
HAL Id: hal-00000575
https://hal.science/hal-00000575v1

Preprint submitted on 3 Sep 2003

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Intrusion and extrusion of water in hydrophobic
mesopores

Jean-Louis Barrat, Benoit Lefevre, Lyderic Bocquet, Anthony Saugey, Gérard
Vigier, Pierre-François Gobin, Elisabeth Charlaix

To cite this version:
Jean-Louis Barrat, Benoit Lefevre, Lyderic Bocquet, Anthony Saugey, Gérard Vigier, et al.. Intrusion
and extrusion of water in hydrophobic mesopores. 2003. �hal-00000575�

https://hal.science/hal-00000575v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

00
57

5 
(v

er
si

on
 1

) 
: 3

 S
ep

 2
00

3

Intrusion and extrusion of water in hydrophobic mesopores

B. LEFEVREa, A. SAUGEYb,c, J.L. BARRATd, L. BOCQUETd, E.
CHARLAIXd, P.F. GOBINb and G. VIGIERb .

a Laboratoire de Matériaux Catalytiques et Catalyse en Chimie Organique,
8, rue de l’Ecole Normale, 34296 Montpellier Cedex 05, France

b Groupe d’Etudes de Métallurgie Physique et de Physique des Matériaux,
20, Avenue Albert Einstein, 69621 Villeurbanne Cedex, France

c Laboratoire de Tribologie et Dynamique des Systèmes, Ecole Centrale de
Lyon, 36 Avenue Guy de Collongues, BP163, 69134 Ecully Cedex, France

d Laboratoire de Physique de la Matière Condensée et Nanostructures,
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ABSTRACT

We present experimental and theoretical results on intrusion-

extrusion cycles of water in hydrophobic mesoporous materials,

characterized by independent cylindrical pores. The intrusion, which

takes place above the bulk saturation pressure, can be well de-

scribed using a macroscopic capillary model. Once the material is

saturated with water, extrusion takes place upon reduction of the

externally applied pressure ; Our results for the extrusion pressure

can only be understood by assuming that the limiting extrusion

mechanism is the nucleation of a vapour bubble inside the pores.

A comparison of calculated and experimental nucleation pressures

shows that a proper inclusion of line tension effects is necessary to

account for the observed values of nucleation barriers. Negative line

tensions of order 10−11J.m−1 are found for our system, in reasonable

agreement with other experimental estimates of this quantity.

1 Introduction

Porous materials are involved in many industrial processes such as catal-
ysis, filtration, chromatography, etc... In order to understand such processing
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technologies, accurate information on the porous texture (surface area, pore
size distribution and pore shape) is needed. The most widely used charac-
terization methods are based on adsorption isotherms and capillary conden-
sation, usually described as a gas-liquid phase transition shifted by confine-
ment [1]. Other methods, based on capillary evaporation (mercury or water
porosimetry on hydrophobic porous materials) often provide a useful alter-
native. Experimental data obtained with either type of method are generally
characterized by a strong hysteresis phenomenon, the precise nature of which
is still a matter of debate[2].

Recently, a new field of application for porous materials, devoted to the
storage or dissipation of mechanical energy, has begun to develop [3]. This ap-
plication is based on forced intrusion-extrusion cycles of water in hydrophobic
(non-wetting) porous media. The range of pore sizes necessary for this appli-
cation is typically less than 10nm, i.e. in the range of mesopores as defined
by IUPAC, and the energetic characteristics of devices based on this process
are directly related to the hysteresis of the intrusion/extrusion cycles. It is
therefore of importance to develop a quantitative understanding of hystere-
sis phenomena involved in the condensation/drying transition in mesoporous
materials.

One promising material in this area are materials of the ’MCM41’ type
[4], in which the pore are essentially independent, parallel cylinders with di-
ameters in the nanometer range. The relative simplicity of these materials,
in which the pore geometry is well understood and the connectivity between
pores is believed to be absent, makes them ideal for studying the hysteretic
behaviour. In the range of size of mesopores, two types of effects compete
to induce hysteresis : on one hand kinetic effects associated with the phase
transition control the apparition of one phase when the material is saturated
with the other phase ; on the other hand effects related to the complexity of
the solid matrix determine the propagation of liquid/vapor meniscii in the
material. The contribution of those two types of mechanism is not well un-
derstood. Disorder effects are often addressed using a mean field approach
to model capillary condensation or drying. In these treatments, hysteresis is
related either to the disorder induced by the porous matrix (treated in the
simplest approaches by introducing different advancing and receding contact
angles) or to percolation effects (’pore blocking’ models). In such approaches
quantitative predictions are limited by the need of using a precise description
of pore geometry. As far as the kinetics of phase transition is concerned, two
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types models have been proposed to deal with capillary evaporation (also
called as the drying transition) in hydrophobic systems. The first approach
is to envision the process as driven by the nucleation of a vapour bubble.
In this scheme, drying is topologically equivalent to capillary condensation
by nucleation. An exemple of this approach can be found in the work of
Restagno et al. [5], who used a macroscopic approach to predict the behavior
of critical nuclei in two and three dimensional slit pores, and made a com-
parison with a time dependent Landau-Ginzburg simulation of condensation
in two dimensions. Talanquer and Oxtoby [6] implemented a density func-
tional theory for the nucleation in slit pores and improved the macroscopic
model by incorporating a line tension. Bolhuis and Chandler [7] combined
the transition path sampling method with molecular dynamics and Monte
Carlo simulations to study the drying transition path in narrow pores. The
second type of model is based on the idea that density fluctuations lead to
a spinodal type of instability for a liquid film between parallel plates. Under
this category, one may for example cite the work by Lum et al. [8, 9], who
used Glauber dynamics Monte Carlo simulations for a lattice gas confined
in a slit pore with strongly hydrophobic walls. Their work showed that the
drying transition can be, in this situation, driven by a large wavelength fluc-
tuation of the density at the interface. Wallqvist et al. [10] also considered
the influence of attractive Van Der Waals forces on the density fluctuations
near the interface, and showed that these interactions could strongly reduce
the width of the interfacial region, therefore reducing the fluctuations that
lead to spinodal decomposition.

