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THE ORCHARD MORPHISM

ROLAND BACHER

Abstract. We describe and prove uniqueness of a natural homomor-
phism (called the Orchard morphism) between some groups associated
to finite sets.

1. Introduction

A natural way to plant two different species of trees in a row is to alternate
them. Such a nice rule exists also in higher dimensions. In dimension 2 for
instance, it provides a natural rule to plant (a finite number of) cherrytrees
and plumtrees (up to transposition) at prescribed generic (no alignments
of three trees) locations in an orchard. Figure 1 illustrates this: Our rule
(given by Proposition 6.1 with d = 2, see also [2]) yields for the choosen nine
positions three trees of one species and six trees of the remaining species.

Figure 1: An orchard having 3 cherry- and 6 plumtrees in generic positions

More precisely, the content of this paper may be described as follows:
Let E be a set. We denote by

E(l) = {(x1, . . . , xl) ∈ El | xi 6= xj for 1 ≤ i < j ≤ l}
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2 ROLAND BACHER

the set of all sequences without repetitions of length l with values in E.
Consider functions ̞ : E(l) −ջ {�1}. The symmetric group Sym({1, . . . , l})
acts on such functions by permutations of the l arguments. The subset of
all functions on which this action is either trivial (symmetric functions) or
multiplication by the signature homomorphism (antisymmetric functions) is
a subgroup (with respect to the obvious product of functions). The main
result of this paper is the existence of a unique non-trivial natural homo-
morphism (called the Orchard-morphism) from this group into the group of
two-partitions of E (functions from E into {�1}, defined up to multiplica-
tion by −1) where E is a finite set of cardinality ♯(E) (unicity fails however
in the somewhat trivial case l = ♯(E) = 2). Naturality means that this
homomorphism is Sym(E)−equivariant (with respect to the obvious actions
by automorphisms of Sym(E) on both groups).

The result mentionned at the beginning concerning generic configurations
of points in Rd follows then easily from the existence and properties of the
Orchard morphism.

Finally, we deal also with the case where the finite set E is endowed with a
natural fixed-point free involution ̂ : E −ջ E. We call such a set orientable
and consider only structures on E which are invariant (perhaps up to a sign)
under the involution ̂.

2. Two-partitions

A two-partition is an unordered partition {A, B} of a set E = A∪B into
at most two disjoint subsets. Two-partitions are the same as equivalence
relations having at most two classes. We will move freely between these two
interpretations of two-partitions. The word “class” will hence often be used
instead of “part of the two-partition” and a two-partition {A, B} of E will
generally be written as A ∪ B or E = A ∪ B.

A two-partition E = A∪B can be given by a pair �˺ of opposite functions
where

˺ : E −ջ {�1}

is defined by ˺−1(1) = A and ˺−1(−1) = B. The set E(E) of all such two-
partitions is a vector space (of dimension ♯(E)−1 if E is finite) over the field
F2 of two elements. The pair �1 of constant functions represents the identity
and the group law (�˺)(�˻) is the obvious product �˺˻ of functions. Set-
theoretically, the product (A1 ∪ A2)(B1 ∪ B2) of 2 two-partitions on a set
E is given by E = C1 ∪ C2 where C1 = (A1 ∩ B1) ∪ (A2 ∩ B2) and C2 =
(A1 ∩ B2) ∪ (A2 ∩ B1).

Consider an unoriented (not necessarily finite) simple graph Γ with ver-

tices V and unoriented edges E ⊂ V (2) = V · V \ {(v, v), v ∈ V }. Its
adjacency matrix A is the symmetric matrix with rows and columns in-
dexed by elements of V . All its entries are zero except Av,w = 1 where
v 6= w are adjacent vertices of Γ (i.e. {u, v} is an edge of Γ).

Our main tool in what follows is the following trivial and well-known
observation:
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Lemma 2.1. Let Γ be a simple graph with adjacency matrix A. Suppose
that there exists a constant ˼ ∈ {0, 1} such that

Au,v + Av,w + Au,w ≡ ˼ (mod 2)

for all triplets (u, v, w) ∈ V (3) ⊂ V 3 of three distinct vertices.
Then either Γ or its complementary graph Γc (having adjacency matrix

Ac = J − I − A where J is the all one matrix and I the identity matrix) is
a disjoint union of at most two complete graphs.

Proof. Up to replacing Γ by its complementary graph Γc we can suppose
that ˼ = 1. This shows that given any three vertices of Γ, at least two
of them are adjacent. The graph Γ contains hence at most two connected
components. If a connected component of Γ is not a complete graph, then
this component contains two vertices u, v at distance 2 implying that Au,v =
0. Since u and v are at distance 2 they share a common neighbour w
for which we have Au,w = Av,w = 1. This yields a contradiction since
Au,v + Au,w + Av,w = 2 6≡ ˼ (mod 2). 2

Given a set E we call a function ̌ : E(2) −ջ {�1} symmetric if ̌(x, y) =

̌(y, x) for all (x, y) ∈ E(2).

Corollary 2.2. Any symmetric function

̌ : E(2) −ջ {�1}

with

̌(a, b)̌(b, c)̌(a, c) = ˼ ∈ {�1}

independent of (a, b, c) ∈ E(3) = {(a, b, c) ∈ E3, | a 6= b 6= c 6= a} gives rise
to a two-partition of E.

Proof. Consider the simple graph Γ with vertices E and adjacency matrix

having coefficients Ax,x = 0 and Ax,y = ̌(x,y)+1
2 , x 6= y.

The graph Γ satisfies the assumptions of Lemma 2.1 and consists hence,
up to a sign change of ̌ (which replaces Γ by its complementary graph), of
at most two non-empty complete graphs. The connected components of Γ
define a two-partition on E. 2

Remark 2.3. The two-partition described by Corollary 2.2 can be con-
structed as follows: set ˼ = ̌(a, b)̌(b, c)̌(a, c) for a 6= b 6= c 6= a and choose
an element x0 ∈ E. Up to multiplication by −1 the function ˺ : E −ջ {�1}
defined by ˺(x0) = 1 and ˺(x) = ˼̌(x, x0), x 6= x0 is then independent of
the choice of the element x0 and the classes of the associated two-partition
are given by ˺−1(1) and ˺−1(−1).

