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Deformation of grain boundaries in polar ice
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PACS. 83.80.Nb – Geological materials: Earth, magma, ice, rocks, etc... .

PACS. 81.70.-q – Nondestructive materials testing and analyzis: optical methods.

PACS. 62.20.Fe – Deformation and plasticity (including yield, ductility, and superplasticity).

Abstract. –
The ice microstructure (grain boundaries) is a key feature used to study ice evolution

and to investigate past climatic changes. We studied a deep ice core, in Dome Concordia,
Antarctica, which records past mechanical deformations. We measured a “texture tensor”
which characterizes the pattern geometry and reveals local heterogeneities of deformation along
the core. These results question key assumptions of the current models used for dating.

Motivations. – Polar ice cores are the focus of many investigations because they record
the history of climatic changes. Owing to snow accumulation, snow to ice transformation
and slow ice sheet flow (∼ 10−12s−1), a journey down to the deep layers of the ice sheet is a
journey back to several hundred of thousands of years into the past [1].

A crucial step of paleoclimatic studies from ice cores is dating. In Antarctica, counting
annual layers is impossible [2]: absolute dating is only possible for the very top of the ice cores
where ice layers containing volcanic impurities can be related to historical volcanic eruptions.
Below, dating relies on ice sheet flow models of the evolution of ice layer thinning with depth
[2]. Such models are loosely constrained by the identification of large climatic transitions. For
the sake of simplicity, these models assume a smooth and monotonous increase of the thinning
with depth, hence ignore any possible localization of the deformation [2, 3].

In this letter, we question this essential assumption. We present a method to extract
geometrical information (such as thinning, shear, localization of the deformation) from pictures
of a cellular pattern using local spatial averages of the “texture tensor” [4]. We apply this
analyzis to the grain boundaries (the so-called “microstructure”) of ice samples from a deep
ice core.

Samples. – Dome Concordia, Antarctica (75◦ 06’ 04” S, 123◦ 20’ 52” E, elevation 3233
m a.s.l) is at the summit of an Antarctic ice dome. It has been chosen because it is usually
assumed that the ice flow is axisymmetric around the vertical (z) axis, and isotropic within the
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Fig. 1 – Two thin sections of ice imaged between crossed polarizers in white light. Each grain
has an almost uniform crystallographic orientation, visualized by its color. (a) At 362 m depth, the
microstructure looks isotropic; (b) at 2629 m depth the microstructure is visibly anisotropic (the white
scratches do not affect the image analyzis, which ignores them). Superimposed on (a): notations used

in the measurement of M , here e.g. at the site labeled by a red dot. We note ~ℓ a vector linking it
to one of its neighbours. There are 3 such vectors in the first shell, p = 1 (purple); 6 in shell p = 2
(green); 12 in shell p = 3 (orange).

horizontal plane. In February 2003, the European ice core drilling program (EPICA) reached
the depth of 3201.65 m below the ice surface, close to the ground (depth 3309 ± 22 m).

Samples have been extracted and transported according to standard procedures [5]. We
analyzed ∼11 cm high, ∼ 0.1 mm thin sections (Fig. 1), with a sampling interval varying
from 2 to 25 m. The vertical axis on a thin section always corresponds to the true in situ
vertical axis z; its horizontal axis, labelled x in what follows, has an unknown and variable
orientation within the true in situ horizontal plane.

Data analyzis. – By processing pictures of ice under crossed polarizers, we determine the
grain boundaries [5], then the sites (“vertices”) where three boundaries meet, see Fig. (1a).
For each pair of neighbouring sites, we draw the vector which links them and denote it by
~ℓ. We then construct the tensor ~ℓ ⊗ ~ℓ: its coordinates are (ℓiℓj), where i, j are here x or z;

this tensor is not sensitive to the sign of the vector (it is invariant under ~ℓ → −~ℓ), but it
characterizes its length ℓ and its direction.
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Fig. 2 – Analyzis of the images presented in Fig. 1. The texture tensor M measured at each site
is represented as an ellipse, with its axes along the eigenvectors, and its half-axes proportional to
eigenvalues λ1, λ2 respectively. A site around which the pattern is isotropic is represented by a circle;
conversely, a strong anisotropy is represented as an elongated ellipse. The size of the ellipse (same
scale for each ellipse) represents the local length of the grain boundaries, i.e quantifies the local

grain size. Due to the definition of M (eq. 1), we exclude sites closer than p grains from the image
boundary; here p = 3.

To statistically characterize the pattern, ref. [4] proposed to define the texture tensor M ,

as the average of ~ℓ ⊗ ~ℓ over a box of fixed size. Such box should be smaller than the image
(in order to visualize local details), but still large enough to include a number N ≫ 1 of wall
vectors (to have relevent statistics) [6]. Here, grains have variable size (grains grow with time,
hence old grains in deep ice are much larger than young grains near the dome surface): it
would be difficult to select such a fixed box size.