In view of this rather confusing situation, it appears useful to investigate
the drying transition in well characterized materials, and to attempt a quan-
titative comparison between model calculations and model experiments in
order to understand which route towards drying can account for the exper-
imental results. The work presented in this paper represents a first step in
this direction.

We first present an experimental study of intrusion-extrusion cycles of wa-
ter in hydrophobic MCM41. In these model materials made of independent
pores of cylindrical shape, effects related to the disorder of the solid matrix
such as ”pores blocking” are not expected to be important. The hysteretic
behaviour of intrusion/extrusion cycles should be a kinetic phenomenon as-
sociated with the dynamics of the phase transition in the confined system.
We find that the intrusion pressure of water is governed by the Laplace law
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of capillarity and scales as the inverse of the pore radius down to a pore size
of 1, 6nm. In contrast, the extrusion pressure is governed by the nucleation
of a vapor phase in the pores and varies much more rapidly with the pore
size than the intrusion pressure.

Part III addresses the nucleation of a bubble in a cylindrical pore. We use
a simple macroscopic model based on classical capillarity for calculating the
energy barrier. The macroscopic approach, in spite of its limitations when
dealing with nanometer sized pores, has proven to be quite robust down to
very small length scales and is well adapted here since it describes successfully
the intrusion process. We show that depending on the ratio between the pore
size and the Kelvin’s radius, the shape of the critical nucleus is either an
annular cylindrical bump, or an asymmetric bubble growing on one side of
the cylinder.

Part IV is devoted to a quantitative comparison between theory and ex-
periment. The plain classical capillarity model is in good qualitative agree-
ment with the data and describes quantitatively well the temperature de-
pendence of the hysteresis cycle. However it fails to describe accurately the
variation of the extrusion pressure with the pore size. We show that excel-
lent quantitative agreement is recovered if one takes into account line tension
effects, i.e. the energy of the three-phase line of the critical nucleus. Exper-
imental extrusion occurs when the energy barrier has a constant value of
about 40kBT for all pore sizes and temperature investigated.

2 Experimental section

2.1 Parent materials

The materials used in this work are micelle-templated silicas, MTS, of the
MCM-41 type synthetised from an alkaline silicate solution in the presence
of surfactants [4] : hexadecyltrimethylammonium bromide (CTAB) and oc-
tadecyltrimethylammonium bromide, were used in the synthesis of samples
MTS-1 and MTS-2 respectively. Following standard procedures [4] [11] , ma-
terials with larger pores were obtained by incorporating a swelling agent of
the micelles such as trimethylbenzene (TMB). Samples MTS-3 and MTS-4
were prepared by incorporating TMB in the ratios TMB/CTAB of 2.7 and
13 respectively. Low temperature (77 K) nitrogen sorption isotherms of the
corresponding calcined materials are gathered in Figure 1. The sharp con-
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densation steps for samples MTS-1 and MTS-2 are typical from MCM-41
materials and reveal low pore size distributions. The regularity of the meso-
pores arrangement and the model structure are confirmed by Transmission
Electron Microscopy (TEM). Images of sample MTS-2 are given in Figure 2
as an example. Less ordered pore textures are expected when TMB is used as
a swelling agent (samples MTS-3 and MTS-4). Anyway, because the mech-
anisms involved in the pore generation during the synthesis are similar for
the four samples, it is quite reasonable to believe that their porous textures
also consist in cylindrical and independent channels. From nitrogen sorption
data, the specific surface areas, Sp

BET , were calculated using the BET theory
[12]. Mean pore radii, Rp

BdB, were calculated from Broekhoff-De Boer theory
(BdB) [13] applied to the relative pressure corresponding to the inflection
point of the desorption step. This determination was previously shown to be
in good agreement with nonlinear density functional approaches (NDFT) [14]
and geometrical arguments for MCM-41 materials [15]. Mesoporous volume,
Vp

P , were measured as the amount adsorbed at the top of the condensation
step. Textural properties are gathered in table 1.

Parent materials MTS-1 MTS-2 MTS-3 MTS-4
V p

P / ml.g−1 0.71 0.76 1.06 2.38
SBET / m2.g−1 932 855 898 856

rp
BdB / nm 1.8 2.0 2.4 5.9

Grafted materials MTS-1g MTS-2g MTS-3g MTS-4g
ng / nm−2 1.39 1.17 1.34 1.35
V g

P / ml.g−1 0.35 0.44 0.68 2.01
Rg

BdB / nm 1.3 1.5 2.3 5.6
Rg

muff / nm 1.3 1.6 2.0 5.4

Tab. 1 – Textural properties of the materials as determined from nitrogen
sorption experiments and carbon analysis.