3. Symmetric and antisymmetric functions

A function ̞ : E(l) −ջ {�1} (where E is a set) is l−symmetric or sym-
metric if

̞(. . . , xi−1, xi, xi+1, xi+2, . . . ) = ̞(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xl)

for all 1 ≤ i < l and (x1, . . . , xl) ∈ E(l). We denote by F+(E(l)) the set of

all symmetric functions from E(l) into {�1}.
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Similarly, such a function ̞ : E(l) −ջ {�1} is l−antisymmetric or anti-
symmetric if

̞(. . . , xi−1, xi, xi+1, xi+2, . . . ) = −̞(x1, . . . , xi−1, xi+1, xi, xi+2, . . . , xl)

for all 1 ≤ i < l and (x1, . . . , xl) ∈ E(l). We denote by F−(E(l)) the set of

all antisymmetric functions from E(l) into {�1}.

The set F�(E(l)) = F+(E(l))∪F−(E(l)) of all symmetric or antisymmetric

functions from E(l) into {�1} is then a vector space (of dimension
(|E|

l

)

+ 1
for 1 < l ≤ ♯(E) and E finite) over F2. The identity element is given by the

symmetric constant function E(l) −ջ {1} and the group-law is the usual
product of functions.

We define the signature homomorphisme sign : F�(E(l)) −ջ {�1} by

sign(̞) = 1 if ̞ ∈ F+(E(l)) is symmetric and sign(̞) = −1 if ̞ ∈ F−(E(l)) is

antisymmetric. The set F+(E(l)) = sign−1(1) of all symmetric functions on

E(l) is of course a subgroup of F�(E(l)) and the set F−(E(l)) = sign−1(−1)

of all antisymmetric functions on E(l) is a free F+(E(l))−module.

4. The Orchard morphism

Given a finite set E, the aim of this section is to describe and construct
the Orchard morphism

̊ : F�(E(l)) −ջ E(E) ,

a natural group homomorphism which factors through the quotient group
F�(E(l))/ � 1 where �1 denote the obvious constant symmetric functions

on E(l). Naturality means that ̊ is equivariant with respect to the obvious
actions of the symmetric group Sym(E) on F�(E(l)) and E(E).

Given a totally ordered set X we denote by
(

X
k

)

the set of all strictly
increasing sequences of length k in X.

For an arbitrary set X, we define
(

X
k

)

by choosing first an arbitrary total
order relation on X.

Given a function ̞ ∈ F�(E(l)) where E is finite, we define ̌ = ̞̌ :

E(2) −ջ {�1} by setting

̌(y, z) =
∏

(x1,...,xl−1)∈(E\{y,z}
l−1 )

̞(x1, . . . , xl−1, y) ̞(x1, . . . , xl−1, z) .

Proposition 4.1. The function ̌ is a well-defined symmetric function on
E(2) such that

̌(a, b)̌(b, c)̌(a, c) = (sign(̞))(
♯(E)−3

l−2 )

for all (a, b, c) ∈ E(3) where sign(̞) is the signature homomorphism sending

l−symmetric functions on E(l) to 1 and l−antisymmetric functions to −1.

Proof. Since every sequence (x1, . . . , xl−1) ∈
(E\{y,z}

l−1

)

is involved twice

in ̌(y, z), the value of ̌(y, z) is independent of the choice of a particular
total order on E \ {y, z}. Symmetry (̌(y, z) = ̌(z, y)) of ̌ is obvious.

Consider now first an element (x1, . . . , xl−1) ∈
(E\{a,b,c}

l−1

)

. Such an element

contributes always a factor 1 to the product ̌(a, b)̌(b, c)̌(a, c). The pro-
duct ̌(a, b)̌(b, c)̌(a, c) is hence equal to the the product over all elements
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(x1, . . . , xl−2) ∈
(E\{a,b,c}

l−2

)

of factors of the form

̞(x1, . . . , xl−2, c, a) ̞(x1, . . . , xl−2, c, b)
̞(x1, . . . , xl−2, a, b) ̞(x1, . . . , xl−2, a, c)
̞(x1, . . . , xl−2, b, a) ̞(x1, . . . , xl−2, b, c)

and each of these
(♯(E)−3

l−2

)

factors yields a contribution of sign(̞). 2

By Proposition 4.1 the function ̞̌ satisfies the conditions of Corollary 2.2
and gives hence rise to a two-partition ̊(̞) ∈ E(E). We call the application

̊ : F�(E(l)) −ջ E(E) defined in this way the Orchard morphism. Given an

element ̞ ∈ F�(E(l)) we call the two-partition ̊(̞) the Orchard-partition of
̞ giving rise to the Orchard-equivalence relation having (at most 2) Orchard
classes.

Remark 4.2. (i) If l = 1, the two-partition ̊(̞) on E given by the Orchard
morphism is the obvious one with classes ̞−1(1) and ̞−1(−1).

(ii) Consider a 2−symmetric function ̞ ∈ F+(E(2)) satisfying the condi-
tion of Corollary 2.2. By Corollary 2.2 it gives hence rise to a two-partition
on E. If E is finite, we get a second two-partition on E by considering
the Orchard morphism ̊(̞). An easy computation shows that these two-
partitions coincide if ♯(E) is odd. If ♯(E) is even, the image of the Orchard
morphism ̊(̞) ∈ E(E) is trivial for such a function ̞.

Before stating the main result concerning the Orchard morphism, we re-
call the definition of equivariance: Let a group G act on two sets X and Y .
An application ̑ : X −ջ Y is G−equivariant if ̑ (g.x) = g. (̑(x)) for all
g ∈ G and x ∈ X. Given a set E, the symmetric group Sym(E) of all bijec-

tions of E acts in an obvious way on the groups groups E(E) and F�(E(l))

and it is hence natural to study group homomorphisms from F�(E(l)) into
E(E) which are natural, i.e. Sym(E)−equivariant.

