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PACS. 83.80.Nb – Geological materials: Earth, magma, ice, rocks, etc. .
PACS. 81.70.-q – Nondestructive materials testing and analysis: optical methods.
PACS. 62.20.Fe – Deformation and plasticity (including yield, ductility, and superplasticity).
PACS. 61.72.Mm – Grain and twin boundaries.

Abstract. –
To analyse a polycrystalline material which has undergone mechanical sollicitations, we

quantify the deformation of grain boundaries. We investigate a pattern which records past
deformations: a deep ice core, in Dome Concordia, Antarctica. Its ice microstructure (grain
boundaries) is a key feature useful to study ice evolution and to investigate climatic changes.
Our method extracts quantitative physical information, such as the anisotropy and the local
heterogeneity of the deformation. This leads to a re-examination of current models used in
datation. The method also applies to extract quantitative geometrical information from other
cellular patterns, ranging from metal processing and biological tissues to foams and granular
matter.

Motivations. – A picture contains a large amount of data, from which it is sometimes
difficult to extract quantitative, physically relevant information. In this letter, we present a
method to characterise a cellular pattern by measuring a geometrical quantity, the “texture
tensor” [1], using local spatial averages. We apply this analysis to the grain boundaries (the
so-called “microstructure”) of ice samples, and deduce physical properties of the pattern itself:
anisotropy, local heterogeneity, distinction between homogeneous regions and shear bands.

We investigate a pattern in which we have access to the record of past deformations: a deep
ice core, in Dome Concordia, Antarctica. Polar ice cores are the focus of many investigations
because they record the history of climatic changes. The snow accumulates, then transforms
into ice, and flows downwards slowly (∼ 10−12s−1). A travel down to deep layers of the ice
sheet is thus a travel back to several hundred of thousands of years into the past [2].

A crucial step of paleoclimatic studies from ice cores is dating. In Antarctica, counting
annual layers is impossible [3]: absolute dating is only possible for the very top of the ice cores
where ice layers containing volcanic impurities can be related to historical volcanic eruptions.
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Fig. 1 – Two thin sections of ice imaged between crossed polarisers in white light. Each grain has
an almost uniform c-axis orientation, visualised by its color. (a) At 362 m depth, the microstructure
looks isotropic; (b) at 2629 m depth the microstructure is visibly anisotropic (the white scratches
do not affect the image analysis, which ignores them). Superimposed on (a): notations used in the

measurement of M . We consider here for instance the site labeled by a red dot. We note ~ℓ a vector
linking it to one of its neighbours. There are 3 such vectors in the first shell, p = 1 (purple); 6 in
shell p = 2 (green); 12 in shell p = 3 (orange).

Below, datation relies on ice sheet flow models of the evolution of ice layer thinning with depth
[3]. Such models are loosely constrained by the identification of large climatic transitions for
which absolute dating can be obtained on other records (e.g. marine sediment cores). For the
sake of simplicity, these models assume a smooth and monotonous increase of the thinning
with depth, hence ignore any possible localization of the deformation [3, 4].

The results of this letter question this essential assumption, which apparently holds only
down to 1200 m in the present case. We first present how the samples are obtained, then the
image analysis, and finally the results, which we briefly discuss.

Samples. – Dome Concordia, Antarctica (75◦ 06’ 04” S, 123◦ 20’ 52” E, elevation 3233 m
a.s.l.) is at the summit of an Antarctic ice dome, which has been chosen because it is usually
assumed that the ice flow is axisymmetric around the vertical (z) axis, and isotropic within
the horizontal plane.

The ground is 3309 � 22 m below the ice surface. An European ice core drilling program
(EPICA) reached the depth of 3201.65 m in February 2003. Samples have been extracted and
transported according to standard procedures [5]. We analyzed thin (∼ 0.1 mm) sections:
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Fig. 2 – Analysis of the images presented in Fig. 1. The texture tensor M measured at each site
is represented as an ellipse, with its axes along the eigenvectors, and its half-axes proportional to
eigenvalues ̄1, ̄2 respectively. A site around which the pattern is isotropic is represented by a circle;
conversely, a strong anisotropy is represented as an elongated ellipse. The size of the ellipse (same
scale for each ellipse) represents the local length of the grain boundaries, i.e quantifies the local grain

size. Due to the definition of M (eq. 1), we exclude sites too close to the image boundary.

each sample is a few cm high, see Fig. (1), with a sampling interval varying from 2 to 50 m.
The vertical axis on a thin section always corresponds to the true in situ vertical axis z; its
horizontal axis, labelled x in what follows, has an unknown and variable orientation within
the true in situ horizontal plane.

Image analysis. – The problem we address is to extract physically relevent information
from the geometry of this microstructure. While many quantitative descriptors exist [6], few
are adapted to the determination of the anisotropy of such a pattern. We chose to use a

descriptor introduced in ref. [1]: the local texture tensor M , measured as follows.