2.2 Hydrophobized materials

Hydrophobicity at the surface of the pores was generated by covalent
grafting of n-octyl-dimethylchlorosilane by a pyridine-assisted reaction fol-
lowing a procedure described elsewhere [16][17]. Grafted materials are re-

5



0

100

200

300

400

500

600 a )

 

 

V
ad

s 
, 

 m
l.g

-1
 S

TP

0

100

200

300

400

500

600b )

  

0.0 0.2 0.4 0.6 0.8 1.0
0

100

200

300

400

500

600

700 c )

 

 

V
ad

s 
, 

 m
l.g

-1
 S

TP

P/P
0

0.0 0.2 0.4 0.6 0.8 1.0
0

200

400

600

800

1000

1200

1400

1600d )

 

  

P/P
0

Fig. 1 – Nitrogen sorption isotherms of the parent silica supports (dotted
line) and grafted corresponding materials (full line). Data are plotted per
gram of bare silica in each case : a) MTS-1, b) MTS-2, c) MTS-3 and d)
MTS-4.

ferred to as MTS-1g, MTS-2g, MTS-3g and MTS-4g. Grafted chains densi-
ties, ng, were determined from carbon analysis and from Sp

BET of the parent
silica (see table 1). Nitrogen sorption isotherms on grafted-MTS materials
are reported per gram of bare silica in figure 1 together with sorption data
on parent materials. This correction allows a more intuitive visualization of
the textural modification induced by the grafting treatment [18]. In a first
approach, BdB theory can be applied to estimate the mean pore radius of
the grafted materials, Rg

BdB (see results in table 1), but the presence of high
amounts of organic ligands may strongly modify the interactions between the
pore surface and the adsorbate during the sorption experiment and affect the
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Fig. 2 – Transmission electron microscopy images on sample MTS-2. The
hexagonal pore arrangement is clearly evidenced on the top view, when ob-
served perpendicularly to the pore channels.

desorption pressure. Therefore, the values of pore radii determined by BdB
theory on these samples are questionable. To overcome this uncertainty, one
can estimate the pore radii of the modified samples by considering the change
in pore volumes measured by nitrogen sorption. A similar approach was used
by Fadeev et al [19] to estimate the grafted layer thickness in similarly mod-
ified silica gels. In the case of cylindrical pores, the volume which becomes
unaccessible to nitrogen molecules after the surface treatment is actually rep-
resented as a muff according to this interpretation. Using equation 1 [19], the
pore radius for a modified sample, Rg

muff , can be calculated (Vg
P is the meso-

pore volume of the modified sample expressed per gram of parent material).

Rg
muff = Rp

BdB

√

V g
P

V p
P

(1)

One of the interests of such a calculation in the present study is that no
assumption is done on the mechanisms of adsorption on a grafted surface.
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2.3 Water intrusion-extrusion study

Water intrusion experiments were performed on a specially designed ap-
paratus described elsewhere [20]. About 2 grams of outgassed hydrophobized
material were gathered with a large excess of deionized water (compared to
the corresponding disposable pore volume) into a thermosealed shrinkable
polymer container. In a typical experiment, the pressure was first contin-
uously increased from atmospheric pressure, Patm to 80 MPa by means of
a mechanical increasing constraint, and then decreased back to Patm. The
time required for a complete cycle was about 4 minutes. No significant dif-
ference was observed in our experiments for 1 minute to 1 hour long cycles.
The pressure of the liquid and the volume variations were simultaneously
recorded. The volume values were corrected to eliminate deformation and
the compressibility contributions, following a procedure described elsewhere
[21]. The representation of the water pressure as a function of the corrected
volume variation (expressed per gram of parent material) are denoted P/V
curves. In these plots, volume variations reflect the cumulative intruded and
extruded volumes of water into the pores during compression and decompres-
sion steps respectively. Therefore, the corresponding plots will be denoted as
”intrusion branch” and ”extrusion branch”. Tens of cycles could be recorded
on samples MTS-1g, MTS-2g and MTS-3g, allowing the system to stay at
Patm for 10 minutes between each run. Slight evolutions were observed from
the first to the third cycle, probably corresponding to irreversible intrusion
in some parts of the material (see [22]). The next cycles were completely
reproducible. Data presented in this paper correspond to these last cycles
designed as ”stable” cycles. For sample MTS-4g only one intrusion could be
recorded as no water extrusion took place during the decompression step, and
even after several hours at Patm. For this material, spontaneous extrusion of
water does not take place. The corresponding P/V curves are reported in
Figure 3. The absolute value of the pore volume can be deduced from the
water capacity at the end of intrusion branch. This value is systematically
smaller than the pore volume determined by nitrogen sorption. This may be
a consequence of the strong difference between a good wetting of the grafted
chains by nitrogen and a non-wetting behavior in the case of water. The mean
intrusion (extrusion) pressure Pm

int (Pm
ext) related to the inflexion point of the

intrusion (extrusion) branch are gathered in table 2 for the four selected
samples. The dependance of Pm

int and Pm
ext with mean pore radius and surface

chemistry will be discussed in the next sections.
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Grafted materials MTS-1g MTS-2g MTS-3g MTS-4g
Pm

int / MPa 59.5 44.4 35.0 14.4
Pm

ext / MPa 30.8 6.2 2.5 -

Tab. 2 – Mean intrusion and extrusion pressures determined from the P/V
curves for stable cycles for samples MTS-1g, MTS-2g and MTS-3g and for
the first intrusion for sample MTS-4g.