Theorem 4.3. For any finite set E and any natural integer 1 ≤ l ≤ ♯(E),
the Orchard morphism

̊ : F�(E(l)) −ջ E(E)

is the unique natural non-trivial (for l < ♯(E)) group homomorphism. More-
over, ̊ factors through the quotient group F l

�(E)/{�1} (where, as always,

�1 denote the constant symmetric functions on E(l)).

Remark 4.4. For n = l = 2 the unicity assertion of Theorem 4.3 fails:
Defining ̊′ : F�(E(2)) −ջ E(E) (where E = {1, 2} has two elements)

by ̊′(̞) = (E = {1, 2}) if ̞ ∈ F+(E(2)) and ̊′(̞) = (E = {1} ∪ {2}) if

̞ ∈ F−(E(2)) defines a natural homomorphism distinct from the Orchard
morphism (which is always trivial if l = ♯(E)).

This failure is due the fact that both two-partitions on the set E = {1, 2}
are Sym(E)-invariant. However, for finite sets E having more than 2 ele-
ments, only the trivial two-partition is Sym(E)−invariant.

A flip is a symmetric function fX ∈ F+(E(l)) such that f−1(−1) ⊂ E(l)

consists (up to permutation of its elements) of a unique sequence X =

(x1, . . . , xl) ∈
(

E
l

)

. We call the set X = {x1, . . . , xl} the flipset of the flip
fX .
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The set {fX}X∈(E
l )

of all flips is obviously a basis of the subspace F+(E(l))

of symmetric functions on E(l).

Lemma 4.5. Given a flip fX ∈ F+(E(l)) and an arbitrary element ̞ ∈

F�(E(l)) we have for (a, b) ∈ E(2)

̞̌(a, b) ̌(̞fX)(a, b) = −1

if and only if exactly one of the elements a, b belongs to X.

Proof. Every factor

̞(x1, . . . , xl−1, a)̞(x1, . . . , xl−1, b)
(̞ fX)(x1, . . . , xl−1, a)(̞ fX)(x1, . . . , xl−1, b)

= fX(x1, . . . , xl−1, a) fX(x1, . . . , xl−1, b)

(with (x1, . . . , xl−1) ∈
(E\{a,b}

l−1

)

) yields a contribution of 1 except if X =

{x1, . . . , xl−1, a} or X = {x1, . . . , xl−1, b}. This happens at most once and
only if exactly one of the elements a, b belongs to X. 2

Corollary 4.6. (i) The classes of the two-partition ̊(fX) associated to a

flip fX ∈ F+(E(l)) are given by X and E \ X.

(ii) If two functions ̞, ̑ = ̞ fX ∈ F�(E(l)) differ by a flip then the
corresponding equivalence relations ̊(̞) and ̊(̑) = ̊(̞fX) differ exactly
on the subsets X · (E \ X) and (E \ X) · X of E · E.

Proof of Theorem 4.3. Since the set of all flips generates F+(E(l))

and since F−(E(l)) is a free F+(E(l))−module, the Orchard morphism ̊
behaves well under composition by assertion (ii) of Corollary 4.6. Since

the equivalence relation associated to a constant function �1 ∈ F+(E(l)) is
obviously trivial, ̊ defines a group homomorphism from the quotient group
F+(E(l))/{�1} into E(E).

Equivariance of ̊ with respect to Sym(E) is obvious.
We have yet to show that every other natural (Sym(E)−equivariant) ho-

momorphism ̊′ : F�(E(l)) −ջ E(E) is either trivial or coincides with the
Orchard morphism ̊.

A flip fX is clearly invariant under the subgroup Sym(X)·Sym(E\X) ⊂
Sym(E). If ♯(E) > 2, any two-partition invariant under Sym(X)·Sym(E \
X) of E is either trivial or equal to X ∪ (E \ X). This implies that we
have either ̊′(fX) = 1 or ̊′(fX) = ̊(fX) for any Sym(E)−equivariant

homomorphism ̊′ : F�(E(l)) −ջ E(E). Since Sym(E) acts transitively on

the set of all flips, the first case implies triviality of ̊′ restricted to F+(E(l))

while we have ̊′ = ̊ for the restriction onto F+(E(l)) in the second case
and this conclusion holds also for ♯(E) = 2 as can easily be checked.

If ̊′ restricted to F+(E(l)) is trivial, the identity F�(E(l)) = ̞ F+(E(l))

for any ̞ ∈ F−(E(l)) shows that ̊′ restricted to F−(E(l)) is constant and
hence trivial for ♯(E) > 2 by Sym(E)−equivariance. For ♯(E) = 2 and l = 2,
this conclusion fails as shown by the example of Remark 4.4.

We might hence suppose that ̊′ = ̊ on F+(E(l)). Choose an antisymmet-

ric function ̞ ∈ F−(E(l)). If n = ♯(E) is odd, choose a cyclic permutation



THE ORCHARD MORPHISM 7

˻ ∈ Sym(E) (of maximal length n) of E and consider

˜̞(x1, . . . , xl) =
n−1
∏

j=0

̞(˻j(x1), ˻
j(x2), . . . , ˻

j(xl))

where ˻0(x) = x and ˻j(x) = ˻(˻j−1(x)) for x ∈ E. The function ˜̞ :

E(l) −ջ {�1} is antisymmetric on E(l) and invariant under the cyclic sub-
group generated by ˻ ∈ Sym(E). The corresponding two-partition ̊′( ˜̞)
is also invariant under the cyclic permutation ˻ and hence trivial since
n = ♯(E) is odd. The equality F−(E(l)) = ˜̞F+(E(l)) implies now the
result.

