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THE ODD–DIMENSIONAL GOLDBERG CONJECTURE

VESTISLAV APOSTOLOV, TEDI DRĂGHICI AND ANDREI MOROIANU

Abstract. An odd–dimensional version of the Goldberg conjecture was formulated and
proved in [5], by using an orbifold analogue of Sekigawa’s arguments in [8], and an approxi-
mation argument of K–contact structures with quasi–regular ones. We provide here another
proof of this result.
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1. Introduction

The celebrated Goldberg conjecture states that every compact almost Kähler Einstein man-
ifold M is actually Kähler–Einstein. This conjecture was confirmed by Sekigawa [8] in the
case when M has non–negative scalar curvature. The odd–dimensional analogues of Kähler
manifolds are Sasakian manifolds, and those of almost Kähler manifolds are K–contact mani-
folds. In [5], Boyer and Galicki proved the following odd–dimensional analogue of Goldberg’s
conjecture.

Theorem 1.1. [5] Any compact Einstein K–contact manifold (M,g, ξ) is Sasakian.

Their proof goes roughly as follows. First, an Einstein K–contact manifold has prescribed
(positive) Einstein constant. If the K–contact structure is quasi–regular (i.e. the orbits of the
Reeb vector field ξ are closed), then the quotient of M by the flow of ξ is an almost Kähler
orbifold [9] which is Einstein with positive scalar curvature by the O’Neill formulas. One then
applies Sekigawa’s proof to obtain that the almost Kähler structure is integrable, which in
turn means that the K–contact structure is Sasakian. If the K–contact structure is not quasi–
regular, the space of orbits of ξ is not an orbifold (and may not be even a tractable topological
space). To overcome this difficulty, the authors of [5] provide a beautiful argument showing
that the Reeb vector field ξ can be approximated (in a suitable sense) by a sequence of quasi–
regular Reeb vector fields ξi which define K–contact structures on a sequence of (no longer
Einstein) metrics gi approaching g. Then for the sequence of orbifolds thus obtained, one can
use “approximative” Sekigawa formulas and eventually show that the K–contact structure is
integrable.

The aim of this note is to give another proof of Theorem 1.1 and to study further possible
extensions. Instead of the quotient of M by the Reeb flow, we consider another almost Kähler
manifold naturally associated to M , namely the cone over M . It is well–known that the cone
is a smooth, non–compact Ricci–flat almost Kähler manifold which is Kähler if and only if M
is Sasakian. It therefore suffices to prove the integrability of the almost Kähler cone structure.
It would seem to be difficult to apply directly Sekigawa’s arguments in this situation because
of the non–compactness of the cone. But this can be overcome easily: we first apply a point–
wise version of Sekigawa’s formula on the cone manifold, and then integrate it on the level
sets of the radial function (which are compact manifolds).
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The use of this approach tempted us to extend the conjecture to the more general case
of contact metric structures, when the metric is no longer bundle–like. Indeed, one could
argue that the analogue of almost Kähler manifolds in odd dimensions are the contact metric
structures, since they correspond to the level sets of the radial function of almost Kähler cone
metrics. The contact analogue of the Goldberg conjecture would then assert that any compact
Einstein contact metric manifold is Sasakian–Einstein. This statement turns out to be false
in general, as it follows from an example of D. Blair on the flat 3–torus, which we recall in
the last section. Still, the counterexample does not generalize to higher dimensions, so the
problem seems to be worth further investigation. We make a step in this direction; in the
particular case when the Einstein metric admits already a compatible Sasakian structure, we
use Theorem 1.1 to show that any other compatible contact metric structure is necessarily
Sasakian.

Theorem 1.2. Let (M,g, ξ) be a compact Sasakian–Einstein manifold of dimension 2n + 1.
Then any contact metric structure (ξ′, g) on (M,g) is Sasakian. Moreover, if ξ′ is different
from ±ξ, then the following two cases occur:

• (M,g) admits a 3–Sasakian structure and ξ and ξ′ belong to the underlying S2–family
of Sasakian structures.

