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Coupled surface polaritons and the Casimir force

C. Henkelf
Institut fur Physik, Universitat Potsdam, Am Neuen Pald0, 14469 Potsdam, Germany

K. Joulainf] J.-Ph. Mulef] and J.-J. Greffet
Laboratoire EM2C, Ecole Centrale Paris, 92295 Chatenagidlbry CEDEX, France
(Dated: 06 November 2003)

The Casimir force between metallic plates made of realistiterials is evaluated for distances in the nanome-
ter range. A spectrum over real frequencies is introducedsaiows narrow peaks due to surface resonances
(plasmon polaritons or phonon polaritons) that are couplgdss the vacuum gap. We demonstrate that the
Casimir force originates from the attraction (repulsionpdo the corresponding symmetric (antisymmetric)
eigenmodes, respectively. This picture is used to derivienals analytical estimate of the Casimir force at
short distances. We recover the result known for Drude metdhout absorption and compute the correction
for weakly absorbing materials.

PACS numbers: 42.50.Pq, 42.50.Lc, 73.20.Mf

I. INTRODUCTION by Lifshitz [fL9], considers fluctuating currents driven bet-
mal or vacuum fluctuations in the whole space. These cur-

rents, whose spatial correlations are known through the fluc

Van der Waals and Casimir forces are among the feV\fuation dissipation theorem, interact via the electronedign
macroscopic manifestations of vacuum fluctuations. Sinee t fields they radiate. The force is obtained by calculating the

seminal paper by CaS|m|[| [1] showing the existence of an atﬂux of the Maxwell stress tensor across a surface separating

traction between two perfect conductors separated by a va he bodies. One thus gets an integral over all possible par-

uum gap, an abundant literature has been devoted to this Sial wave contributions. For two parallel plates separdted

fect. In particular, the relevance of retardation, finitedoc- :
e _ ; a vacuum gap, for example, the partial waves can be labelled
tivity, and finite temperature have been studied (see,[@]-, . ;
S X . by their frequency, wave vector parallel to the interfaced a
Exhaustive lists of references can be found in severalnevie N . . P
polarization. By using clever contour deformation, Litghi

papers such afl[f §, 51. greatly simplified the calculation of the Casimir force ttal.

In the last five years, the interest in Casimir forces hasrhe principal drawback of this approach is that the intedran
increased due to the existence of new measurements withn no longer be interpreted as a force spectrum.
improved accuracy[]6[] 7). This has challenged theoreti- | ypic paper, we use an alternative approach and study the
cians to quantify the corrections to the ideal case (zero e, .o integral over real frequencies and wave vectors. We
perature, perfect conductors, flat interfaces) that must bgyqy for generic materials (semiconductors and real netals
taken into account for an accurate comparison with experigy ¢ jn the near-field regime (separation distance small-com
ments [B[P[10[ 11, 14, 1.3]. Furthermore, the developments, e to the wavelengths considered), the frequency spectr
of micro-electromechanical systems (MEMS), for example,o¢ yhe force exhibits peaks located close to surface-fofari
have shown that the Casimir effect is becoming an issue ifeq encies. These peaks give the essential contribuion t
nano-engmeermdﬂ{lw]. Indeed, these shortrange$orc yhe casimir force in this regime. We identify two types of
could seriously disturb the performances of MEMS[16].  oconant surface modes, binding and antibinding, that con-

From a theoretical point of view, different methods exist totribute respectively with an attractive and a repulsiventén
calculate Casimir forces. Casimir himsdlf [1] determinkeel t the force. This substantiates early suggestipns[[40, 2] th
electromagnetic eigenfrequencies of the system and summelde Casimir force is due to surface modes, see also the recent
them in order to obtain the system’s zero-point energy. Th@apers by Genet et a]. [I[3]22].
force is found by differentiation of this energy with respec e finally focus on materials whose dielectric function is
to the geometrical distance separating the bodiek [1, 7). | modeled by a Lorentzian resonance, including a nonzero ab-
genious subtraction procedures are often required to btaisorption. We are able to use the qualitative suggestions men
a finite value for the Casimir energy, and realistic dispersi tioned above and propose a quantitative estimation of the
or absorbing materials can be dealt with using contour intecasimir force in terms of coupled surface resonances. The
grals over complex frequenciefs [18]. Another method, usegiominant contribution of these resonances at nanometer dis
tances allows to perform exactly the integral over the mode
frequencies, whereas the integral over the wave vectonis co
_ — puted to first order in the absorption. We show that the respec
*Electronic addres{: Carsten. Henkel@quantum.physitsidam.de tive contributions of binding/antibinding modes give a plen