Suppose now n = ♯(E) even. Choose an element z ∈ E and a cyclic
permutation ˻ of all (n − 1) elements of E \ {z}. Setting

˜̞(x1, . . . , xl) =
n−2
∏

j=0

̞(˻j(x1), ˻
j(x2), . . . , ˻

j(xl))

for a fixed element ̞ ∈ F−(E(l)) and reasoning as above we see that ̊′( ˜̞) ∈
E(E) is either trivial or corresponds to the two-partition {z} ∪ (E \ {z}).
This implies that the same conclusion holds for ̊′( ˜̞)̊( ˜̞) and the identity

F−(E(l)) = ˜̞F+(E(l)) shows that the product ̊′(̞)̊(̞) ∈ E(E) is constant

for ̞ ∈ F−(E(l)). By Sym(E)−equivariance this is only possible if n = 2
(cf. Remark 4.4) or if ̊′(̞)̊(̞) is trivial which establishes the Theorem. 2

4.1. An easy characterisation of ̊ restricted to F+(E(l)). In this sub-

section we give an elementary description of ̊(̞) for ̞ ∈ F+(E(l)) an
l−symmetric function.

Given a finite set E and an l−symmetric function ̞ ∈ F+(E(l)) we con-
sider the function ̅ = ̞̅ : E −ջ {�1} defined by

̅(x) =
∏

(x1,...,xl−1)∈(E\{x}
l−1 )

̞(x1, . . . , xl−1, x)

.

Proposition 4.7. The two classes of the Orchard relation ̊(̞) are given
by ̅−1

̞ (1) and ̅−1
̞ (−1).

Proof. The result clearly holds for the two l−symmetric constant func-
tions. The Proposition follows now from the fact that ̞̅ and ̞̅fX

differ

exactly on X for a flip fX ∈ F+(E(l)). 2

Another proof can be given by remarking that ̅ defines a non-trivial
Sym(E)−equivariant homomorphism into E(E) which must hence be the
Orchard homomorphism by unicity.

Remark 4.8. Setting

˜̅(x) =
∏

(x1,...,xl)∈(E\{x}
l )

̞(x1, . . . , xl)

we have ˜̅ = ̅, up to a sign given by
∏

(x1,...,xl)∈(E
l )

̞(x1, . . . , xl) .
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5. Invariants

An invariant is a map I : F�(E(l)) −ջ R into some set R which is
Sym(E)−equivariant with respect to the trivial action of Sym(E) on R.
Otherwise stated, an invariant is a constant map along Sym(E)−orbits.

We describe in this section two ways to construct invariants using the
Orchard morphism. There are of course many others.

5.1. Rooted binary trees. Given ̞ ∈ F�(E(l)) where E is a finite set,
we get a two-partition E = E1 ∪ E2 of E by considering the Orchard map
̊(̞) ∈ E(E). Applying the Orchard morphism to the restriction of ̞ to
E1 and E2 we get two-partitions E1 = E11 ∪ E12 and E2 = E21 ∪ E22.
Iteration of this produces a rooted binary tree whose vertices are subsets of
E. The root of this tree corresponds to the set E. It has two sons E1 and
E2 (except if ̊(̞) is trivial) etc. The leaves of this tree yield a partition of
E into certain subsets Ai such that ̊(̞i) is trivial where ̞i is the restriction

of ̞ onto (Ai)
(l).

5.2. Euclideean lattices. Consider again ̞ ∈ F�(E(l)) where E is a finite
set. Given any subset E′ ⊂ E, we get a two-partition on E′ by restricting
̞ onto (E′)(l). Encode such a two-partition by a pair of opposite vectors

�v ∈ Z♯(E) as follows: Coordinates vx of v are indexed by elements of E and
take the value vx = 0 if x 6∈ E′ and vx ∈ {�1} otherwise according to the
two-partition associated to the restriction of ̞ to E′. Such vectors generate
sublattices of the Euclidean vector space R♯(E) by considering all subsets
subject to some restrictions. All invariants (rank, determinant, minimal
norm etc.) of such sublattices yield then invariants of ̞.

A few interesting choices are perhaps as follows:
Consider the sublattice generated by all vectors associated to sets of the

form E \ {x}, x ∈ E (all subsets of cardinality ♯(E) − 1). One might also
add the vector associated to E and/or the all 1 vector to this lattice.

One might also consider the unordered pair of sublattices Λ1, Λ2 (or their
intersection Λ1∩Λ2) of the above lattice where Λi is generated by all vectors
of the form E \ {x} with x ∈ Ei with E = E1 ∪E2 the two-partition ̊(̞) of
E, etc.

6. Generic configurations of points in Rd

A finite set P = {P1, . . . , Pn} of n points in the oriented real affine space
Rd is a generic configuration if any subset of k + 1 ≤ d + 1 points in P is
affinely independent. Generic configurations of n ≤ d + 1 points in Rd are
simply vertices of (n − 1)−dimensional simplices. For n ≥ d + 1, genericity
boils down to the fact that any set of d + 1 points in P spans Rd affinely.

Two generic configurations P1 and P2 of Rd are isomorphic if there exists
a bijection ̌ : P1 −ջ P2 such that all pairs of corresponding d−dimensional
simplices (with vertices (Pi0 , . . . , Pid) ⊂ P1 and (̌(Pi0), . . . , ̌(Pid)) ⊂ P2)
have the same orientations (given for instance for the first simplex by the
sign of the determinant of the d·d matrix with rows Pi1−Pi0 , . . . , Pid−Pi0).

Two generic configurations P(−1) and P(+1) are isotopic if there exists
a continuous path (with respect to the obvious topology on Rdn =

(

Rd
)n

)
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of generic configurations P(t), t ∈ [−1, 1], which joins them. Isotopic con-
figurations are of course isomorphic. I ignore to what extend the converse
holds.

Given a finite generic configuration P = {P1, . . . , Pn} ⊂ Rd we consider

the (d + 1)−antisymmetric function ̞ : P(d+1) −ջ {�1} defined by

̞(Pi0 , . . . , Pid) = 1

if and only if

det(Pi1 − Pi0 , Pi2 − Pi0 , . . . , Pid − Pi0) > 0 .

