
HAL Id: hal-00000557
https://hal.science/hal-00000557v1

Preprint submitted on 21 Aug 2003 (v1), last revised 7 Nov 2003 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Coupled surface polaritons and the Casimir force
Carsten Henkel, Karl Joulain, Jean-Philippe Mulet, Jean-Jacques Greffet

To cite this version:
Carsten Henkel, Karl Joulain, Jean-Philippe Mulet, Jean-Jacques Greffet. Coupled surface polaritons
and the Casimir force. 2003. �hal-00000557v1�

https://hal.science/hal-00000557v1
https://hal.archives-ouvertes.fr


cc
sd

-0
00

00
55

7 
(v

er
si

on
 1

) 
: 2

6 
A

ug
 2

00
3

Coupled surface polaritons and the Casimir force
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The Casimir force between metallic plates made of realistic materials is evaluated for distances in
the nanometer range. A spectrum over real frequencies is introduced and shows narrow peaks due
to surface resonances (plasmon polaritons or phonon polaritons) that are coupled across the vacuum
gap. We demonstrate that the Casimir force originates from the attraction (repulsion) due to the
corresponding symmetric (antisymmetric) eigenmodes, respectively. This picture is used to derive
a simple analytical estimate of the Casimir force at short distances. We recover the result known
for Drude metals without absorption and compute the correction for weakly absorbing materials.

PACS numbers: 42.50.Pq, 42.50.Lc, 73.20.Mf

I. INTRODUCTION

Van der Waals and Casimir forces are among the
few macroscopic manifestations of vacuum fluctuations.
Since the seminal paper by Casimir [1] showing the ex-
istence of an attraction between two perfect conductors
separated by a vacuum gap, an abundant literature has
been devoted to this effect. In particular, the relevance
of retardation, finite conductivity, and finite tempera-
ture have been studied (see, e.g., [2]). Exhaustive lists
of references can be found in several review papers such
as [3, 4, 5].

In the last five years, the interest in Casimir forces
has increased due to the existence of new measurements
with improved accuracy [6, 7]. This has challenged the-
oreticians to quantify the corrections to the ideal case
(zero temperature, perfect conductors, flat interfaces)
that must be taken into account for an accurate com-
parison with experiments [8, 9, 10, 11, 12, 13].

Furthermore, the developments of micro-
electromechanical systems (MEMS), for example,
have shown that the Casimir effect is becoming an issue
in nano-engineering [14, 15]. Indeed, these short-range
forces could seriously disturb the performances of
MEMS [16].

From a theoretical point of view, different methods ex-
ist to calculate Casimir forces. Casimir himself [1] deter-
mined the electromagnetic eigenfrequencies of the system
and summed them in order to obtain the system’s zero-
point energy. The force is found by differentiation of this
energy with respect to the geometrical distance separat-
ing the bodies [1, 17]. Ingenious subtraction procedures

∗Electronic address: Carsten.Henkel@quantum.physik.uni-

potsdam.de
†Currently at Laboratoire d’études thermique, ENSMA, 86960 Fu-

turoscope Cedex, France.
‡Currently at The Institute of Optics, University of Rochester,

Rochester NY 14627, USA.

are often required to obtain a finite value for the Casimir
energy, and realistic dispersive or absorbing materials can
be dealt with using contour integrals over complex fre-
quencies [18]. Another method, used by Lifshitz [19], con-
siders fluctuating currents driven by thermal or vacuum
fluctuations in the whole space. These currents, whose
spatial correlations are known through the fluctuation
dissipation theorem, radiate electromagnetic fields. The
force is obtained by calculating the flux of the Maxwell
stress tensor across a surface separating the bodies. One
thus gets an integral over all possible plane wave con-
tributions. For two bodies separated by a vacuum gap,
for example, the plane waves can be labelled by their
frequency, wave vector parallel to the interface, and po-
larization. By using clever deformation contour methods,
Lifshitz greatly simplified the calculation of the Casimir
force integral. The principal drawback of this approach
is that the integrand can no longer be interpreted as a
force spectrum.

In this paper, we use an alternative approach and study
the force integral over real frequencies and wave vectors.
We show for generic materials (semiconductors and real
metals) that in the near-field regime (separation distance
small compared to the wavelengths considered), the fre-
quency spectrum of the force exhibits peaks located close
to surface-polariton frequencies. These peaks give the es-
sential contribution to the Casimir force in this regime.
We identify two types of resonant surface modes, binding
and antibinding, that contribute respectively with an at-
tractive and a repulsive term to the force. This substan-
tiates early suggestions [20, 21] that the Casimir force is
due to surface modes.