TCurrently at Laboratoire d’études thermiques, ENSMA, @Bguturoscope . - . .
Cedex Ffance. a € and accurate analytical estimate for the short-distanséta

tCurrently at The Institute of Optics, University of RoctesRochester NY for_Cey recovering previous resu'_ts for nonabsorbing Drode _
14627, USA. terials ]. In the corresponding Hamaker constant, we in-
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clude corrections due to material losses. The accuracyrof ou
results is established by comparing to numerical evaloatio
of Lifshitz theory, using tabulated data for the dielecfrinc-

tions [28]. The paper concludes with a discussion of possi- 0" cee prop.s
bilities to “tune” the Casimir force that are suggested by ou prop-p
approach. 1.0+ — evan.p
NIE 0.5
1. SURFACE RESONANCESIN THE FREQUENCY 2 J
SPECTRUM § 0.0
The starting point for our calculation of the Casimir force 05
is Rytov’s theory of fluctuating electrodynamics in absotpi
media [2}] that has been used by Lifshitz in his seminal pa- 04,

per [19]. This scheme applies to dispersive or absorbing ma- 10 1% rags™) 10"

terials, as long as their dielectric response is linearast&so

been shown to provide a suitable framework for a consistent

quantization procedure of the macroscopic Maxwell equatio FIG. 1: Contributions of s and p polarized, propagating arahes-

(see @6] and references therein). cent modes to the force spectrum (EE]. (2). intggrateq over the
In the following, we focus on the standard geometry of tWOv_vavevectom). Distanced = 10 nm. Material: SiC, dn_alectnc func-

planar half-spaces made from identical material (of looate tion taken from tibullated dlatEE23]élT?§ CO{E?fpgTqmm es?j'

plex dielectric constant(w)) and separated by a vacuum gap gigcisl%?f g‘i’% ; t;e)j\r/e ocated al.rs x s~ Inthelxan

of width d. In the Rytov-Lifshitz method, the Casimir force ™ '

is computed from the expectation value of the Maxwell stress

tensor at an arbitary position in the gap. At zero tempeeatur

and after subtraction of divergent contributions, Lifgtgets

a force per unit area given by |19]

" dw [Cdu 2+
F=| & &y 1 oo s
| 5 e )

o .S
2hw3u T2 (u, w) 672wvd
F(u,w) = = Im <v Z r , (2) A

—— evan.p
2 —2wvd/c
| r2(u,w)e

wherev = (u? — 1)'/2 (Imv < 0), andr,, is the Fresnel re-

flection coefficient for a plane wave with polarizatiprand

wavevectorK = wu/c parallel to the vacuum-medium in- 2

terface. We use the convention that an attractive force cor-

responds ta?’ > 0. We note that Rytov's approach allows -sxio™-

for an easy generalization to different media held at déffer 100 0 08 orads™) 0 07 0

nonzero temperatures. The radiation force on a small elari

able sphere above a heated surface has been discussed previ-

ously in ]. Results for the non-equilibrium Casimir ferc FIG. 2: Contributions of s and p polarized, propagating arahes-

will be reported elsewhere. cent modes to the force spectrum (EEJ.(Z) integrated over the
Lifshitz evaluated the integral§] (1) by deforming integra-wavevector). Distanced = 10 nm. Material: aluminum, described

tion contour in the complex plane to arrive at an integralby tabulated optical datd [p3].

