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We compute the exact partition function of 2d Ising spin glasses with binary couplings. In these
systems, the ground state is highly degenerate and is separated from the first excited state by
a gap of size 4J . Nevertheless, we find that the low temperature specific heat density scales as
exp(−2J/T ), corresponding to an “effective” gap of size 2J ; in addition, the associated length scale
grows as exp(J/T ). We justify these scalings via the degeneracy of the low lying excitations and by
the way low energy domain walls proliferate in this model.

PACS numbers: 75.10.Nr, 75.40.-s, 75.40.Mg

Spin glasses [1, 2] are strongly frustrated materials that
have challenged statistical physicists since many years.
In particular, there is still no consensus on the nature of
these materials’ phase diagram, a very basic issue. Sur-
prizingly, open questions remain even in the case of two-
dimensional spin glasses. For instance, there is a long-
standing dispute [3, 4, 5] concerning the �J Ising spin
glass: it is not clear what kind of singularity arises in its
free energy at the critical temperature.

In this work we reconsider the nature of these singu-
larities using recently developed methods [6, 7] for com-
puting the exact partition function of square lattices with
periodic boundary conditions, focusing on the low T scal-
ing properties of the model with binary couplings. We
show that although the energy “quantum” of excitation
above the ground state is 4J , such excitations behave
as composite particles; in fact the specific heat near the
critical point scales as if the elementary excitations were
of energy 2J . We justify this picture using known prop-
erties of domain walls in this model. Finally, our finite
size scaling analysis shows the presence of a characteristic
temperature-dependent length that grows as exp(J/T ),
in agreement with hyperscaling.

The model and our measurements — The Hamilto-
nian of our two-dimensional (2d) spin glass is

HJ({σi}) ≡ −
∑

〈ij〉

Jijσiσj (1)

where the sum runs over all nearest neighbor pairs of
Ising spins (σi = �1) on a square lattice of volume V =
L·L with periodic boundary conditions. The quenched
random couplings Jij take the value �J with probability
1/2 as first proposed in [8]. The partition function at
inverse temperature β ≡ T−1 is ZJ =

∑

{σi}
e−βHJ ({σi})

and can be written as

ZJ(β) = e2L2βJ PJ(X = e−2βJ) . (2)

Here PJ(X) is the polynomial whose coefficient of Xp

is the number of spin configurations of energy E =
−2L2 +2pJ . It was shown by Saul and Kardar [4, 5] that
determining PJ can be reduced to computing determi-
nants which they did using exact arithmetic of arbitrarily
large integers. More recently a more powerful approach
has been developed [6, 7], based on the use of modular

arithmetic to compute pfaffians. With this algorithm,
one first finds the coefficients modulo a prime number,
thereby avoiding costly arbitrary precision arithmetic.
Then the computation is repeated for enough different
primes to allow the reconstruction of the actual (huge)
integer coefficients using the Chinese remainder theorem.

The algorithm proposed and implemented in [6, 7] is
powerful enough to solve samples with L ≈ 100; the total
CPU time needed to compute ZJ grows approximately
as L5.5. In our study we have determined ZJ for a large
number of disorder samples at different lattice sizes: for
instance we have 400000 samples at L = 6, 100000 at
L = 10, 10000 at L = 30, 1000 at L = 40 and 300 at
L = 50. The total computation time used is equivalent
to about 40 years of a 1.2 GHz Pentium processor. For
each sample we derive from ZJ various thermodynamic
quantities such as the free energy FJ (β) = −β−1 lnZJ ,
the internal energy UJ(β) = 〈HJ 〉, and the specific heat
dUJ/dT . We also study in detail the number of ground
states and of excited states. Note that flipping any spin
changes the energy by 0, �4J or �8J ; the gap between
the ground state and the first excited state is thus 4J .