We have developed [5] a digital image processing of pictures of ice under crossed polarisers,
that determines the grain boundaries, then the sites (“vertices”) where three boundaries meet,
see Fig. (1). For each given pair of neighbouring sites, we draw the vector which links them

and denote it by ~ℓ (Fig. 1a).

We construct, for each vector, the tensor ~ℓ ⊗ ~ℓ: its coordinates are (ℓiℓj), where i, j are

here x or z. This tensor is not sensitive to the sign of the vector (it is invariant under ~ℓ ջ −~ℓ),
but it characterizes its length ℓ and its direction.

To characterize statistically the average properties of the pattern, we thus average ~ℓ⊗~ℓ. Ref.
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[1] originally proposed to take the average over a box of fixed size. Such box should be smaller
than the image (in order to visualise local details), but still large enough to include many wall
vectors (N should be larger than one, to have relevent statistics). This was convenient for
movies [7, 8], where, even if the box was small and did not contain many sites, the average
could be taken over many successive images. It resulted in very good statistics [7], even if
some links crossed the boundary of the box instead of being fully included in it [8]. Here,
we can perform averages over space, not over time. Since grains have variable size (grains
grow with time, hence old grains in deep ice are much larger than young grains near the dome
surface), it would be difficult to select such a fixed box size.

We thus chose a local averaging, over a few neighbouring sites: 〈⋅〉 denotes the average over
N vectors, up to the p-th neighbours (Fig. 1a). Hence, at each site we include approximately
the same number of vectors, N ≈ 3 + 6 + ... + 3 · 2p−1. We thus measure the local texture

tensor M [1] at each given site:

M =
1

N

N
∑

k=1

~ℓk ⊗ ~ℓk =

〈(

ℓ2x ℓxℓz

ℓzℓx ℓ2z

)〉

. (1)

We find that p = 3 (and hence N = 3 + 6 + 12 = 21) is a good compromise (Fig. 1a): small
enough to visualise local heterogeneities, and large enough to ensure good statistics.

This tensor, independent from cristallographic information, does not require any knowledge
or hypothesis regarding the past history of the sample. The diagonal components Mxx and Mzz

of this tensor are both of order of the average square distance between sites,
〈

ℓ2
〉

. Conversely,
the off-diagonal component Mxz = Mzx (the tensor is symmetric) is much smaller, and even

vanishes when the pattern is isotropic. Hence the tensor M has two strictly positive eigenvalues
̄1 ≥ ̄2 > 0: the largest corresponds to the direction in which grains are most elongated.

Results. – This averaged tensor discards small-scale details and reflects relevant physical
features of the actual microstructure of the material, visible in each region of Fig. (2). It
first yields qualitative information regarding the deformation and its localisation. The upper
sample (at a depth of 362 m) is almost homogeneous: its anisotropy is small, with a horizontal
main axis, as could be expected from a sample taken at a dome, undergoing a small vertical
compression, with axisymmetry in the xz plane (Fig. 2a). Conversely, the lower sample (depth
2629 m) displays a clear and localised anisotropy, indicating a symmetry breaking (Fig. 2b).

To obtain a more quantitative information, we measure the shape isotropy, which we define
for instance as a number comprised between 0 for an extreme anisotropy, represented as an
ellipse squashed to a segment, and 1 for a perfect isotropy, represented as a circle:

˺ =
2̄1̄2

̄2
1

+ ̄2
2

. (2)

We also denote by ́ the angle between the horizontal plane and the eigenvector ~e1 corre-
sponding to the largest eigenvalue ̄1 (−90◦ < ́ ≤ 90◦), see Fig. (2).

The upper sample is characterized by isotropies mainly above 0.8; the angle ́ is thus widely
distributed, although concentrated around 0◦, in agreement with a vertical compression (Fig.
3a). Conversely, the lower sample is more anisotropic: its isotropies are distributed between
0.2 and 1, and it has a marked preferred orientation ́ ≈ 20◦ (Fig. 3b).

Equipped with such tools, we can now turn to a systematic investigation of all available
ice thin sections, that is, quantify the dependence of patterns with the depth. For each image,

we measure M from eq. (1) by averaging over all the vectors (i.e. all grain boundaries) of
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Fig. 3 – Histogram of shape isotropy ˺ and orientation ́ of the texture tensors measured on Fig.
(2a): 362 m deep sample (grey) and on Fig. (2b): 2629 m deep sample (hatched).

the sample. We then calculate the global isotropy of the sample from eq. (2). We observe a
small heterogeneity of samples, until around 1200 m; below that depth, the isotropy saturates
around 0.9, while the heterogeneity strikingly increases.