over imaginary frequencies = i£. The integration then re-

quires the continuation of the dielectric function fromlrea

frequency data te(if), using analyticity properties as dis-

cussed in[jo[ 40]. We follow here a different route and con-IR and to surface plasmon polaritons (SPP) in the UV. The

tinue to work with realv andw, taking advantage of the fact largest contribution comes from the UV surface plasmon po-

that Lifshitz’ results provides us with an expression foe th lariton even though larger losses make it broader. The large

frequency spectruni(w) = [ F(u,w)du/2r of the Casimir  difference between the UV and the IR contributions in fig. 1

force. Note that the force spectrum is more difficult to defineis due to the factow? in Eq. [:IE). In Fig.DZ, we plot the spec-

in a calculation based on mode summation, see, @HIZB 29%um of the force between two aluminum half-spaces, using
For a polar material like SiC, the spectrum of the force istabulated data for the dielectric functi23]. The donnina

dominated by narrow peaks in the UV and in the IR (FE|g. 1)contribution to the force is clearly due to the surface plasm

when the distancé is reduced to the nanometer range. Theseolaritons. Indeed, the frequency of the peaks correspimnds

peaks can be ascribed to the surface phonon polaritons in thle frequency? of the asymptote of the SPP dispersion rela-

Force (N m? Hz ')
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FIG. 3: Dispersion relation [E(ﬂ(3)] of the surface plasnpofariton

on a flat interface vacuum/aluminum. The dielectric funcitaken
from the data tabulated i [P3]. We plot the real part.ofersus the
real part of the parallel wavevectdf = uw/c.

tion B3] (see Fig[]3)

®)

uspp =

where the sign of the square root is chosen such that

Reugpp > 1. Itis seen in Eq.|]3) that the frequengyis
given by the conditioRe ¢(2) = —1. This corresponds to a

-1

w(rads )
LL‘OLX

2.0x10"

1

w(rad s’ )

large increase of the density of states and therefore tola pe&!G- 4: (&) Wavevector resolved spectrum of the Casimir gforc

in the energy density [31, B2]. The polarization dependenc
of the force spectrum provides a second argument in favor
a surface plasmon polariton. In Figﬂs.l]., 2, we have separat

ization (s or p). The modes in the cavity can further be classi
fied into evanescent (surface) modesx 1) and propagating
(guided) modes(( < u < 1). Among the four contributions

;%

the contributions to the spectrum according to the moderpola 1/]1 = 2

gEq. (ﬂ)] in the (u, w) plane between two aluminum half spaces sep-

rated by a distance dfd nm. The frequency of the flat asymp-
te corresponds to the peaks of the force spectrumﬂ:ig. ghtLi
ark) areas: attractive (repulsive) force. (b) Resonanbchinator
2e2wvd/e|12 in the (u,w) plane, the grayscale giving the
logarithm to base 10. The dispersion relation of the coupletace
resonance corresponds to the light areas; dark area: siepae-
lation for a single interface [Ed](S)]. Dielectric funatieextracted

it is seen that the leading one comes from the p-polarized sufrom tabulated datd [P3]. The inset sketches the magnelitdfehe

face modes, of which the SPP is a special case.

It is worthwhile pointing out that for a perfectly conduaiin
metal, the spectrum of the force would be completely diffiere
because of the lack of SPP. The usual picture of the Casim
effect in that case is based on the modified density of stat
for propagating waves between the two plates. This pictur
includes only what we have called guided modes and ignor
surface (or evanescent) modes.

We observe from Figgfl,2 that the contribution of the force

is either positive or negative depending on the frequenay. W
analyze this behaviour in the next section.

I11. BINDING AND ANTIBINDING RESONANCES

coupled surface resonances (antisymmetric and symmetribioa-

tions).

ontribution. These two branches are reminiscent of the dis
ersion relation of a SPP on a two interfaces system. It is
iven by the complex poles of the reflection factor of the two
terfaces system in the:(w) plane:

—2wvd/c _ 0 (4)

In order to illustrate the influence of the SPP dispersion re-
lation on the force, we plot in Fid] 4b the quantity|1 —
r2e~2wvd/¢|2 in the real(u,w) plane. Comparing Figg] 4b
and[$a, it is clearly seen that the main contribution to thego

is due to the SPP. In addition, we observe onFig. 4b a dark line

which corresponds to minima af/|1 — r2 e=2<v4/¢|2 This

2
1 o€

In order to further analyze the role of SPPs for the Casimircan be attributed to very large values of the reflection facto

force, we plot in Fig[Ja the integranii(u,w) as given by

rp. Thus, the dark line is the dispersion relation of the SPP on

Eq. @) for two aluminum half-spaces separated by a distanca single flat interface. Note that the Casimir force shows no

of d = 10 nm. Two branches emerge with dominant contribu-
tions, the higher-frequency branch yielding a negativerton
bution whereas the lower branch gives a positive (attragtiv

prominent feature in this region.
In Fig. B, we plot the force for a spacing= 100 nm: the
two branches tend to merge with the flat interface dispersion