Low temperature behavior of cV — The study of 2d
Ising spin glasses has a long history. We will only discuss
here the works most relevant for our study, namely those
focusing on the thermodynamics of the �J model. It is
generally agreed that this model is paramagnetic for T >
0, spin glass ordering arising only as T ջ 0. The critical
region thus corresponds to T ջ Tc = 0. Since there is an
energy gap 4J , the free energy should have a singularity
of the form exp(−4J/T ). This is difficult to check, in
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particular via Monte Carlo where the free energy is not
directly measurable. Instead, it is better to concentrate
on the specific heat density cV . For that observable, the
difference between the models with bimodal (Jij = �J)
and continuous couplings is striking [9, 10]: in the first
case cV goes to zero rapidly as T ջ 0 while in the second
there is a clear linear behavior.

Even though our computations provide us with the free
energy, we also prefer to work with cV . Note that cV is
related to a second derivative of the free energy so the
corresponding singularities are directly related. Also, cV

should provide a cleaner signal as irrelevant “constants”
such as the ground state energy that fluctuate from sam-
ple to sample have been substracted out. Consider now
any given sample. As T ջ 0, we have the scaling

cV ≡
〈 [H − 〈H〉]

2
〉

L2T 2
≈

16J2 eS1−S0 e−4J/T

L2T 2
(3)

where S0 and S1 are the logarithms of the degeneracies
of the ground state and first excited state energy levels
for the given sample. (S0 and S1 are microcanonical en-
tropies; furthermore to lighten the expressions, we have
dropped the index J denoting a sample dependence.)
Note that 4J appears because it is the energy gap in our
system. It thus seems unavoidable that cV will have an
exp(−4J/T ) singularity. Surprizingly, Wang and Swend-
sen [3] postulated in 1988 that instead

cV ≈ T−p exp (−AJ/T ) (4)

with A = 2. They performed a Monte Carlo study in
which A ≈ 3 for most of the temperatures they could ac-
cess, but their effective A drifted and their final predic-
tion was A = 2 from an analogy with a one dimensional
model (we shall come back to this later). This issue was
taken up a few years later by Saul and Kardar [4, 5] who
claimed A = 4; their work is based on exact computa-
tions of partition functions and thus does not suffer at
low T from the thermalization problems of the Monte
Carlo approach. We are aware of no specific heat mea-
surements in this model since. How could A not be 4?
The subtlety is that we must take L ջ ∞ at fixed T , and
only after can we take T ջ 0; indeed Eq. (4) assumes
L = ∞ whereas Eq. (3) assumes T ջ 0 at fixed L.

Using the algorithm in [6, 7], together with the avail-
ability of cheap and powerful computers, we have ex-
tended significantly the study of Saul and Kardar. For
the sake of comparison, they had 80 samples at L = 20,
22, and 24, and 4 samples at L = 32 and L = 36. (They
also had samples for L ≤ 18.) We go much beyond that,
both in lattice sizes and in the number of samples we
consider. In Fig. 1 we show our first analysis of cV as
follows. When T ջ 0, if naive scaling (A = 4) holds,
ln

(

T 2cV

)

+ 4/T ≈ const, while ln
(

T 2cV

)

+ 4/T ∼ 4−A
T

if A 6= Anaive and p = pnaive = 2. (The cV result-
ing from our exact partition function computations has
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been averaged over disorder samples.) In the plot we see
that for any given lattice size, when T becomes small
enough there is a saturation toward the naive scaling be-
havior, i.e., the points go to a constant value. The phys-
ically relevant regime is the thermodynamic limit, given
by the envelope of these curves; this envelope does appear
and seems to be linear in 1/T . Note that the envelope
emerges only on quite large lattices (L ≥ 30); because
of this, the true scaling escaped detection by Saul and
Kardar. With our statistics and lattice volumes we are
not able to detect any signs of logarithmic corrections
in Fig. 1, suggesting that p = pnaive = 2 indeed holds.
The straight line is our best linear fit to the L = 50 data
when β ∈ [2.5, 5.5]. It is a very satisfying fit and gives
A = 2.02 � 0.03, close to the integer value A = 2.