• (M,g) is covered by the round sphere S2n+1.

Note that the cone construction identifies the set of all Sasakian structures on the round
sphere S2n+1 with the homogeneous space SO(2n + 2)/U(n + 1).

2. Preliminaries

Let (M,g) be a Riemannian manifold. We define the cone M̄ := M ×R
∗
+ endowed with the

metric ḡ = dr2 + r2g, and denote by ∇̄ the covariant derivative of ḡ. It is well–known that the
cone is a non–complete Riemannian manifold which can be completed at r = 0 if and only if
M is a round sphere.

Every vector field X on M induces in a canonical way a vector field (X, 0) on M̄ , which
(with a slight abuse of notation) will still be denoted by X. Similarly, we denote by the same
symbol the forms on M and their pull–backs to M̄ (with respect to the projection on the
first factor). Let us denote by ∂r the vector field ∂

∂r
on M̄ . The following formulas relate the

covariant derivatives ∇ and ∇̄, and are immediate consequences of the definitions.

(1) ∇̄∂r
∂r = 0; ∇̄X∂r = ∇̄∂r

X =
1

r
X; ∇̄XY = ∇XY − rg(X,Y )∂r.

Using this, we obtain for every vector X and a p–form ω on M

(2) ∇̄∂r
ω = −

p

r
ω and ∇̄Xω = ∇Xω −

1

r
dr ∧ Xyω,

(3) ∇̄∂r
dr = 0 and ∇̄Xdr = rX♭.

The curvature tensors R and R̄ of M and M̄ , respectively, are related by

(4) R̄(∂r, ·) = 0 and R̄(X,Y )Z = R(X,Y )Z + g(X,Z)Y − g(Y,Z)X.
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Definition 2.1. A contact metric structure on a Riemannian manifold M is a unit length
vector field ξ such that the 1–form η := 〈ξ, ·〉 and the endomorphism ϕ associated to 1

2
dη are

inter–related by

(5) ϕ2 = −1 + η ⊗ ξ.

Since ϕ2(ξ) = 0, we get |ϕ(ξ)|2 = −〈ξ, ϕ2(ξ)〉 = 0, so ϕ(ξ) = 0. In other words, ϕ defines a
complex structure on the distribution orthogonal to ξ.

A contact metric structure (M,g, ξ, ϕ, η) is called K–contact if ξ is Killing. The K–contact
structure (M,g, ξ, ϕ, η) is called Sasakian if

(6) ∇·∇ξ = ξ ∧ ·.

Given a contact metric manifold (M,g, ξ, ϕ, η), we construct a 2–form Ω on M̄ , defined by

(7) Ω = rdr ∧ η +
r2

2
dη.

This 2–form is clearly compatible with ḡ, and therefore defines an almost complex structure
J on M̄ by Ω(·, ·) = ḡ(J ·, ·). Moreover, Ω is obviously closed, meaning that (M̄ , J) is almost
Kähler. It is well–known that Ω is parallel (i.e. (M̄, J) is Kähler) if and only if the contact
structure ξ is Sasakian.

We close this section with the following

Lemma 2.2. (i) The codifferentials on M and M̄ are related by

(8) δM̄ (rkσ) = rk−2δMσ, ∀σ ∈ Λ1M.

(ii) The Laplacians on M and M̄ are related by

(9) ∆M̄ (rkf) = rk−2(∆Mf − k(2n + k)f), ∀f ∈ C∞(M).

Proof. (i) If (ei) denotes a local orthonormal base on M , we have

δM̄ (rkσ) =
∑

i

(−
ei

r
(rkσ(

ei

r
)) + rkσ(∇̄ ei

r

ei

r
)) − ∂r(r

kσ(∂r)) + rkσ(∇̄∂r
∂r)

=
∑

i

−rk−2ei(σ(ei)) + rk−2σ(∇ei
ei) − r∂r) = rk−2δMσ.