The Orchard morphism ̊(̞) ∈ E(P) (extended to be trivial if n ≤ d + 1)
provides now a two-partition of the set P.

The associated equivalence relation can be constructed geometrically as
follows: Given two points P, Q ∈ Rd \ H, call an affine hyperplane H ⊂ Rd

separating if P, Q are not in the same connected component of Rd \ H. For
two points P, Q of a finite generic configuration P = {P1, . . . , Pn} ⊂ Rd we
denote by n(P, Q) the number of separating hyperplanes which are affinely
spanned by d distinct elements in P \{P, Q}. This number n(P, Q) depends
obviously only of the isomorphism type of P.

Proposition 6.1. The equivalence relation ̊(̞) on a finite generic config-

uration P ⊂ Rd is given by P ∼ Q if either P = Q or if n(P, Q) ≡
(

n−3
d−1

)

(mod 2).

Proof. Given two points P, Q ∈ P we have

̌(P, Q) =
∏

(Ai1
,...,Aid

)∈(P\{P,Q}
d )

̞(Ai1 , . . . , Aid , P )̞(Ai1 , . . . , Aid , Q) = (−1)˺(P,Q)

where ˺(P, Q) denotes the number of subsets (A1, . . . , Ad) ∈ P \{P, Q} such
that the two simplices with cyclically ordered vertices (A1, . . . , Ad, P ) and
(A1, . . . , Ad, , Q) have opposite orientations. This happens if and only if the
affine hyperplane containing the points A1, . . . , Ad separates P from Q. We
have hence ˺(P, Q) = n(P, Q) and

̌(P, Q)̌(Q, R)̌(P, R) = (−1)(
♯(P)−3
(d+1)−2)

and Proposition 6.1 follows from Remark 2.3. 2

A geometric flip is a continuous path

t 7−ջ P(t) = (P1(t), . . . , Pn(t)) ∈
(

Rd
)n

, t ∈ [−1, 1]

with P(t) = {P1(t), . . . , Pn(t)} generic except for t = 0 where there exists ex-
actly one subset F(0) = (Pi0(0), . . . , Pid(0)) ⊂ P(0), called the flipset, of (d+
1) points contained in an affine hyperplane spanned by any subset of d points
in F(0). We require moreover that the simplices (Pi0(−1), . . . , Pid(−1)) and
(Pi0(1), . . . , Pid(1)) carry opposite orientations. Geometrically this means
that a point Pij (t) crosses the hyperplane spanned by F(t) \ {Pij (t)} for
t = 0.

It is easy to see that two generic configurations P1,P2 ⊂ Rd having n
points can be related by a continuous path involving at most a finite number
of geometric flips.
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The next result follows directly from the fact that configurations P(1)
and P(−1) related by a geometric flip give rise to (d + 1)−antisymmetric

functions ̞+, ̞− ∈ F−(P(d+1)) which differ only by a flip:

Proposition 6.2. Let P(−1),P(+1) ⊂ Rd be two generic configurations
related by a flip with respect to a subset F(t) of (d + 1) points.

(i) If two distinct points P (t), Q(t) are either both contained in F(t) or
both contained in its complement P(t) \ F(t) then we have

P (−1) ∼ Q(−1) if and only if P (+1) ∼ Q(+1) .

(ii) For P (t) ∈ F(t) and Q(t) 6∈ F(t) we have

P (−1) ∼ Q(−1) if and only if P (+1) 6∼ Q(+1) .

Figure 2: Two configurations of 6 points related by a geometric flip

Proposition 6.2 suggests also perhaps interesting problems concerning
generic configurations: Call two generic configurations of n points in R2d+1

orchard-equivalent if they are related by flips whose flipsets have always
exactly (d + 1) points in each class.

More generally, flips are of different types according to the number of
points of each class involved in the corresponding flipset. A very special
type of flips are the monochromatic ones, defined as involving only vertices
of one class in their flipset.

Understanding isomorphism classes of generic configurations up to flips
subject to some restrictions (e.g. only monochromatic flips or configurations
up to orchard-equivalence in odd dimensions) might be interesting.

We close this section by discussing two further examples.
Example. Consider a configuration P ⊂ S2 ⊂ R3 consisting of n points

contained in the Euclideean unit sphere S2 and which are generic as a a
subset of R3 in the above sense, i.e. 4 distinct points of P are never contained
in a common affine plane of R3. A stereographic projection ̉ : S3\{N} −ջ
R2 with respect to a point N ∈ S2 \ P sends the set P ⊂ S2 into a set

P̃ = ̉(P) ⊂ R2 such that 4 points of P̃ are never contained in a common
Euclideean circle or line of R2. The Orchard relation on P can now be
seen on P̃ as follows: Given two distinct points P̃ 6= Q̃ ∈ P̃ count the
number n(P̃ , Q̃) of circles or lines determined by 3 points in P̃ \ {P̃ , Q̃}
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which separate them. Two distinct points P 6= Q ∈ P are now Orchard-
equivalent if and only if n(P̃ , Q̃) ≡

(

n−3
2

)

(mod 2). This example can of
course be generalised to finite generic configurations of points on the the
d−dimensional unit sphere Sd ⊂ Rd+1 for d ≥ 2.

Let C be a set of continuous real functions on Rk. Suppose C is a (d +
1)−dimensional vector space containing the constant functions. Call a set
P ⊂ Rk of n points C−generic if for each subset S = {Pi1 , . . . , Pid) of d
distinct points in P if the set

I(S) = {f ∈ C | f(Pij ) = 0, j = 0 . . . , d}

is a 1−dimensional affine line and all
(

n
d

)

affine lines in C of this form are
distinct.

Given P, Q ∈ P, call a set S = {Pi1 , . . . , Pid} ⊂ P \ {P, Q} of d points
as above C−separating (or separating for short) if f(P )f(Q) < 0 for any
0 6= f ∈ I(S) and denote by nC(P, Q) the number of C−separating subsets
of P.