We thus chose a local averaging and define M at each given site as:

M =

〈(

ℓ2
x ℓxℓz

ℓzℓx ℓ2
z

)〉

p

=
1

N

N
∑

k=1

~ℓ(k) ⊗ ~ℓ(k) = R
(

λ1 0
0 λ2

)

R−1. (1)

Here, R is the rotation which diagonalizes M , and (λ1, λ2) are the corresponding eigenvalues;
〈·〉p denotes the average over N vectors, up to the p-th neighbours (Fig. 1a). Hence, at each

site we include approximately the same number of vectors, N ≈ 3 + 6 + ... + 3 × 2p−1. A
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Fig. 3 – Histogram of Uxz (left) and of Uzz(right) measured with p = 3 on Fig. (2a): 362 m deep
sample (dots), and the corresponding gaussian distribution (same mean and standard deviation) (thin
solid line); and on Fig. (2b): 2629 m deep sample (thick solid line).

smaller p explores local details, a larger p (hence a larger scale) improves the statistics.
This tensor, independent from cristallographic information, does not require any knowledge

or hypothesis regarding the past history of the material. The diagonal components Mxx

and Mzz of this tensor are both of order of the average square distance
〈

ℓ2
〉

between sites.
Conversely, the off-diagonal component Mxz = Mzx is much smaller, and even vanishes when
the pattern is isotropic. Hence λ1, λ2 > 0: the largest eigenvalue corresponds to the direction
in which grains are most elongated (Fig. 2).

While many other quantitative descriptors exist [7], few are adapted to the determination
of the anisotropy of such microstructure pattern. Previous studies on polar ice calculate the
aspect ratio of the grains from the linear intercept method [5, 8]. Other use the eigenvalues
of the grain inertia tensor [9, 10]; this is a true tensor, with mathematical advantages: for
instance, its value does not depend on the particular choice of axes, hence undergoes less
artifacts when examining the 2D cut of a 3D pattern.

The tensor M has the same advantages; but also an additional one, thanks to its definition
(eq. 1) being quadratic in ~ℓ: it has a physical signification in terms of mechanical deformations

[4]. More precisely, its variations (with respect to a reference M0 measured in an isotropic,

relaxed state) define a statistical strain tensor U :

U =
log

(

M
)

− log
(

M0

)

2
, (2)

which exists even during large deformations and, at least during elastic deformations, coincides
with the classical definition of strain [4].

For the 2D pattern studied here, M0 is unknown, and processes other than deformation
(such as grain growth) modify the microstructure. We first assume that the (viscoplastic)

deformation is isochore (incompressibility of ice), so that TrU = 0 and λ0
1λ

0
2 = λ1λ2. We

also assume that the reference state is isotropic; hence M0 is isotropic too, so that λ0
1 = λ0

2 =
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Fig. 4 – Localization of deformation inside the ice core. Each point corresponds to one of 329
samples; same scale for both figures. (a) |Uxz| versus depth. Closed circles highlight samples where
|Uxz | > 3σ. (b) Uzz versus depth. Two large closed circles linked by a thick solid line indicate two
successive measures which 3 σ confidence intervals do not overlap. A large open circle indicates a
sample with a large significant shear (Uxz > 3σ, from (a)). Vertical lines indicate zones, associated
to climatic transitions, where the grain growth rate changes significantly (see Discussion).

√
λ1λ2. We then can measure U through the following equation:

U =
1

2
R





log
(

λ1√
λ1λ2

)

0

0 log
(

λ2√
λ1λ2

)



R−1 =
1

4
R





log
(

λ1

λ2

)

0

0 log
(

λ2

λ1

)



R−1. (3)

Hence U has two independent components Uzz and Uxz, both largely insensitive to the grain
size fluctuations.

To estimate the statistical variability of the measure, we generate 150 isotropic microstruc-
tures from a 2D Potts model of normal grain growth [11]. We check that (i) each component

of U fluctuates around zero; (ii) its distribution is gaussian (see an example with p = 3 on
Fig. 3); (iii) its standard deviation σ only depends on the number N of vectors, i.e on the
scale of observation p; and (iv) σ(N) ∝ N−1/2: more precisely, σ ≈ 0.34 N−1/2.

Results. – We first measure the deformation and its heterogeneity within one sample.
Fig. (2a) shows that the upper sample (depth 362 m) is almost homogeneous. Its anisotropy is
small and, as expected from a sample taken at a dome, it mainly reflects a uniaxial compression
along the vertical axis. Conversely (Fig. 2b), the anisotropy of the lower sample, at 2629 m:
is stronger; is localized in space; and breaks the axisymmetry around z (see Discussion).