We finally focus on materials whose dielectric constant
is modeled by a Drude formula, including a nonzero ab-
sorption. We are able to use the qualitative sugges-
tions mentioned above and propose a quantitative esti-
mation of the Casimir force in terms of coupled surface
resonances. The dominant contribution of these reso-
nances at nanometer distances allows to integrate exactly
over the mode frequencies, whereas the integral over the
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wave vector is performed to first order in the absorption.
We show that the respective contributions of the bind-
ing/antibinding modes give a simple and accurate ana-
lytical estimate for the short-distance Casimir force that
coincides with previous results for nonabsorbing Drude
materials [9]. For the first time, corrections due to ma-
terial losses are incorporated. The paper concludes with
a discussion of possibilities to “tune” the Casimir force
that are suggested by our approach.

II. SURFACE RESONANCES IN THE

FREQUENCY SPECTRUM

The starting point for our calculation of the Casimir
force is Rytov’s theory of fluctuating electrodynamics in
absorbing media [22] that has first been used by Lifshitz
in his seminal paper [19]. This scheme applies to dis-
persive or absorbing materials, as long as their dielectric
response is linear. It has also been shown to provide a
suitable framework for a consistent quantization proce-
dure of the macroscopic Maxwell equations (see [23] and
references therein).

In the following, we focus on the standard geometry of
two planar half-spaces made from identical material (of
local dielectric constant ˾(̒)) and separated by a vac-
uum gap of width d. In the Rytov-Lifshitz method, the
Casimir force is computed from the expectation value of
the Maxwell stress tensor at an arbitary position in the
gap. At zero temperature and after subtraction of di-
vergent contributions, Lifshitz gets a force per unit area
given by [19]

F =

∫ ∞

0

d̒

2̉

∫ ∞

0

du

2̉
F (u, ̒) (1)

F (u, ̒) = −2h̄̒3

c3
Im uv

∑

µ = s, p

r2
µ(u, ̒) e−2 ω

c
vd

1 − r2
µ(u, ̒) e−2 ω

c
vd

,(2)

where v = (u2 − 1)1/2 (Im v ≤ 0), and rµ is the Fresnel
reflection coefficient for a plane wave with polarization ̅
and wavevector K = ω

c u parallel to the vacuum-medium
interface. We use he convention that an attractive force
corresponds to F < 0. We note that Rytov’s approach
allows for an easy generalization to different media held
at different nonzero temperatures. The radiation force
on a small polarizable sphere above a heated surface has
been discussed previously in [24]. Results for the non-
equilibrium Casimir force will be reported elsewhere.

Lifshitz evaluated the integrals (1) by deforming fre-
quency ̒ and wavevector u into the complex plane, to
arrive at an integral over imaginary frequencies ̒ = i̇.
The integration then requires the continuation of the di-
electric function from real-frequency data to ˾(i̇), using
analyticity properties, see e.g. [9]. We follow here a dif-
ferent route and continue to work with real ̒ and u,
taking advantage of the fact that Lifshitz’ results pro-
vides us with a expression for the frequency spectrum
F (̒) =

∫

4̉2F (u, ̒)du of the Casimir force (as defined

FIG. 1: Contributions of s and p polarized, propagating and
evanescent modes to the force spectrum (Eq. (2) integrated
on the wavevector u). Distance d = 10 nm. Material: SiC,
dielectric function with two resonances. The angular frequen-
cies of the corresponding surface resonances are 1.78×1014 s−1

in the IR and 2.45 × 1016 s−1 in the UV [25]

FIG. 2: Contributions of s and p polarized, propagating
and evanescent modes to the force spectrum (Eq. (2) inte-
grated on the wavevector u). Distance d = 10 nm. Mate-
rial: Chromium. Parameters of a Drude model (Eq. (7)):
Ω = 5.57 × 1015 s−1 and γ = 1.41 × 1014 s−1 [26].

in Eq. (2)). Note that the force spectrum is more difficult
to define in a calculation based on the summation over
modes (see, e.g., [27, 28]).