4

evanescent waves, both terms converge separately. We also
point out that for a complex permittivity(w) (as required by

1.8 the Kramers-Kronig relations for a dispersive materidig t
SPP dispersion relation necessarily moves into the complex
plane and is never satisfied in the réal w)-plane, thus ex-
cluding any singularities of the integrd] (1).

2.0x10"°

1.6 - 0

w(rads’)
01X

| 4 IV. SHORT-DISTANCE LIMIT
0.8

0.6 The short-distance behaviour of the Casimir force between
12 14 16 . 50 non-perfect metals has been computed[Jn[[9, 10] using tab-
u ulated data for the dielectric function and integrating rove
imaginary frequencies. We show here that these results can
also be recovered with a real frequency calculation. In par-
ticular, we prove that the interaction between SPPs across
-1 the vacuum gap quantitatively accounts for the short-dista
5 Casimir force derived irm0], thus completing qualitatilis-
cussions put forward by GerlacE[Zl] and Genet, Lambrecht,
B and Reynaud[22].
- -2 For definiteness, let us adopt a Lorentz-Drude model for the
| 3 dielectric function

L 4 clw) =1+ 2(0% — wd)

2.0x10"° 1
1.8-

1.6

w(rads™)

()

2 _ 2
wy —iyw —w

1.4 1.6 1.8 2.0
u with resonance frequency, and damping coefficient. The

corresponding plasma frequency3$0Q? — w2]'/2. With this
FIG. 5: Same as Fiﬂ.4, but for a separatiba: 100 nm. convention, the large asymptote of the SPP dispersi(ﬁh 3)
occurs atv =~ ). This model can be used to describe either
_ o _ dielectrics or metals whew, = 0. In the region of large
relation. The following interpretation thus emerges: when  \vavevectors, the p-polarized reflection coefficient hasla po
surfaces approach each other, the overlapping of the two SPR(:

leads to a splitting of the polariton frequencibg [B3, 34heT
frequency splitting can be found from the solutions of . (4 ;= 1 . INGENES
which are implicitly defined by (see aldo [22])

rp(u,w) = £evd/e, (5) From Figg[JL[, we know that the force is significant only in a
range around the SPP resonance. It follows that the model for
The signs correspond to either symmetric or antisymmetrie(w) is needed only in this limited range. We have checked
mode functions (for the magnetic field), as shown in Ap-that EqI]S withwg = 0 is well suited to describe the reflection
pendix A and sketched in Fi@ 4b. The symmetric (antisym-data computed from tabulated data for aluminum. Note that
metric) branch corresponds to a lower (higher) resonamee fr the results of the fitted parametefsgnd~ are indicated in the
guency, respectively, similar to molecular orbitals anthiel-  caption of figl}l) differ from the usual bulk plasma frequency
ing doublets 5]. These branches contribute with oppositend damping rates that we would get from a fit over the entire
signs to the Casimir force, due to the identity spectrum.
We have checked that this formula is well suited to describe

ew) -1 Q-]
ew)+1 02 —iyw—w?’

(8)

2 —2wvd . .. .
275 (w, u) e _ the reflection coefficient computed from tabulated opticahd
1 —r2(w,u)e-2wvd in the frequency region around the SPP resonance. For alu-
rp(w, u) e~vd rp(w, u) e=wvd minum, we get a good agreement with the values given in the

(6)  caption of Fig[b. These values do not correspond, of cotose,
the usual bulk plasma frequency and damping rates that enter

where the first (second) term is peaked at the symmetric (arin the Drude model of the dielectric function at low frequen-

tisymmetric) cavity mode. The symmetry of the resonanceties.

mode function hence determines the attractive or repulsive With this form of the reflection coefficient, Eq] (5) yields

character of its contribution to the Casimir force. We show i the following dispersion relation for the (anti)symmet&eP