We can also present the data in a slightly different fash-
ion. In Fig. 2 we plot −T ln

(

T 2cV

)

versus T . Here the
coefficient A is given by the intercept of the envelope’s
extrapolation to T = 0, the left axis of the picture. We
can distinguish three regions. The first region is for very
low T values. Here the naive (non-thermodynamic scal-
ing) with A = Anaive = 4 is very clear. This region,
where the intercept at T = 0 is 4, shrinks to zero with
increasing lattice size. In a second region we have the
physical scaling; for the large lattice sizes we have, the
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FIG. 3: Finite size corrections to the energy (left) and entropy
(right) density in the ground state as a function of L.

value A ≈ 2 emerges. One should notice that this is the
same region where in Fig. 1 the L = 50 data lie on a
straight line. The third and last region corresponds to
“high” T (T & 0.4) where one is far from the critical
point and thus there is no scaling.

Our conclusion here is that thanks to the larger sizes
available to us and to a technique that does not suffer
from low temperature critical slowing down, the thermo-
dynamic scaling of cV is now finally clarified.

Ground state properties — Our computations also
give the ground state energies and degeneracies. The-
oretical arguments [11] suggest that the mean ground
state energy density has power corrections in 1/L:

e0(L) = e∗0 + a L−2+Θ(e)

. (5)

Data and fits are shown in Fig. 3; we have e∗0 =
−1.4017(3) which agrees well with previous work. We
also find Θ(e) = −0.08(7); note that the prediction in
[11] is that Θ(e) = θDW , the exponent associated with
domain wall energies. Following the work of Hartmann
and Young [12], there is general agreement that θDW = 0
in the 2d �J model. Thus our estimate for Θ(e) is in ex-
cellent agreement with the conjecture in [11].

We have performed a similar study for the mean
ground state entropy density s0(L). The data and result-
ing fit are displayed in Fig. 3, leading to s∗0 = 0.0714(2)
which compares well with the recent work of [13] in which
s∗0 = 0.0709(4). The fit also gives Θ(s) = 0.42(2), though
if we take into account systematic effects we cannot rule
out Θ(s) = 1/2. We believe that this large value, unre-
lated to θDW , denotes the presence of an interesting and
subtle organization of the ground states.

Anomalous density of excitations — The partition
function ZJ also gives the number of configurations of
energy 4J above the ground state level. Of main interest
is the excess entropy S1 − S0 ≡ S(E0 + 4J) − S(E0) of
this level where E0 is the ground state energy. In Fig. 4
we plot S1 − S0 vs ln (V ) where V = L2. The dotted
line is ln (V ) while the dash-dotted one is 2 ln (V ). We
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see that the true scaling behavior emerges only for large
lattices. How can one interpret the 2 ln (V ) scaling? In
the 2d ferromagnetic Ising model, the lowest excitation
corresponds to taking the ground state (all spins parallel)
and flipping a single spin. This leads to S1−S0 = ln (V ).
One says that the excitation is “elementary”, and the
system is described quite accurately as a gas of inde-
pendent excitations at low temperature. In the case of
our spin glass, we naturally also have nearly independent
spin flips among the excitations. However, since we have
S1 − S0 ≈ 2 ln (V ), we are forced to conclude that single
spin flips are irrelevant: necessarily large scale excitations
dominate the set of excitations of energy 4J .

Following Wang and Swendsen, we consider an anal-
ogy with the 1d +J Ising model. In that system, when
using periodic boundary conditions, the lowest excita-
tion is composite, corresponding to a kink pair of energy
4J ; however the “true” elementary excitations are single

kinks, necessarily absent when using periodic boundary
conditions. It is easy to see that for this 1d model the
quantity S1 − S0 grows as 2 ln (V ), i.e., the same law as
we find in our 2d system. One can then conjecture that
the “physically relevant” gap in our 2d model is 2J rather
than 4J ; this then leads one to guess that A = 2 exactly.