Quantitatively, the distributions of Uxz (vertical compression) and Uzz (horizontal shear)
of both samples differ significantly (Fig. 3). The upper sample is not sheared (〈Uxz〉 = 0.00),
and is slightly flattened onto the horizontal plane (〈Uzz〉 = −0.05). The lower sample is
significantly sheared (〈Uxz〉 = 0.13) and strongly flattened (〈Uzz〉 = −0.25). Note that for
p = 3 (N = 21) the intrinsic value of σ (see above) is 0.074; here, the statistical deviation
(0.1) is comparable, but slightly larger, reflecting the heterogeneity of deformation at small
scales (10−2 − 10−1 m).

We now turn to heterogeneities at large scale (1 − 102 m), by measuring the global U
(integrated over all the grain boundaries of a given sample), versus the sample depth (Fig. 4).
Whereas Uxz remains around zero, as expected in a dome situation, Uzz increases (in absolute
value) with depth.
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The essential point is the localization: namely, the observation of a deformed (sheared
or compressed) layer immediately close to less deformed ones. As mentioned, the grain size
increases with depth, therefore the number of vectors per sample decreases, hence σ increases.
The localization is nevertheless significant, and is increasingly frequent at increasing depth
(closed circles on Fig. 4).

Discussion. – Since the pictures are 2D cuts of actual 3D grains, the apparent average

grain size could be misestimated; however, since U is dimensionless, it should remain unaf-
fected. When, and only when, the pattern is axisymmetric, we can refine the above analyzis
(eq. 3). In that case, the eigenvectors are (x, y, z), and the corresponding eigenvalues are

(λ1, λ1, λ2). The eigenvalues of U are now log(λ1/λ2)/6 and log(λ2/λ1)/3. We have checked
that the results corresponding to the 2D analyzis (Figs. 3, 4) and the 3D one (data not shown)
are completely similar, with even slightly more heterogeneities using the latter analyzis. Of
course, care is required for the interpretation of an individual sheared sample (for instance re-
garding Uzz at 2629 m, Fig. 3b). But on average, the breaking of the axisymmetry hypothesis
(large open circles on Fig. (4b)) does not introduce significant artifacts on the compression
heterogeneities we recorded (closed circles on Fig. 4b).

Processes such as normal grain growth counteract the anisotropy of grains induced by

deformation. Hence the strain recorded by the microstructure U underestimates the strain ε
actually experienced by the material. The growth rate itself could undergo some fluctuactions.
At few depths, near the bottom of the core, a correlation has been observed between small
grain sizes (related to a large amount of dust in the ice [12]) and large strains. In these few
cases, highlighted by the thick vertical lines in figure 4b, the large differences of Uzz observed
between two adjacent layers could be partly explained by the difference in the grain growth
rate. However, this effect is unable to explain most heterogeneities (closed circles on Fig. 4b).
In addition, it does not explain the large number of shear layers (closed circles on Fig. 4a).
We thus argue that the heterogeneity of anisotropy, observed at both small and large scales,
has a mechanical origin.

Conclusion and perspectives. – A dating chart is the relation t(z) between depth z and
age t of ice: it requires a model, and hypotheses. The ice core is drilled exactly at the summit
of a dome, in order to assume that the flow is axisymmetric; so that the ice thinning results
from vertical compression only, without horizontal shear. Current models further assume a
smooth and monotonous increase of the thinning of ice defined as the ratio e(z)/e(0), where
e is the thickness of the annual ice layer at depth z.

The second assumption has already been shown to be wrong in the Greenland ice cores
GRIP and GISP2 ([13, 14, 15]). Flow disturbances have been reported within at least the 30%
deepest part of the GISP2 core, based on the observations of wavy ash layers, crystal stripings
visible by eyes, and anomalous fabrics [13]. The dating has been particularly questioned by
the observation of a folding, i.e. local inversion of ice layers [16].

Here, our method is more accurate and applies to ice itself, without requiring markers
nor extreme events. We show that flow disturbances are detectable from almost the top of
the ice sheet, and increase in number and intensity with depth. In fact, both dating model
assumptions are contradicted by our results: the strain gradient is variable and not even
always positive (Fig. 4b); and although the flow at a dome is axisymmetric on average, in
detail there is a symmetry breaking due to shear, especially in deep layers (Fig. 4a). This
suggests to reconsider current standard dating charts.

As a first step, we might replace in the dating model the assumed strain gradient by the
value of ∂Uzz/∂z observed in the microstructure. Unfortunately, as mentioned above, this
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still underestimates the real strain, and the proportionnality coefficient could vary with the
grain growth rate.

In the future, we expect to correlate the grain boundary pattern with the c-axis orienta-
tions, to improve our understanding of their coupling.
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