To check the significance of these fluctuations, we measure the isotropy using a sliding
window over a half meter long section (at z = 335 m, corresponding to the Holocene period,
a climatically quiet zone). We check that the distribution of isotropies is roughly gaussian
(data not shown), and measure its standard deviation ̌. This defines �2̌ = 95% and
�3̌ = 99.7% confidence intervals, appearing on Fig. (4a). Data points exceed this interval,

Fig. 4 – (a) The shape isotropy of the ice microstructure, plotted versus the depth inside the ice core.
Each point corresponds to one of 303 samples; each sample (except for nine of them) comprises at
least 100 sites, and up to 1000 sites for the upper samples. Thick solid line: average, defined by a
sliding window over 100 points; dashed lines and thin solid lines: 95% and 99.7% confidence intervals
(see text). (b) Scheme representing the deformation mechanisms acting near a dome. Both vertical
compression (1) and horizontal shear (2) induce a rotation of the c axes of the grains towards the
vertical z axis; hence ice grains of height H become thinner (h < H).
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denoting anomalously small or large isotropies.
Strikingly, the isotropy undergoes a strong heterogeneity, over a scale as small as the

distance between consecutive samples (down to 2 m). The deformation exhibits localization
that increases with depth, with deformed layers beside non-deformed ones.

Discussion. – In the light of these results, let us now re-examine how datation charts are
established, that is, the relation t(z) between depth z and age t of ice. Datation is based on
the thinning ˾zz of the ice, defined as the ratio:

˾zz = ezz/ezz(z = 0),

where ezz is the thickness of the ice layer at depth z. As mentioned in the introduction, to
transpose depth into ice age requires a model for the evolution of the deformation rate ∂˾zz/∂z
with depth. Current models assume smooth and positive profile of ∂˾zz/∂z, therefore a smooth
and monotonous increase of the thinning.

At a dome, axisymmetry implies in principle that thinning of the ice results from vertical
compression only. The ice core drilled exactly at the summit of a dome is thus easier to model
assuming the flow is axisymmetric. The main drawbacks of such simplified models are already
well-known. Let us summarise them briefly.

First, due to the horizontal component of the ice flow, the contribution of shear to thinning
becomes predominant already at a few kilometers beside the dome [9]. Noteworthily, in
practice, even below the dome, the flow is never purely vertical, as the result of an irregular bed
rock topography [9] and of a possible motion of the dome location with time [10]. Consequently,
one can expect a significant role of horizontal shear in the lower part [11].

Second, ice grains are hexagonal crystals, and their viscoplastic deformation is very anisotropic,
as slip occurs mainly along the basal planes [12]. Consequently, vertical compression or hori-
zontal shear induce a rotation of the c axes of the grains towards the vertical z axis [11, 13].
Hence, even when the axisymmetry is observed at large scale, it is usually broken at the grain
scale (Fig. 4b).

Here, we observe a striking heterogeneity, that is, difference between the isotropy of two
samples close to each other. We can suggest a possible explanation. As mentioned above,
under shear deformation (Fig. 4b (1)), the c axis of a grain rotates towards the vertical z axis
(“formation of fabric”) [13]. In turn, such grain becomes more sensitive to horizontal shear.
This creates a positive feedback, and can induce a bifurcation process: small differences in
shear deformation (and therefore in thinning) between adjacent layers are constantly reinforced
[11]. On the opposite, deformed grains become less sensitive to vertical compression [11] (Fig.
4b (2)): in the regions where vertical compression dominates, the feedback should be negative,
hence less heterogeneities. This explanation is compatible with our observation of a strong
heterogeneity only in the regions deeper than 1200 m, where shear dominates (Fig. 4b). Such
positive feedback could lead to arbitrarily high local differences in flow rates, which is in
contradiction with the hypothesis of the datation model.

This could require a revision of the current standard datation charts, especially at fre-
quencies higher than those associated with large climatic variations (glacial-interglacial fluc-
tuations). Unfortunately, besides grain deformation, other processes (normal grain growth,
recrystallization) modify the ice microstructure through depth and time. For that reason,
the microstructure does not record completely the thinning ˾zz. Hence ˾zz is not directly
measurable, and the isotropy ˺ underestimates it. This precludes a direct use of the present
results to date the ice by integration of ˾zz from the top.

Perspectives. – In the future, we expect to correlate the grain boundary pattern with the
c-axis orientations, to go further into our understanding of their coupling. We are also cur-
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rently applying our measurement of the grain isotropy to correct and improve the estimation
of their 3D volume from 2D cuts.

Our method is based on a local average over space, not over time. Since it is based on
boxes of constant “topological” (constant number of shells) rather than “geometrical” (usual)
size, the number N of links in the average, and hence the statistics, have the same meaning
throughout even a heterogeneous sample. It applies to similar cellular patterns in very different
systems, including foams [14]. We currently plan to analyze biological tissues [15] or granular
matter [16], and even fracture patterns. Other possibilities include the characterization of
microstructure in various polycristalline materials, such as metals during industrial processes,
or geological rocks in tectonical flows.
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