It is not clear what we learn from this “analogy”; in
particular, one does not see why it should apply to the
2d and not to the 3d model. We propose here a possible
mechanism for the anomalous scaling of S1−S0 as follows.
The starting point is the fact that zero energy domain
walls arise in an important fraction if not the majority
of the disorder samples in the 2d �J model [12]. (This
phenomenon does not arise in 3d.) A single domain wall
does not provide an excitation for our system because of
the periodic boundary conditions: we need instead two
domain walls; one will be of zero energy, the other of
energy 4J . These form the analogs of the (composite)
kink pairs in the 1d system. For symmetry reasons, let
us consider first the case where L is odd. Then the lowest
domain wall energy (using periodic boundary conditions)
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is 2J instead of 0. Having two domain walls gives an ex-
citation energy 4J ; we conjecture that each such domain
wall has an excess entropy of ln

(

L2
)

= ln (V ): we ex-
pect one ln (L) term to come from the possible mean
transverse positions of the interface, and another from
the degeneracy at a given position. The total excess en-
tropy compared to that of the ground state would thus be
2 ln (V ) which is the desired result. This argument can
be extended to L even. One of the domain walls will have
zero energy, the other an energy 4J . Undoubtedly, the
entropy of these domain walls increases with their energy;
a simple pattern is obtained if we conjecture that the ex-
cess entropy increases by ln (L) every time the energy
increases by the quantum 2J . If this is so, the first do-
main wall will contribute ln (L) to the excess entropy and
the second 3 ln (L), leading again to the desired 2 ln (V )
result. Such a conjecture is both elegant and completely
consistent with our findings.

Finite size scaling — Given the result for S1 − S0,
we come back to Eq. (3) to understand the finite size
scaling of cV . When T ջ 0 and L ջ ∞ simultaneously,
standard arguments lead to

T 2cV (L, T ) e2βJ
≈ F [L/Λ(T )] . (6)

Here Λ(T ) is a temperature dependent length that deter-
mines the cross-over between the thermodynamic scaling
of cV (going as exp [−2βJ ] when L = ∞) and the “naive”
scaling as in Eq. (3). F is a finite size scaling function;
when its argument is large, L ≫ Λ(T ), we recover the
thermodynamic limit and thus necessarily F must tend
towards a constant. (Note that since cV is intensive, the
L dependence must drop out.) On the contrary, when
L ≪ Λ(T ), we recover the behavior of Eq. (3), so neces-
sarily F(x) ≈ x2 as x ջ 0 to get the correct L depen-
dence. (Recall that we found S1 − S0 ∼ 2 ln (V ).) This
leads immediately to

Λ(T ) ∼ exp(−βJ) (7)

up to a multiplicative factor that may include powers of
T . This scaling form is confirmed when analyzing the cV

data in Fig. 1 as follows. To each L associate the tem-
perature T ∗(L) where the horizontal asymptote crosses
the envelope (the slanted line). The value T ∗(L) gives
the temperature at which L = Λ(T ); from this we obtain
Λ(T ) values whose scaling is compatible with Eq. (7).

Summary and discussion — We have focused on the
critical thermodynamics of the 2d Ising spin glass with
binary couplings. Our main conclusion is that the spe-
cific heat density scales as cV ∼ exp(−AJβ), where A
turns out to be very close to 2. This scaling is “anoma-
lous” in the sense that it does not follow from the size of
the energy gap (which is 4J). To find this scaling law,
it is necessary to go to rather large systems L ≥ 30 and

to understand the finite size effects. The work of Saul
and Kardar [4, 5] incorrectly concluded that A = 4 most
certainly because they used too small lattice sizes. We
also found that the degeneracy of the first excited level
grew about L4 times faster than that of the ground state
level. We believe this high degeneracy has its roots in the
proliferation of domain walls, and that these excitations
are composite, justifying the analogy with kink pairs pro-
posed many years ago by Wang and Swendsen [3]; each
domain wall may indeed play the role of a kink, albeit
with an additional entropy contribution. Finally, using
finite size scaling, we found that the length scale Λ(T )
controlling finite size effects for cV scaled as exp(J/T ).
This is exactly as expected from hyperscaling arguments
which assume that the singular part of the free energy
density goes as Λ−d in dimension d; taking d = 2 and
an exponential singularity for Λ gives cV ∼ Λ−2 up to
power corrections in T . Finally, a study of the T = 0
physics allowed us to validate the conjecture Θ(e) = θDW

proposed in [11]. We hope that this work will stimulate
further studies, for instance to test the conjectures we
put forward concerning the role of domain walls.
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