(ii) Similarly,

∆M̄ (rkf) =
∑

i

(−
ei

r
(
ei

r
(rkf)) + ∇̄ ei

r

ei

r
(rkf)) − ∂r(∂r(r

kf))

=
∑

i

(−rk−2ei(ei(f)) +
1

r2
(∇ei

ei − r∂r)(r
kf)) − k(k − 1)rk−2f

= rk−2∆Mf − k(2n + 1)rk−2f − k(k − 1)rk−2f

= rk−2(∆Mf − k(2n + k)f).

�
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3. Proof of Theorem 1.1

Let (M2n+1, g, ξ) be a compact K–contact Einstein manifold. By a result of Blair ([2],
Theorem 7.1), a contact metric manifold is K–contact if and only if Ric(ξ, ξ) = 2n; thus, the
Einstein constant in our case must be 2n.

Consider now the cone M̄ , which is an almost Kähler manifold. We use the following
Weitzenböck–type formula, taken from [1, Prop.2.1].

Proposition 3.1. For any almost Kähler manifold (M̄ , ḡ, J,Ω) with covariant derivative de-
noted by ∇̄ and curvature tensor R̄, the following point–wise relation holds:

∆(s∗ − s) = −4δ(Jδ∇̄(JR̄ic
′′
)) + 8δ(〈ρ̄∗, ∇̄· Ω〉) + 2|R̄ic′′|2(10)

−8|R̄′′|2 − |∇̄∗∇̄Ω|2 − |φ|2 + 4〈ρ, φ〉 − 4〈ρ, ∇̄∗∇̄Ω〉 ,

where: φ(X,Y ) = 〈∇̄JXΩ, ∇̄Y Ω〉, s and s∗ are respectively the scalar and ∗–scalar curvature,

R̄ic
′′

is the J–anti–invariant part of the Ricci tensor R̄ic, ρ is the (1, 1)–form associated to
the J–invariant part of R̄ic, ρ̄∗ := R̄(Ω) and R̄′′ denotes a certain component of the curvature
tensor.

In our situation, since M2n+1 is Einstein with constant 2n, (4) shows that M̄ is Ricci–flat.
So the formula above becomes

(11) ∆M̄s∗ − 8δM̄ (〈ρ̄∗, ∇̄· Ω〉) = −8|R̄′′|2 − |∇̄∗∇̄Ω|2 − |φ|2

We now use Lemma 2.2 in order to express the left–hand side of this equality in terms of
the codifferential and Laplacian on M . From (4) we get ρ̄∗(X,∂r) = 0 and ρ̄∗(X,Y ) =
ḡ(R̄(ei

r
, J ei

r
)X,Y ) = ρ∗(X,Y ), for some 2–form ρ∗ on M . Taking the scalar product with Ω

yields

(12) s∗ =
1

r2
f

for some function f on M . Note that f is everywhere positive on M since s∗ = s∗−s = |∇̄Ω|2

on M̄ (see e.g. [1], p. 777).

Now, from (2), (3) and (7) we get ∇̄∂r
Ω = 0 and ∇̄XΩ = r2ω + rdr ∧ τX for some 2–form

ω and 1–form τX on M . Consequently, the 1–form 〈ρ̄∗, ∇̄· Ω〉 on M̄ is easily seen to be of the
form

(13) 〈ρ̄∗, ∇̄· Ω〉 =
1

r2
α

for some 1–form α on M . Using (12), (13) and Lemma 2.2, the equality (11) becomes

(14)
1

r4
(∆Mf + 2(2n − 2)f − 8δMα) = −8|R̄′′|2 − |∇̄∗∇̄Ω|2 − |φ|2.

Integrating this last equation on each level set Mr := {r = constant} of M̄ yields∫
Mr

2(2n − 2)

r4
f + 8|R̄′′|2 + |∇̄∗∇̄Ω|2 + |φ|2.