The spectrum of the force shows positiveand negative
peaks for very well defined frequencies (Fig. 1) when the
distance d is reduced to the nanometer range. For a
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FIG. 3: Dispersion relation of the SPP on a flat interface
vacuum/chromium. The real part of ω is represented versus
the real part of the parallel wavevector K = uω/c.

polar material like SiC, the force is dominated by nar-
rowpeaks in the UV and in the IR. These peaks can be
ascribed to the surface phonon-polaritons in the IR and
to surface plasmon polaritons in the UV. The largest con-
tribution comes from the UV surface plasmon polariton
even though it is broader due to larger losses than for
the IR polariton. The large difference between the UV
and the IR contributions in Fig. 1 is due to the factor
̒3 in Eq. (2). In Fig. 2, we plot the spectrum of the
force between two chromium half-spaces. The dominant
contribution to the force is clearly due to the surface
plasmon polaritons. Indeed, the frequency of the peaks
corresponds to the frequency Ω of the asymptote of the
surface plasmon polaritons dispersion relation [29]:

uSPP =

√

˾(̒)

˾(̒) + 1
, (3)

where the sign of the square root is chosen such that
Re uSPP > 1. It is seen in Eq. (3) that the frequency Ω is
given by the condition Re ǫ(Ω) = −1. This corresponds
to a large increase of the density of states and therefore of
a peak of density of energy [30]. The dispersion relation
suggests that the main contribution to the force comes
from the surface waves with large wave vector u. We
have separated the contribution according to the modes
polarization (s or p). The modes in the cavity can also
be separated into surface mode (u > 1) and propagating
(guided) modes (0 ≤ u ≤ 1). The normal component of
the wavevector is then either imaginary or real.

Among the four contributions (s or p, guided waves
or surface waves) it is seen that the leading contribu-
tions comes from the p-polarized surface modes. This
is a further indication that the leading contribution to
the force is due to the SPP. It is worthwhile pointing
out that if we were using a perfectly conducting metal,
the spectrum of the force would be completely different
because of the lack of SPP. Note also that the usual cal-

culation yields the total contribution of all the modes
called surface modes. Our detailed analysis shows that
among all the modes, only the p-polarized surface modes
contribute. These surface modes are ignored by the usual
simple picture of the Casimir effect based on a modified
density of states due to a quantification of the propagat-
ing states between two perfectly conducting planes. This
simple picture includes only what we have called guided
modes.

While the total force is always negative, we have noted
in Fig. 1,2 that the contribution of the force is either
positive or negative depending on the frequency. We shall
analyse this behaviour in the next section.

III. BINDING AND ANTIBINDING

RESONANCES

In order to further analyse the role of SPP in the
Casimir force, we plot in Fig. 4a the integrand F (u, ̒) as
given by Eq. (2) for two chromium half-spaces separated
by a distance of 10 nm. It is seen that the upper branch
yields a positive contribution whereas the lower branch
yields a negative contribution. These two branches are
reminiscent of the dispersion relation of a SPP on a two
interfaces system. It is given by the complex poles of the
reflection factor of the two interfaces system in the (u, ̒)
plane.

1 − r2
pe−2 ω

c
vd = 0 (4)

In order to illustrate the influence of the complex pole
(i.e. of the SPP) on the force, we plot the quantity
1/|1−r2

pe−2 ω

c
vd|2 in Fig. 4b in the real (u, ̒) plane. Upon

comparison between Fig. 4b and Fig. 4a, it is clearly seen
that the main contribution to the force can be attributed
to the SPP. In addition, we observe on Fig. 4b a dark
line which corresponds to minima of 1/|1 − r2

pe−2 ω

c
vd|2.

The minima can be attributed to very large values of the
reflection factor of a plane interface rp. Thus, the locus
of the minimum is the dispersion relation of the SPP on
a single flat interface.