2.4 Variation of intrusion pressure with pore size

The Laplace equation is generally used to described the pressure drop
trough a curved interface. Assuming that the liquid / vapor interfaces are
spherical caps and that the pores are cylindrical, the equilibrium pressure
drop trough a meniscus in a pore of radius Rp is :

∆P = −2
˼LV

Rp

cos ́eq (2)

where ˼LV is the interfacial tension of the liquid/vapor interface and ́eq the
equilibrium contact angle. Then, assuming that the pressure of the vapor is
negligible, and that during the intrusion process the triple line advances by
adopting an advancing contact angle ́a (́a ≥ ́eq) we can in theory express
the applied pressure Pliq required for intrusion by means of local parameters
́a and Rp. This relation, used to derive pore-size distributions from mercury
injection experiments, is known as the Laplace-Washburn equation :

Pliq = −2
˼LV

Rp

cos ́a (3)

If we now consider the set of data obtained on our materials, the validity of
this equation to describe the variation of the intrusion pressure as a function
of the pore size can be checked by plotting Pm

int against R−1
p (figure 4). In

this representation, a straight line is obtained with a good correlation when
the pore radius is calculated following the muff model (Rg

muff ). Several con-
clusions can be extracted from this result : (1) First, this linear plot includes
with a reasonably good agreement the origin, which is consistent with the
fact that Pint ջ 0 as RP ջ ∞. (2) Second, a constant advancing contact an-
gle for all the samples is expected, since the plot is linear. This indicates close
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values of the grafting densities ng for the four samples. Assuming the macro-
scopic value from the tables for ˼LV , the slope allows to estimate ́a ≈ 120.3o,
a reasonable value for this type of grafted materials. (3) Third, this results
indicates that the representation of the grafted phase as a muff is suitable to
describe the pore space and to estimate the pore size for this type of modified
materials. (4) Finally, it is remarkable to note that the Laplace-Washburn
equation is still successful to describe the intrusion of a non-wetting liquid
into cylindrical mesopores of diameters as small as 2.6 nm, which had not
been evidenced before for model materials (Eroshenko et al [23] [24] [25].
Gusev [26] and Gomes et al [27] reported interesting results for diameters
down to 5 nm but in modified silica gels presenting a disordered porosity).
Therefore, it could be said that confinement has no significant effect on the
intrusion process -apart from the trivial effect expected from a macroscopic
description.

2.5 Variation of drying pressure with pore size

We now consider the mean extrusion pressure, Pm
ext. The conventional

approach used to describe the withdrawal of mercury is to consider a receding
contact angle, ́r to express Pext by means of the Laplace-Washburn equation.
As concluded from the previous section, the surface properties (chemistry,
rugosity) for the present samples are believed to be quite similar in terms
of hydrophobicity as a single value of ́a was found for the four materials.
Therefore, if the propagation of menisci according to a receding contact angle
was an accurate description of the extrusion process, Pext should vary as R−1

p ,
in the same way as Pint. This dependency was tested by plotting both Pm

int

and Pm
ext as a function of Rp = Rg

muff in logarithmic scales in figure 5.
While the intrusion law (Laplace-Washburn) appears as a line of slope −1,
the tendency is completely different for the extrusion law, as indicated by
the experimental mean extrusion pressures measured on samples MTS-1g,
MTS-2g and MTS-3g. Pm

ext seems to be more sensitive to Rp as revealed by
the larger slope (< −5 compared to −1). In addition, the extrusion pressure
for the large pores material (MTS-4g), which can be extrapolated from this
tendency, is expected to be lower than Patm (see the corresponding cross
between brackets on Figure 5). This prediction is in agreement with the fact
that this sample does not undergo extrusion in the range of pressure accessible
to our device. This clearly demonstrates that the Laplace-Washburn equation
is not adequate to describe the pressure threshold for water withdrawal in this
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set of model materials. Describing the extrusion process as the propagation of
a meniscus with a receding contact angle would lead to pore size dependant
values of ́r, which are not consistent with the intrusion data on the same
samples. To our knowledge, this failure of Laplace-Washburn equation had
not been clearly established before for mercury withdrawal, probably because
experimental results have not been reported for the intrusion of mercury in
model porous materials such as MCM-41.

Another mechanism has then to be considered to explain the extrusion.
Taking a pore full of liquid at a given pressure, the creation of the vapor phase
has actually to be considered as the first step towards emptying, the second
one being the propagation of the resulting menisci. In the range of pore size
of our experiments, the propagation stage is clearly not the limiting one. We
propose that extrusion is governed by the nucleation of a vapor phase in each
pore independently, water withdrawal taking place subsequently through the
fast, non-equilibrium propagation of menisci at the pressure for which the
nucleation event has occurred.

2.6 Influence of temperature

In phase transitions, nucleation processes are thermally activated and
therefore highly temperature dependant. A feature arguing in favor of a nu-
cleation mechanism for water extrusion in our system is the behaviour of the
intrusion-extrusion cycle when the temperature is changed. Figure 6 shows
a plot of the cycle in one sample (MTS-1g), at two different temperatures :
T1 = 298K and T2 = 323K. The intrusion pressure at 323K is slightly lower
than at ambiant temperature. This shift is quantitatively consistent with the
temperature variation of the water surface tension. In contrast, the extrusion
pressure increases significantly with temperature : Pext = 30.8 MPa at 298 K
and Pext = 37.8 at 323 K. This temperature shift of the extrusion pressure
is much more important than the one observed on the intrusion pressure.
The high sensitivity of the extrusion pressure to temperature confirms the
hypothesis of a nucleation mechanism for this process.

3 Modelling the nucleation path

In order to develop a quantitative understanding of the nucleation process
of a vapor phase in the hydrophobic MCM41, we calculate in this section
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the energy barrier to overcome for creating a critical vapor nucleus in a
hydrophobic cylinder. The words ”vapor” and ”hydrophobic” are used here
only for convenience ; the calculation describes more generally the formation
of a wetting phase in a cylinder filled with the non-wetting phase. The only
limitation is that the contact angle must have a finite value : the situation of
perfect wetting with a wetting film adsorbed at the wall is not described here.
This calculation uses a relatively simple macroscopic model based on classical
capillarity. This is justified for comparison with the experiments since the
macroscopic law of capillarity has been shown to describe quantitatively the
intrusion pressure.

