidity, at the opposite of microscopic fiber stacks where it
decreases with fiber rigidity. We have also shown how the compression modulus depends on stack density and on
the geometric quantities characterizing spontaneous shape disorder. Our results allow to predict collective properties
from the individual fiber characteristics and provide a new tool to interpret experiments in fiber systems. As an
example of this we studied terminal bundle cones, showing that this class of shapes follows an universal behavior that
depends only on fibers geometric features. Extension of our results to three dimensions is straightforward in the limit
of large fiber density. The weak density limit poses an interesting challenge for fiber and polymer systems, both in
the thermal and quenched cases.
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