Corollary 6.3. The relation P ∼C Q if either P = Q or

nC(P, Q) ≡

(

n − 3

d − 1

)

(mod 2)

defines an equivalence relation having at most two classes on a set P =
{P1, . . . , Pn} ⊂ Rk of n points in Rk which are C−generic.

Examples. (i) Considering the (d + 1)−dimensional vector space of all
affine functions in Rd, Corollary 1.6 boils down to Theorem 1.1.

(ii) Consider the vector space C of all polynomial functions R2 −ջ R

of degree at most 2. A finite subset P ⊂ R2 is C−generic if and only if
every subset of five points in P defines a unique conic and all these conics
are distinct.

(iii) Consider the vector space C of all polynomials of degree < d in x to-
gether with the polynomials ̄y, ̄ ∈ R. A subset P = {(x1, y1), . . . , (xn, yn)}
with x1 < x2 < . . . , < xn is C−generic if all

(

n
d

)

interpolation polynomials
in x defined by d points of P are distinct.

7. Orientable sets

In the following sections we consider a set E together with a fixpoint-free
involution ̂ : E −ջ E. We call ̂ an orientation and the pair (E, ̂) an
orientable set. The aim of the following sections is to define the Orchard
morphism for finite orientable sets. In this case, all groups and homomor-
phisms are required to be also natural with respect to the involution ̂.

Examples of orientable sets are for instance antipodal sets of points in
Rd \ {0} or points of real Grassmannians endowed with orientations.

In the sequel we denote by ̉ : E −ջ E = E/̂ the quotient map x −ջ
x = {x, ̂(x)} onto the underlying (unoriented) quotient set. The set of all
sections

S(E, ̂) = {s : E −ջ E|̉ ◦ s(x) = x ,∀x ∈ E}

is a free module over the group (�1)E of all functions E −ջ {�1} by setting
(˺s)(x) = s(x) if ˺(x) = 1 and (˺s)(x) = ̂(s(x)) otherwise where ˺ :
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E −ջ {�1} and s ∈ S(E, ̂). The quotient set S(E, ̂)/{�1} corresponds to
orientations defined up to global reversion (action of ̂). We call an element
of the quotient group S(E, ̂)/{�1} a semi-orientation of the orientable set
(E, ̂).

Given an orientable set (E, ̂), its automorphism group Sym(E, ̂) is the
set of all ̂−equivariant permutations of E. Otherwise stated, a permutation
̉ : E −ջ E belongs to Sym(E, ̂) if and only if ̉(̂(x)) = ̂(̉(x)) for all x ∈
E. As an abstract group, the group Sym(E, ̂) is easily seen to be isomorphic
to the group of all isometries of the e−dimensional regular standard cube
[−1, 1]e ⊂ Re where 2e = |E| is the cardinality of E. This group has 2e e!
elements and is the wreath product of Sym(E) with {�1}e. We have hence
an obvious surjective homomorphisme Sym(E, ̂) −ջ Sym(E) with kernel
{�1}e.

8. Two-sets of orientable sets

Given an orientable set (E, ̂) it is natural to consider the set E(E, ̂)
of all two-partitions of E which are invariant under ̂. This set contains
the subset E(E, ̂+) consisting of all two-partitions factoring through ̉ and
inducing hence a two-partition on the quotient set E. Otherwise stated,
two elements x and ̂(x) in an orbit under ̂ belong always to the same
class. We call such a two-partition even since its classes are given ˺−1(1)
and ˺−1(−1) where ˺ : E −ջ {�1} is an even function with respect to
the involution ̂ (it satisfies ˺(x) = ˺(̂(x)) for all x ∈ E). Its complement
E(E, ̂−) = E(E, ̂) \ E(E, ̂+), called the odd two-partitions, has equivalence
classes defined as preimages of an odd function ˺ : E −ջ {�1} satisfying
˺(x) = −˺(̂(x)) for all x. The set E(E, ̂−) of all odd two-partitions on
(E, ̂) coincides with the set of semi-orientations of the orientable set (E, ̂).
Its elements are unordered pairs {s, ̂ ◦ s} of complementary sections of the
quotient map ̉ : E −ջ E.

The set E(E, ̂) = E(E, ̂+)∪ E(E, ̂−) obtained by considering all even or
odd two-partitions on the orientable set (E, ̂) is a vector space (of dimension
♯(E)/2 if E is finite) over F2. An element of E(E, ̂) is represented by �˺
where the function ˺ : E −ջ {�1} is either even (˺(̂x) = ˺(x) for all
x ∈ E) or odd (˺(̂x) = −˺(x) for all x ∈ E) with respect to ̂. The
pair �1 of constant even functions represents the identity element and the
group law is the usual product of (pairs of) functions. Given an element
{�˺} ∈ E(E, ̂), we define a map parity : E(E, ̂) −ջ {�1}, called the parity
homomorphism, by setting parity(�˺) = 1 if {�˺} ∈ E(E, ̂+) is a pair of
even functions and parity(�˺) = −1 if ˺ is an odd function.

Given an orientable set (E, ̂), we define the set (E, ̂)(l) as the set of

all sequences (x1, . . . , xl) ∈ El of length l such that (x1, . . . , xl) ∈ E
(l)

.
Otherwise stated, such a sequence satisfies {xi, ̂(xi)} 6= {xj , ̂(xj)} for i 6= j.

Proposition 8.1. Any even (respectively odd) symmetric function

̌ : (E, ̂)(2) −ջ {�1}

with

̌(a, b)̌(b, c)̌(a, c) = ˼ ∈ {�1}
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independent of (a, b, c) ∈ (E, ̂)(3) gives rise to an even (respectively odd)
two-partition on (E, ̂).