Let us consider a pore of radius R. The interfacial tensions between the
solid boundary, vapour and liquid will be, as usual, denoted by ˼SL, ˼SV and
˼LV . The chemical potential of the fluid molecules is fixed at some imposed
value ̅. According to classical thermodynamics, liquid-vapour coexistence
inside the pore is possible when the pressure difference between the liquid
and the solid, ∆p = pL − pV , verifies Kelvin’s equation [28] :

∆p = 2(˼SL − ˼SV )/R (4)

Alternatively, ˼SL − ˼SV can be replaced by ˼LV cos(̉ − ́) where ́ is the
contact angle of the liquid on the solid surface. For water on an hydrophobic
substrate, ́ > 90o, and the pressure inside a vapour ’meniscus’ is lower than
in the surrounding fluid.

In the grand-canonical ensemble, a critical nucleus corresponds to a saddle
point of the grand potential. The grand potential of a pore filled with liquid
can be written as

ΩL = −pL VPore + ˼SL ASL (5)

while the potential of a pore partially filled with vapor is

ΩV = −pL VL − pV VV + ˼SL ASL + ˼SV ASV + ˼LV ALV (6)

. Here VL (resp. VV ) is the volume of liquid (resp. vapor) phase (VL + VV =
VPore) and ASL, ASV , ALV are the solid-liquid, solid-vapor and liquid-vapor
surface areas. With these notations, the excess grand potential for a pore
containing a vapor nucleus can be expressed as

∆Ω = VV ∆p + ˼LV ALV + ˼LV cos ́ ASV (7)

In order to determine the shape of the critical nucleus, it will prove con-
venient to introduce reduced quantities, by using R, R2 and R3 as units
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of length, area and volume, respectively. Using ṼV = VV

R3 , ÃLV = ALV

R2 ,

ÃSV = ASV

R2 , one obtains :

∆Ω̃ =
∆Ω

4̉˼LV R2
= 2˽

ṼV

4̉
+

ÃLV

4̉
− cos(̉ − ́)

ÃSV

4̉
(8)

where ˽ = R
2RK

and RK = γLV

∆p
is Kelvin’s radius. Coexistence takes place

when ˽ = cos(̉ − ́), and a a pore filled of liquid becomes metastable when
˽ < cos(̉ − ́).

3.1 Cylindrical critical nucleus : the annular bump

In view of the cylindrical symmetry of the problem, it is natural to in-
vestigate first nucleation paths that preserve this symmetry. The shape of a
cylindrically symmetric vapour nucleus can be described by a function h(r),

as shown in figure 7. Using the reduced variables x = r
R

and ̑(x) =
h(r)

R
,

the expression for the excess grand potential can be written as :

∆Ω̃ = 2˽

1
∫

0

x̑(x)dx +

1
∫

0

x

√

1 +

(

d̑

dx

)2

dx − cos(̉ − ́)̑(1) (9)

The shape of the nucleus is obtained by solving the Euler-Lagrange equa-
tion δ∆Ω̃

δψ(x)
. This gives the mechanical and contact equilibrium in terms of the

local curvature and of the contact angle as [29] :

1

x

d

dx





xdψ
dx

√

1 + (dψ
dx

)2



 = 2˽ (10)

dψ
dx

√

1 + (dψ
dx

)2

(x = 1) = cos(̉ − ́) (11)

Using the boundary condition (11), the second order differential equation
(10) can be integrated once, which yields :

d̑

dx
=

f(x)
√

1 − f(x)2
with f(x) = ˽x +

cos(̉ − ́) − ˽

x
(12)
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At x1 =
1−
√

1−4δ(cos(π−θ)−δ)

2δ
, f(x1) = 1 : the profile has a tangent parallel

to the cylinder axis, and the critical nucleus displays an annular shape. The
profile can be explicitly written as

̑(x) =

x
∫

x1

cos(̉ − ́) − ˽(1 − ̊2)
√

̊2 − (cos(̉ − ́) − ˽(1 − ̊2))2
d̊ (13)

which can be integrated numerically or by using special functions (cf. fig. 8).
The reduced energy barrier is obtained from equation (8). Under equilibrium
conditions, f(x) = x · ˽ and the meniscus is the classical spherical cap.

3.2 Nucleation of a bubble in contact with the wall

A second nucleation path is proposed without taking into account cylin-
drical symmetry. It consists in the growing of a vapor bubble on the cylindri-
cal wall, that eventually occupies the whole width of the cylinder and forms
two spherical menisci. To determine surface and volume energies along such
a nucleation path we have to determine the shape of the asymmetric bubble
as a function of volume. This shape is determined by a minimization of the
total energy, which implies mechanical equilibrium at each point. This is a
complex variational problem, that can only be tackled numerically. We have
used the Surface Evolver code, which provides an efficient way of solving this
type of variational problems. The resolution is based on a discretisation of
the surfaces using triangular facets [30]. Energies are obtained using surface
and line integrations. Using a gradient method, Surface Evolver yields the
shape of minimal surface energy for a given volume.

For a bubble in contact with the pore wall, the surface is made of liquid
vapor interface SLV of tension ˼LV and solid vapor interface SSL of tension
−˼LV cos(́) :

E =

∫

SLV

˼LV dA +

∫

SSL

−˼LV cos(́) dA (14)

For numerical stability, the solid-liquid interface is removed from the code
and surface energy is substituted by a line energy of the three phase line
using the Stokes theorem :

E =

∫

SLV

˼LV dA +

∫

∂SSL

−˼LV cos(́) ~wn. ~ds (15)
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with ∇· ~wn = ~Fn and ~Fn being a vector field with zero divergence (∇⋅ ~Fn = 0,
that reduces to the normal vector for points on the solid liquid surface. In
the same spirit, the volume integral is first reduced to surface integrals using
the Ostrogradski theorem :

V =

∫

V

dV =

∫

SSL∪SLV

1

3
~r.~n ds (16)

and likewise replaced by a contour integral as :

V =

∫

V

dV =

∫

SLV

1

3
~r.~n ds +

∫

∂SSL

1

3
~wr. ~ds (17)

Results are presented in figures 9 and 10. On each picture, one can check
that contact angle is equal to 120o.