Appendix A by evaluating explicitly the Maxwell stress ten- resonances, neglecting for the moment the damping coeffi-

sor, thasymmetric modes are bindiag in molecular physics. cienty:

We note that the splitting in Ed](6) of the force spectrum ) ) i e
gives meaningful results also after integration because fo wi ~Q (1 Fe vt /(‘) : 9)

1—rp(w,u)e«vd 14 7ry(w,u)ewvd’



We have used ~ w for u > 1. For largeu, we solve by itera- 109 1
tion and find thatv § Q. As announced above, the symmet-
ric mode (upper sign) occurs at a lower resonance frequency. 084
To derive an analytical estimate for the Casimir force, we
retain in Eq.ﬂZ) only the contribution of p-polarized, egan 06
cent waves, containing the SPP resonance. Introducing the &
new variabler = wwvd/c, we get using the identitﬂ(G) T sl
h gJe'e] ge'e}
— 2
lem/o dw/oxd:rx 0.2
)\ —T
Z ) ° — (10) 0'U_l L | L L | Tt T T
T (wiea/(wd)) — Aem® 10° 10° Distance m) 17 10°

where A = +1 _CorreSponqS to Sy_mmem_c (antisymmetric) FIG. 6: Comparison of different expressions for the Casiimice
modes, respectively. The integral is dominated by the ranggeqween aluminum surfaces. We plot the rafil) / Fe.. (d) where
z ~ 1 andw ~ €. To leading order if2d/c — 0, we can i, (d) = her?/(240d%) is the Casimir force for perfect mirrors.
thus use the asymptotic form gf valid for largew given by Solid line: numerical integration of Ed](2), using tabethtoptical
Eq. @). Performing the integral over analytically and in- data ,@6]. Short-dashed line with circles: same with aleho

cluding damping to first order in /< yields dielectric function of Drude form [Eq[|(7)] withwy = 0, Q@ =
1.66 x 10'® s, andy/Q = 0.036. These parameters have been ob-
hQ o 9 tained from a plot of the reflection coefficiefat(w) — 1) /(e(w) + 1)
T I d3 /o dz 27 X based on the tabulated data that has been fitted to the foen giv

. e Eq. @3). Long-dashed line: short-distance asympto@ \{th the
Z Aze B YAz e (11) same values fapg, Q, 7.
Vo1 \2VDE = Aze 271 — Aze™?®)

wherez = 1 —w?/Q?. This result shows clearly that symmet-

ric and antisymmetric modes give Casimir forces of opposite

sign. The first term in the parenthesis can be computed by ex- ) o

to an infinite series given i [L, 2]. The second term, thedgrees with the formula given ifi [1.]22] in the special case
correction due to damping, can be integrated in terms of the = 0, wo = 0 (lossless Drude model). A very similar expres-

polylogarithmic function, so that we finally have sion has been found irf [P6]. We compare #d (12) in flig. 6
to the full integral Eq.|]2) for the case of aluminum: it turns
hQ 7 Liz(2?) out to be quite accurate for distancés< 0.1 Aspp Where
~ dndd ( (2) = W) ’ (12) Aspp = 115 nm is the wavelength of the SPP with the largest
frequencyEb]. In the case of aluminum, the first order cor-
where rection iny /2 is 2.5% of the zeroth order value of the force.
- The plot also shows that for the numerical integration, #te t
alz) = 1 S g (4n — 3! (13)  Ulated data and the Lorentz-Drude modl (7) with parameters
4 £~ n3(4n — 2)!! fitted around the surface resonance give very close resudts o
a large range of distances. This is another indication tiet t
and short-range Casimir force between real metals is dominated
by a narrow frequency range. Differences of the order of a
Lis(2?) — i ﬂ (14) few percent appear at large distances Wh_ere the Casimé f_orc
n3d " is dominated by the low-frequency behaviour of the reflectio

n=1

coefficient that is not accurately modelled with the fitted pa
For completeness, we give the asymptotic series for smaliameters.