Proof. Results from Corollary 2.2 if ̌ is even.
For ̌ odd, choose a section s : E −ջ E and define the two-partition in

the obvious way on the section. This two-partition extends to a unique odd
two-partition on (E, ̂) which is independent of the choice of the section s.
2

Remark 8.2. The above equivalence relation can be constructed as follows:
Choose a fixed base point x0 ∈ E. Set ˺(x0) = 1 and ˺(̂(x0)) = parity(̌)
where parity(̌) = 1 if ̌ is even and parity(̌) = −1 if ̌ is odd. For
y 6∈ {x0, ̂(x0)} we set ˺(y) = ˼ ̌(x0, y) with ˼ ∈ {�1} as in Proposition
8.1.

9. Symmetric and antisymmetric functions on orientable sets

Recall that (E, ̂)(l) denotes the set of all sequences (x1, . . . , xl) ∈ El such

that (x1, . . . , xl) ∈ E
(l)

.
One defines l−symmetric (respectively l−antisymmetric) functions on

(E, ̂)(l) in the obvious way as the subset of functions which are invariant
(respectively which change sign) under transposition of two arguments.

A symmetric or antisymmetric function ̞ : (E, ̂)(l) 7−ջ {�1} is even if

̞(x1, x2, . . . , xl) = ̞(̂(x1), x2, . . . , xl) = ̞(x1, ̂(x2), x3, . . . , xl) = . . . .

We denote by F�(E, ̂+)(l) the set of all even l−symmetric or l−antisymmetric

functions. Notice that there exists an obvious bijection between F�(E, ̂+)(l)

and F�(E
(l)

).
Such a function is odd if

̞(x1, x2, . . . , xl) = −̞(̂(x1), x2, . . . , xl) = −̞(x1, ̂(x2), x3, . . . , xl) = . . . .

The set of all odd symmetric or antisymmetric functions on (E, ̂)(l) will be

denoted by F�(E, ̂−)(l).

We denote by F�(E, ̂)(l) = F�(E, ̂+)(l) ∪F�(E, ̂−)(l) the set of all even
or odd, l−symmetric or l−antisymmetric functions on the orientable set

(E, ̂). The set F�(E, ̂)(l) is of course a vector space (of dimension
(♯(E)/2

l

)

+2

is E is finite) over F2. The set F�(E, ̂−)(l) is a free F�(E, ̂+)(l)−module.

We define the signature and parity homomorphismes sign, parity : F�(E, ̂)(l) −ջ
{�1} by

sign(̞) = 1 if ̞ ∈ F+(E, ̂)(l), sign(̞) = −1 if ̞ ∈ F−(E, ̂)(l) ,

parity(̞) = 1 if ̞ ∈ F�(E, ̂+)(l), parity(̞) = −1 if ̞ ∈ F�(E, ̂−)(l) .

10. The Orchard morphism for finite orientable sets

Given ̞ ∈ F�(E, ̂)(l) where (E, ̂) is a finite orientable set, we define

̌ = ̞̌ : (E, ̂)(2) −ջ {�1} by setting

̌(y, z) =
∏

(x1,...,xl−1)∈(E\{y,z}
l−1 )

̞(x1, . . . , xl−1, y) ̞(x1, . . . , xl−1, z)
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where x1 = s(x1), . . . , xl−1 = s(xl−1) are obtained using an arbitrary section
s : E −ջ E of the quotient map ̉ : E −ջ E = E/̂.

Proposition 10.1. Let ̞ ∈ F�(E, ̂)(l) be a function and define ̌ = ̞̌ as
above.

(i) The function ̌ is well defined, symmetric and satisfies the identity

̌(a, b)̌(b, c)̌(a, c) = (sign(̞))(
e−3
l−2)

for all (a, b, c) ∈ (E, ̂)(3) where 2e = |E| = 2 |E| is the cardinality of E.

(ii) If ̞ ∈ F�(E, ̂+)(l) (i.e. ̞ even), then ̌ is even.

(iii) If ̞ ∈ F�(E, ̂−)(l) (i.e. ̞ odd), then ̌ is even if
(

e−2
l−1

)

≡ 0 (mod 2)
and odd otherwise.

Proof. Every element (x1, . . . , xl−1) ∈
(E\{y,z}

l−1

)

is involved twice in ̌(y, z)
thus implying that the final value is independent of the choosen total order
on E \ {y, z} and of the choosen section s : E −ջ E.

The definition of ̌ is obviously symmetric with respect to its arguments.

The proof of the identity ̌(a, b)̌(b, c)̌(a, c) = (sign(̞))(
e−3
l−2) is exactly

analogous to the corresponding proof in the non-orientable case.
Assertion (ii) is almost obvious since we have

̞(x1, . . . , xl−1, u) = ̞(x1, . . . , xl−1, ̂(u))

for u ∈ {a, b} and ̞ ∈ F�(E(l), ̂+) even.
Assertion (iii) follows from the fact that

̞(x1, . . . , xl−1, u) = −̞(x1, . . . , xl−1, ̂(u))

for u ∈ {a, b} and ̞ ∈ F�(E(l), ̂−) odd and from the observation that the

definition of ̌(a, b) involves
(

e−2
l−1

)

such factors. 2

The Orchard morphism ̊ : F�(E(l), ̂) −ջ E(E, ̂) associates to a func-

tion ̞ ∈ F�(E(l), ̂) the two-partition in E(E, ̂) associated to ̌ = ̞̌ by
Proposition 8.1.

Theorem 10.2. The oriented Orchard morphism is the unique non-trivial
Sym(E, ̂)−equivariant homomorphism from F�(E, ̂)(l) into E(E, ̂) where
(E, ̂) is a finite orientable set containing at least 6 elements.

Remark 10.3. If (E, ̂) is an orientable set containing 4 elements �a,�b
(with ̂ given by ̂(a) = −a and ̂(b) = −b), there exist several non-trivial

natural homomorphisms F�(E, ̂)(l) −ջ E(E, ̂) for l = 1, 2.
An example (distinct from the Orchard morphism) for l = 1 is given

by ̊′(̞) = trivial if ̞ ∈ F(E, ̂+)(1) and ̊′(̞) = (E = {�a} ∪ {�b}) if

̞ ∈ F(E, ̂−)(1).
For l = 2, one can for instance extend the exotic homomorphism of the

unoriented case (cf. Remark 4.2) in two ways by choosing an arbitrary

even two-partition as the image ̊′(̞) for ̞ ∈ F+(E, ̂−)(2). The image

̊′(̑) for ̑ ∈ F−(E, ̂−)(2) is then the unique remaining two-partition (i.e.