The reduced excess grand potential, along the nucleation path obtained
from equation 8, is plotted in figure 11. For a maximum value of the volume,
the vapour bubble becomes unstable and a change of topology is observed,
with formation of a vapour cylinder occupying the whole cylinder width and
limited by two spherical caps. The energy barrier along this path is obtained
for the maximum value of the bubble energy, which is reached at this stability
limit. The critical nucleus corresponds in this case to the unstable endpoint
in a family of bubble like surfaces.

A comparison of the reduced energy barriers for the two nucleation mech-
anisms is presented in figure 12, for ́ = 120o. Depending on the value of ˽,
the asymmetric nucleation path (low delta, i.e. high metastability) or the
annular nucleus (low metastability) is favoured.

3.3 An approximate expression for the energy barrier

of nucleation

Figure 13 gathers the numerical results for the energy barrier obtained
for various values of the contact angle, as a function of ˽. For each value of ˽,
only the energy barrier corresponding to the more favourable configuration
(bubble or annular bump) is represented. A good approximation for estimat-
ing the reduced energy barrier is to write it as a piecewise linear function of
the dimensionless parameter ˽ = R∆p/2˼LV . In this approximation, ∆Ω is
written in the form

∆Ω = ∆pK1(s)R
3 + ˼LV K2(s)R

2 (18)
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where K1(s) and K2(s) are functions only of the contact angle and of the
shape s of the nucleus (bubble, s = b, or cylindrical, s = c) and do not depend
on the size of the capillary. The relative error made by using approximation
18 instead of the actual value of the energy barrier is at most �1% for values
of ́ ranging between 95o and 130o. Numerical values for K1(s) and K2(s) in
this range of contact angle are given in table 3 for various contact angles.

It is of interest to notice that equation 18 if of the general form that
would be obtained if the critical nucleus was keeping a constant shape when
the radius R of the capillary is varied. It is easily seen from equation 8
that if this were the case, the resulting energy barrier would be of the form
∆Ω = ˼LV R2f(R/RK), with f a dimensionless function. Equation 18 is of
this form, f being moreover closely approximated by a linear function.

́ K1(b) K1(c) K2(b) K2(c) K3(b) K3(c)
95.0000 4.06 0.94 6.16 6.13 11.85 12.56
100.0000 4.11 1.51 5.46 5.77 12.00 12.56
105.0000 4.17 1.93 4.73 5.27 12.16 12.56
110.0000 4.22 2.24 3.97 4.68 12.28 12.56
115.0000 4.27 2.49 3.19 4.04 12.38 12.56
120.0000 4.28 2.67 2.42 3.35 12.43 12.56
125.0000 4.25 2.79 1.70 2.67 12.46 12.56
130.0000 4.18 2.87 1.02 1.99 12.48 12.56

Tab. 3 – Dimensionless constants K1(s), K2(s) and K3(s) for calculating
approximately the nucleation barrier, according to equations 18 or 20. s = c
corresponds to the cylindrically symmetric nucleus, observed at large ˽, while
s = b corresponds to the asymmetric bubble (favoured at small ˽).

4 Comparison between theoretical and exper-

imental results

In the usual theory of thermally activated nucleation, the number n̄ of
critical nucleus created per unit time and unit volume (here unit length) in
the system writes

n̄ = (b̍)−1e−∆Ω/kBT (19)
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The prefactor of this Arrhenius law includes a microscopic length b and a
microscopic time ̍ whose value can depend on the pore size but in a much
weaker way than the exponentiel factor. Hence the essential variation in the
nucleation rate n̄ comes from this exponential factor. Experimentally, the
transition is observed when the probability of creation of a critical nucleus in
an average capillary of length L over an experimental time t becomes unity,
i.e. n̄Lt ∝ 1. This occurs for a rather well defined value of the energy barrier
∆Ω/kBT ∝ ln(Lt/b̍). Neglecting the variation of the microscopic prefactors
b and ̍ with temperature and pore size, the theory and the experiment will
be in good agreement if
i) the model reproduces the experimental value of the extrusion pressure for
various temperatures and pore sizes using a single value of ∆Ω/kBT , and
ii) the numerical value of e−∆Ω/kBT lies in the range of the expected order of
magnitude of the prefactor b̍/Lt.

In figure 14 the dotted lines show the plots of the theoretical extrusion
pressure as a function of the pore size obtained in our model by assuming
that extrusion takes place at a constant value of ∆Ω. In this calculation we
have used equation 18 to obtain the value of ∆p that results in the desired
∆Ω, assuming ́ = 120o and T = T1 = 298K. One sees that for a given
value of ∆Ω, the theoretical extrusion pressure decreases extremely quickly
with increasing pore radius. This variation is much more rapid than for the
intrusion pressure, and is even stronger than the one observed experimentally
for the extrusion pressure. The model thus provides the correct qualitative
tendency but no quantitative agreement with experiment. The disagreement
can be quantified by computing the values of the energy barrier ∆Ω needed to
provide the measured values of the extrusion pressure. Using equation 18 we
have calculated ∆Ω for each experimental extrusion data point (Pm

ext, Rg
muff ).