wo /(2 — 1)
- _ _ N2 We finally note that the correction of ordeyQ2 derived
o(2) ~ 0.1388 20'32(1 2)+04(1-2) (15) here introduces the effects of losses and must not be con-
L13(22) ~ (3) - (12 (16) fu;ed_ with the correc_non due to a finite Ire_al permittivity
3 This is already taken into account by the finite value of the
72 plasma frequenc{? and is responsible for the emergence of

2
tP-5 - 2log(2(1 = 2))| (1 = =) the short-distance regimeé< Agpp where the Casimir force

~ 1/d3 [L9]. At large distances, a finit® leads to a small
with ¢(3) ~ 1.202. (The coefficient of the second order term correction to the well-known Casimir foree 1/d* between
in Eq. (1%) is only accurate up to a logarithmic correction.)  perfect conductorg]4] 9, 1.0].



V. CONCLUSION can expand the electric field in the gap as

We have pointed out that the Casimir attraction between E(x,w) = Z PK (Eﬁ (K)e—ikzze;+
realistic materials can be quantitatively understood hatts
distances, in terms of the interaction between electromtégn e (d KX
surface plasmon (or phonon) polaritons. The modes overlap B4 (K)e'=(+ )e,f) e’ (A1)
across the vacuum gap and split into symmetric and antisym-
metric combinations which contribute with different signs  whereK = (k,, k) is the component of the wavevector par-
the Maxwell stress tensor and hence to the Casimir forcey|lel to the interfaces and, = \/W its perpendic-
We discussed in particular the short-distance regime of thgjgr component. Theff (1 = s, p) are unit polarization vec-
Casimir force wherd” = H/d* and have given an analytical {qrg, andE" (K) are the amplitudes of up- and downwards
formula for the Hamaker constaff. \We recover previous re-  propagating plane waves. A similar expansion holds for the
sults for nonabsorbing materials and evaluate a corredtien  magnetic fieldH (x, w) with amplitudesH* (K). We get the
to absorption. Our results have been validated by comparingyeraged Maxwell stress tensor by integrating incoheyentl
to a numerical calculation based on Lifshitz theory. over the contributiong % (K) of individual modes. For the

The approach presented here has the advantage of ”nki%rticular case of a p-polarized evanescent mddex w),
in a transparent way the Casimir force to the actual physiy,e get by straightforward algebra

cal properties of the material surface. This suggests tke po

sibility of engineering the surface plasmon polariton disp TP, (K) = 2p00° Re [HY* (K)HP (K)] . (A2)

sion relation to modify the Casimir force. Indeed, as it hastne yp- and downward propagating amplitudes are of course
been shown, the Casimir force at short distances is e”t're_lyelated via the reflection coefficient from the upper inteefa

due to the interaction between surface polaritons. MagnetiTaking the phase references in Hg.(AL) into account, we have
materials which exhibit Casimir repuIS|oE[37] and support

s-polarized surface waves when Re< —1 [] are good HP — o oik=d P _ . q—wvd/cprP o 4 P (A3)
candidates. The folding of the dispersion relation in recip - o + +
rocal space by a grating, known to change the surface wayg

behavio_ur] could also lead to a substantial modificatibn pled surface resonances defined by EQ-(5)- The condition
the Casimir force. rpe”@vd/¢ = 11 thus corresponds to a symmetric magnetic
Acknowledgments— This work has been supported by the field distribution on both interfaces, becaud& = H”. In
bilateral French-German programme “Procope” under ptojecaddition, with our sign convention, this mode gives an at-
numbers 03199RH and D/0031079. tractive contribution proportional t¢|H |? to the stress ten-
sor ). The opposite is true for antisymmetric modes.
The sign of the Casimir force due to the coupled polariton
APPENDIX A: ANGULAR SPECTRUM ANALYSIS modes can also be understood in terms of the charge densities
excited on the surfaces, as pointed out by Gerl@ [21].&hes
In this appendix, we compute the Casimir force in termscan be found from the normal component of the electric field.
of an angular spectrum representation of the electromiegnetFor a symmetric mode, we get surface charges with opposite
fields that is adapted to the planar geometry at hand. sign, hence an attractive force, while an antisymmetric enod
Letting the vacuum gap occupy the regier < z < 0, we  corresponds to equal surface charges.

H=s,p

here the last equality applies in the vicinity of the cou-
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