̊′(̞)̊′(̑) = ̊′(́) with ́ ∈ F−(E, ̂+)(2) is the unique even non-trivial two-
partition of (E, ̂)).
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Proof. The proof that ̊ defines a homomorphism is as in the unoriented
case.

The restriction of ̊ to the subgroup F�(E, ̂+)(l) consisting only of even
functions coincides with the usual Orchard morphism F�(E) −ջ E(E) on
E and the result holds hence for this restriction by Theorem 4.3.

We have hence to show unicity of the restriction to F�(E, ̂−) of such a ho-
momorphisme ̊′. The identity F�(E, ̂−) = ̞F�(E, ̂+) for ̞ ∈ F�(E, ̂−)
and Sym(E, ̂)−equivariance show that such a homomorphism with trivial
restriction on F�(E, ̂+) is trivial.

We might hence suppose that ̊′ = ̊ on F�(E, ̂+). We denote by e = ♯(E
half the cardinal of E.

Consider now a section s : E −ջ E and the unique symmetric odd
function ̞ ∈ F+(E, ̂−) defined by

̞(s(xi1), . . . , s(xil)) = 1

for all (xi1 , . . . , xil) ∈ E
(l)

. Sym(E, ̂)−equivariance of ̊′ implies that ̊′(̞)
is either trivial or the semi-orientation associated to the section s. Choose
now an element x ∈ E and consider the corresponding function ˜̞ associated
as above to the section s̃ which coincides with s on E \ {x} and sends x

to ̂(s(x)). The functions ̞ and ˜̞ differ by the product of all
(

e−1
l−1

)

flips

with flipsets {x, y1, . . . , yl−1} where (y1, . . . , yl−1) ∈
(E\{x}

l−1

)

. An element

y ∈ E \ {x} is involved in
(

e−2
l−2

)

such flipsets and x is involved in
(

e−1
l−1

)

=
(

e−2
l−2

)

+
(

e−2
l−1

)

such flipsets. This shows that ̊′(̞) = ̊′( ˜̞) if
(

e−2
l−1

)

≡ 0

(mod 2) and Sym(E, ̂)−equivariance forces ̊′(̞) to be even. It coincides
hence with the Orchard morphism.

If
(

e−2
l−1

)

≡ 1 (mod 2), the two-partitions ̊′(̞) and ̊′( ˜̞) differ exactly on

̉−1(x) and Sym(E, ̂)−equivariance forces ̊′(̞) to be the semi-orientation
of E(E, ̂) associated to the section s. 2

11. Geometric examples

In this section we discuss a few orientable sets arising from geometric
configurations: finite generic antipodal configurations of points (or generic
configurations of lines through the origin) in Rd and generic configurations
of the real projective space RP d.

A finite antipodal set of Rd is a finite subset P ⊂ R \ {0} invariant under
the involution x 7−ջ ̂(x) = −x. We call such a set generic if the linear span
of any subset {�x1, . . . ,�xk} ⊂ P is k for k ≤ d. We get then an element

̞ ∈ F−(E, ̂)(d) by considering the sign ∈ {�1} of

det(x1, . . . , xd)

for (x1, . . . , xd) ∈ (P, ̂)(d) (where det(x1, . . . , xd) denotes the non-zero de-
terminant of the d · d matrix with rows x1, . . . , xd).

Applying the oriented Orchard morphism ̊ of the preceeeding section to
̞ we get a two-partition ̊(̞) ∈ E(P, ̂). Obviously, ̊(̞) remains the same
by rescaling each pair �x ∈ P by some strictly positive constant ̄x ∈ R>0.

We may hence rescale such an antipodal set in order to lie on the Eu-
clideean sphere Sd−1 = {x ∈ Rd | ‖ x ‖= 1} ⊂ Rd. Similarly, we might
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interprete P as a set L of lines (defined by opposite pairs �x ∈ P). The
Orchard morphism ̊(̞) endows then such a generic finite set of lines either

with a two-partition (in the case where
(♯(L)−2

d−1

)

≡ 0 (mod 2)) or with a

semi-orientation (if
(♯(L)−2

d−1

)

≡ 1 (mod 2)).

A finite subset P ⊂ RP d of the real projective space is generic if its
completed preimage L = ̉−1(P) ⊂ Rd+1 is a finite set of generic lines in

Rd+1. If
(♯(P)−2

d

)

≡ 0 (mod 2) we get a two-partition on such a set P by
applying the Orchard morphism to L.

In the case where the Orchard morphism endows L with a semi-orientation,
we get also an interesting structure on P as follows:

Any pair P, Q ∈ P of distinct points defines two connected components on
LP,Q\{p, Q} where LP,Q ⊂ RP d denotes the projective line containing P and
Q. One of these connected components is now selected by a semi-orientation
on L by choosing the connected component of LP,Q \{P, Q} whose preimage

in Sd ⊂ Rd+1 = ̉−1(RP d) ∪ {0} joins elements of ̉−1(P) which are in the
same class. We get in this way an immersion of the complete graph KP with
vertices P into the projective space RP d. It is straightforward to show that
this immersion is homologically trivial: each cycle of KP is immerged in a
contractible way into RP d.

Remark 11.1. A preliminary version of this paper (cf. [1]) contained also
a section concerning simple arrangements of (pseudo)lines in the projective
plane. The corresponding invariants (two-partitions and semi-orientations)
are however not based on the Orchard-morphism but use only Proposition
8.1. It is hence not really related to the topic of this text and will be discussed
elsewhere.

I would like to thank many people who where interested in this work,
especially M. Brion, P. Cameron, E. Ferrand and A. Marin for their remarks
and comments.
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