In particular, since f ≥ 0, φ vanishes identically on M̄ , hence |∇̄XΩ|2 = −φ(X,JX) = 0 for
every X on M̄ . Thus M̄ is Kähler, so M is Sasakian.
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4. Proof of Theorem 1.2

Let (M,g, ξ) be a compact Sasakian–Einstein manifold and ξ′ be another g–compatible
contact metric structure. Since Ric = 2ng, it follows that (g, ξ′) is K–contact (see [2], Theorem
7.1), hence Sasakian according to Theorem 1.1. Since (M,g) is complete, by a result of Gallot
[6], the cone (M̄ , ḡ) over (M,g) is (locally) de Rham irreducible unless it is flat (i.e. (M,g)
is of positive constant curvature). Therefore, Theorem 1.2 follows from the following general
observation.

Proposition 4.1. Suppose (M,g) is a Riemannian manifold whose cone is locally irreducible
and which admits two Sasakian structures (g, ξ) and (g, ξ′) with ξ 6= ±ξ′. Then (M,g) admits
a 3–Sasakian structure and ξ and ξ′ belong to the underlying S2–family of Sasakian structures.

Proof. Let (M̄, ḡ) be the cone over (M,g). The Sasakian structures ξ and ξ′ give rise to two
Kähler structures, J and J ′, on (M̄ , ḡ) with J 6= ±J ′ (because ξ 6= ξ′ by assumption). It
suffices to show that (M̄ , ḡ) must be hyperkähler and J and J ′ belong to the S2–family of
compatible Kähler structures. The anti–commutator Q = JJ ′ + J ′J of J and J ′ is symmetric
and parallel with respect to ḡ; since (M̄, ḡ) is locally irreducible, Q = λId for some real constant
λ. Since J and J ′ are both ḡ orthogonal, the Cauchy–Schwartz inequality implies |λ| ≤ 2; it is
easy to see that equality is possible if only if J = ±J ′, a situation that we excluded. Similarly,
the commutator A = JJ ′ − JJ ′ of J and J ′ is parallel and skew–symmetric with respect to
the metric ḡ and by using the corresponding property of Q, it verifies A2 = (λ2 − 4)Id. It
follows that I = 1√

4−λ2
A defines a parallel, ḡ–compatible complex structure on (M̄, ḡ) which

anti–commutes with both J and J ′; therefore (ḡ, I, J,K = IJ) defines a hyperkähler structure.
The equality JJ ′+J ′J = λId also shows that J ′ belongs to the S2–family of Kähler structures
generated by (ḡ, I, J,K). �

5. An example and further comments

As explained in the introduction, it was tempting to ask the following question, slightly
more general than Theorem 1.1: is every compact Einstein contact metric manifold Sasakian–
Einstein? The answer is negative in general, as the following simple example of D. Blair shows
(see [2], p. 23, p. 68–69 & p. 52–53).

Example 5.1. The 1–form η := cos t dx + sin t dy defines a (non–regular) contact metric
structure on the flat torus T 3 (where t, x and y are standard coordinates on T 3 of periods
2π), which is not K–contact (and hence not Sasakian).

Note however that this is the only negative example to the above question in dimension
3. Indeed, in this dimension, Blair and Sharma [4] proved that a contact metric manifold of
constant curvature has either curvature +1 and is Sasakian, or curvature 0 and is isometric
to the above example. Note also that the example does not directly generalize to higher
dimensions, as Blair [3] also shows that there are no flat contact metric structures in dimension
≥ 5. More generally, there is a theorem of Olszak [7] that in dimension ≥ 5 there are no contact
metric manifold of constant curvature, unless the curvature is +1 and the structure Sasakian.
Hence, there are reasons to still investigate the above question.

Acknowledgments: The authors are grateful to David Blair, Charles Boyer and Lieven
Vanhecke for useful comments.
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[6] S. Gallot, Équations différentielles caractéristiques de la sphère, Ann. Sci. Ec. Norm. Sup. Paris, 12 (1979),

235–267.
[7] Z. Olszak, On contact metric manifolds, Tôhoku Math. J. (2) 31 (1979), no. 2, 247–253.
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Tedi Drăghici, Department of Mathematics, Florida International University, Miami FL 33199,
USA

E-mail address: draghici@fiu.edu
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