The resulting values of ∆Ω are 142 kBT1, 135 kBT1 and 190 kBT1 for samples
MTS-1g, MTS-2g and MTS-3g respectively. It is seen that that the nucleation
model is much better than the Laplace-Washburn law for describing the
extrusion process : the relative variation of the energy barrier obtained for
the different data points is only 40% whereas the extrusion pressure varies by
one order of magnitude. However the quantitative agreement is not perfect.
There is a tendency for the calculated energy barrier to increase with the
pore size, which means that the model overestimates the energy barrier for
large pores.

It is of interest to point out that this overestimation is present only for the
pore size variation of the extrusion pressure. Its variation with temperature
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seems very well described by the nucleation model. We have calculated the
energy barrier of nucleation for the experimental data point corresponding
to the sample MTS-1g at T2 = 323K (Pm

ext = 37.8 MPa, Rg
muff = 1.3 nm),

taking into account the tabulated value of water surface tension at T2 =
323K and assuming that the equilibrium contact angle ́ remains unchanged
(́ = 120o). We find ∆Ωc = 142kBT2. We have checked that changing the
value of ́ in a range consistent with the intrusion pressure does not modify
significantly this energy barrier. This excellent agreement with the value
obtained at T1 = 298K confirms that the extrusion mechanism in the sample
under study is indeed governed by a thermally activated nucleation process.

However, besides failing to describe precisely the pore radius dependency
of the extrusion pressure, another drawback of the simple nucleation model
expressed by equations 8 and 19 is the high value found for the activation
energies. The numerical value of the exponential factor e−∆Ω/kBT found is
about 10−60. Taking for microscopic parameters a molecular size b = 1Å and
a typical time between molecular collisions ̍ = 10−12 s, and for macroscopic
parameters an average length of 100nm for the capillaries and a value of 10
s for the experimental time, one hardly reaches the order of magnitude 1019

for the prefactor entering the probability of nucleation. Therefore nucleation
should not be observable experimentally for the activation energies found
with the calculation.

This is a serious drawback. Of course the range of size under study is close
to the nanometer and the use of plain classical capillarity at this length scale
may seem a too rough approach. It is however puzzling that classical capil-
larity works so well to describe the intrusion pressure, and fails to provide
reasonable values for the activation energy controlling the extrusion pressure.
The fact that the experimental intrusion pressure scales as the inverse of the
pore radius shows that the Laplace low of capillarity is not affected by the
nanometric range of the pore size. The most natural way to improve the
model is then to introduce another macroscopic parameter which has been
neglected, i.e. the tension of the three-phase contact line between the free
surface of the nucleus and the solid wall. Line tension is a macroscopic ther-
modynamic parameter similar to surface tension, whose microscopic source
is the modification of molecular interaction energies close to a three-phase
line. These interactions induce a deviation of the liquid-vapor interface from
the macroscopic shape it would have if only surface tension were taken into
account, and results in an excess energy which scales extensively with the
system size i.e. with the length of the contact line. Line tension effects are
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usually neglected in classical capillarity when dealing with large systems. A
crude argument for this is that the ratio of line tension to surface tension has
the dimension of a length, and can only be of the order of a molecular size.
Hence line tension will influence only objects of size comparable to molecular
sizes. Based on this argument, an order of magnitude for the line tension
can also be constructed by dividing a cohesion energy by a molecular size,
yielding ̄ ≃ kBT/b ≃ 10−11J/m.

For nucleation problems which involve an object of size comparable to
Kelvin’s radius, line tension effects may however become important. Oxtoby
et al [6] have shown indeed that incorporating line tension effects improve
significantly macroscopic models for the nucleation in slit pores.

It is important to mention that line tension effects should not change
the value of the intrusion pressure in the case of a cylindrical capillary. The
reason is that in that particular geometry, the existence of a line energy does
not change the contact angle of a spherical-cup meniscus with the solid wall.
Therefore, in the case of a model porous medium like MCM41, line tension
is expected to affect only the free energy of the critical nucleus and the value
of the extrusion pressure, but not the intrusion pressure.

Since there are very few data available for the values of line tension, we
choose to treat it as an adjustable parameter ̄. For the simplicity of calcula-
tions, we make use of two extra hypothesis for incorporating line tension in
our model. The first one is to assume that the shape of the critical nucleus
does not depend on the value of the line tension. This amounts to neglect
the variation of the contact angle with the line tension. This variation would
be a second order effect here and can be neglected in a first estimation. With
this first hypothesis, incorporating the line tension contribution to the energy
barrier is very simple. One adds to the energy barrier calculated in section 3
the free energy ̄l of the three-phase line of the critical nucleus. The length
l of this three-phase line can be calculated from the shape of the critical
nucleus found in section 3. We find that its reduced value l/R varies slightly
with the pore radius R (see figure ??, which gathers the maximum range
of variation of the reduced length l/R of the critical nucleus contact line
for several values of the contact angle). As a second hypothesis, we neglect
this variation and consider that the length l of the contact line entering in
the energy barrier is l = K3(s)R, where the constant K3(s) depends only
on the contact angle ́ and on the shape of the nucleus (s). The values of
K3(s) are listed in table 3, as well as the maximum relative error induced by
this assumption. Using approximation 18, the energy barrier for nucleation
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in presence of line tension effects writes simply :

∆Ωc = PLK1(s)R
3 + ˼lvK2(s)R

2 + ̄K3(s)R (20)

The procedure we use to compare this expression to the experimental data
is to treat ∆Ωext (the value of the barrier for which extrusion is observed)
and ̄ as two adjustable parameters and fit equation 20 against the three
experimental data points (Pext, R) obtained for the three samples in which
extrusion is observed. We then plot in figure 14 the curve Pext(R) derived
from equation 20 with the value of ∆Ω and ̄ obtained from the fit. This curve
represents the theoretical prediction for the extrusion pressure, which takes
place for each sample at the same value of the activation energy. One can
see that the nucleation model with line tension accounts reasonably well for
experimental data, considering the approximations made. The optimal value
for the line tension is ̄ = −(2.4 � 0.3)10−11J/m, which is a realistic order
of magnitude [31]. The sign of this tension is negative, which explains that
nucleation occurs relatively more easily in small pores than expected. We have
no explanation based on microscopic arguments on why ̄ should be negative
in this particular system, but we note that negative ̄ have already been
reported previously [6, 31]. Finally, the value found for the energy barrier with
the line tension effect is ∆Ω = (35 � 5)kBT . This value is quite reasonable.
Using as above the estimates ̍ = 10−12s and b = 1Å for the microscopic
parameters in equation 19, a probability of nucleation equal to 1 in a channel
of length 100nm is obtained after a macroscopic time of t = 1s.

5 Conclusion

In this paper, we have presented a combination of experimental and the-
oretical approaches to describe the intrusion/extrusion cycle of a nonwetting
liquid (water) in an ”ideal” hydrophobic porous material, made of parallel
cylindrical pores. The situation is somewhat similar to the more standard
case of capillary condensation of a wetting liquid in a porous material, with
intrusion taking place at a pressure higher than the bulk coexistence pressure.

The intrusion data can be well accounted for by using standard capillarity
theory, with an intrusion pressure that scales as the inverse of the pore radius.
The advancing contact angle obtained is close to 120o, which is perfectly
reasonable for this type of materials, and suggests that the intrusion branch
is close to equilibrium.
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The description of the extrusion process is somewhat more difficult. Our
data suggests that a description similar to that of the intrusion branch, but
using a receding contact angle, is not appropriate. Rather, it appears that
the limiting step in the extrusion process is the nucleation of the wetting
phase (here the vapour) that we describe using standard nucleation theory.
The free energy barrier for nucleation is calculated using a standard capillary
description, allowing for various shapes of the critical nucleus. The experi-
mental data is analyzed by assuming that extrusion occurs at a fixed value
(relative to kBT ) of the energy barrier. This allows a quantitative compar-
ison between predicted and measured extrusion pressures, as a function of
pore radius. When line tension effects are neglected, the theory cannot ac-
count for the experimental data, and predicts nucleation barriers that are
far too large. However, inclusion of a negative line tension as an adjustable
parameter results in an excellent agreement between nucleation theory and
experiment. The optimal value of the line tension is in reasonable agreement
-as far as order of magnitude is concerned- consistent with values obtained
using completely different approaches [31]. Our work confirms the impor-
tance of line tension effects on some aspects of capillary phenomena at the
nanometer scale, and provides an independent estimate of the line tension.

Two predictions of the present model remain to be tested experimentally.
According to figure 14, the extrusion pressure should vanish for pores of
radius larger than 2-3nm. This is consistent with our result that no extrusion
is observed for a sample with R = 4nm, but samples with intermediate radius
values would be needed to confirm the theory. On the small pores side, our
calculation predicts that extrusion pressure should equal intrusion pressure
for R = 9Å. Hysteresis should vanish for such small pores, for which however
the validity of the macroscopic analysis may become questionable.
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Fig. 3 – Intrusion/extrusion of water for the four grafted materials at 298
K : the pressure of the liquid Pliq is reported as a function of the volume
variation ∆V expressed per gram of bare silica.
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line is a guide for the eyes, the cross represents the origin).
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K (line) and 323 K (line + closed symbols) on sample MTS-1g.
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Fig. 7 – Definition of the function h(r) describing a nucleus with cylindrical
symmetry.
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Fig. 8 – Annular profile of the critical nucleus in a cylindrical pore.́ = 120o,
˽ = 0.375
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Fig. 9 – Views of the vapour bubble growing on the surface of a cylindrical
pore, for various values of the volume. Camera viewing axes is the cylinder
axes. The contact angle is 120o. Only the liquid-vapour interface is displayed.
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Fig. 10 – Several views of a vapor bubble in contact with the pore wall for
an equilibrium contact angle fixed to 120 <. Each picture is obtained from
the previous one by an 18 < rotation to the left. Only one half of the cylinder
has been displayed. The solid-vapor interface is not represented.
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Fig. 11 – Reduced excess grand potential of a vapor bubble in contact with
the pore wall as a fonction of the parameter angle. ́ = 120o, ˽ = 0.3. For
a maximum value of the volume, the vapour bubble becomes unstable and
degenerates into a cylindrical tube. The energy barrier corresponds to this
unstable equilibrium shape.
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Fig. 12 – Reduced energy barrier as a function of ˽, for ́ = 120o. Full line :
bubble configuration. Dashed line : annular bump configuration
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Fig. 13 – Reduced energy barrier as a function of ˽ obtained in the most
favourable configuration (bubble or cylindrical bump). From left to right,
the values of the contact angle ́ are 95o, 100o, 105o, 110o, 115o, 120o, 125o,
130o. The dashed lines are the best fit of each curve with a piecewise linear
function, as described in the text.
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Fig. 14 – Extrusion (squares) and intrusion (diamonds) pressure versus pore
radius. Dotted lines : theoretical curves for the extrusion obtained using
equation 18, and assuming values of ∆Ω = 135kBT , ∆Ω = 142kBT and
∆Ω = 190kBT for the extrusion process. Full line : theoretical curve obtained
using equation 20, with ∆Ω = 35kBT and ̄ = −2.4 · 10−11 J.m−1.
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