In Fig. 5, we plot the force for a spacing d = 100 nm.
It is seen that the two branches tend to merge with the
flat interface dispersion relation. It is thus clear that the
overlapping of the two SPP leads to a splitting of the
polariton frequencies [31, 32]. The frequency splitting
can be found by looking at the poles of the reflection
coefficient for the cavity formed by the two interfaces [33].
This coefficient is precisely the integrand of Eq. (2) so
that we get two (complex) poles given by

rp(u, ̒) = �e
ω

c
vd. (5)

The signs correspond to either symmetric or antisym-
metric mode functions (for the magnetic field), as shown
in Appendix A and sketched in Fig. 4b. The symmetric
(antisymmetric) branch corresponds to a lower (higher)
resonance frequency, respectively, similar to molecular
orbitals and tunneling doublets [34].
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FIG. 4: (a) Wavevector resolved spectrum of the Casimir
force (Eq. (2)) in the (u, ω) plane between two chromium half
spaces separated by a distance of 10 nm. The frequency of
the flat asymptote corresponds to the peaks of the force spec-
trum Fig. 2. (b) The mode functions corresponding to the
polariton branches are sketched.

These branches contribute with opposite signs to the
Casimir force, due to the following identity

2 r2
p(̒, u) e−2ωvd

1 − r2
p(̒, u) e−2ωvd

=

rp(̒, u) e−ωvd

1 − rp(̒, u) e−ωvd
− rp(̒, u) e−ωvd

1 + rp(̒, u) e−ωvd
, (6)

where the first (second) term is peaked at the symmet-
ric (antisymmetric) cavity mode. The symmetry of the
resonance mode function hence determines the attractive
or repulsive character of its contribution to the Casimir
force. We show in Appendix A by evaluating explic-
itly the Maxwell stress tensor, that symmetric modes are
binding as in molecular physics. This behavior is already
apparent in Fig. 4: the two surface-plasmon polariton
branches in the u, ̒ plane contribute with opposite signs
to the Casimir force.

We note that the splitting in Eq. (6) of the force spec-
trum gives meaningful results also after integration be-

FIG. 5: (a) Wavevector resolved spectrum of the Casimir
force (Eq. (2)) in the (u, ω) plane between two chromium half
spaces separated by a distance of 100 nm. (b) The mode func-
tions corresponding to the polariton branches are sketched.

cause for evanescent waves, both terms converge sepa-
rately. We also point out that for a complex permittivity
˾(̒) (as required by the Kramers-Kronig relations for
a dispersive material), the polariton dispersion relation
necessarily moves into the complex plane and never oc-
curs on the real u- or ̒-axis in the integral (1), thus
excluding any singularities of the integrand.

IV. SHORT-DISTANCE LIMIT

The short-distance behaviour of the Casimir force be-
tween non-perfect metals has been computed in [9] us-
ing an integration over imaginary frequencies. We show
here that these results can also be recovered with a real
frequency calculation. In fact, we prove that the interac-
tion between surface polariton resonances across the vac-
uum gap quantitatively accounts for the short-distance
Casimir force derived in [9], thus completing qualitative
discussions put forward by Gerlach [21] and the Lam-
brecht group [33].

For definiteness and for the ease of comparison with the
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literature, let us focus on a dielectric function of Drude
type

˾(̒) = 1 − 2Ω2

̒(̒ + i˼)
(7)

where
√

2Ω is the plasma frequency and ˼ the damping
coefficient. With this convention, the large u asymptote
of the surface plasmon resonance (Eq. (3)) occurs at ̒ ≈
Ω (˾(Ω) ≈ −1). In the region of large wavevectors, the
p-polarized reflection coefficient indeed has a pole there,

u ≫ 1 : rp(̒, u) ≈ Ω2

Ω2 − i˼̒ − ̒2
. (8)

From Eq. (5), we thus get the following dispersion rela-
tion for the (anti)symmetric surface plasmon resonances,
neglecting for the moment the damping coefficient ˼:

̒2
± ≈ Ω2

(

1 ∓ e−ω±ud
)

, (9)

where we have used v ≈ u for u ≫ 1. For large u, we solve
by iteration and find that ̒±

<
>Ω. As announced above,

the symmetric mode thus occurs at a lower resonance
frequency.

To derive an analytical estimate for the Casimir force,
we retain in Eq. (2) only the contribution of p-polarized,
evanescent waves. Introducing the new variables ̒ and
x = ω

c vd, we get

F = − h̄

4̉2d3
Im

∫ ∞

0

d̒

∫ ∞

0

x2dx e−x ·
∑

λ =±1

̄

r−1
p (̒, x/(̒/c)d) − ̄ e−x

, (10)

where ̄ = �1 corresponds to symmetric (antisymmetric)
modes, respectively. The integral is dominated by the
range x ∼ 1 and ̒ ∼ Ω. To leading order in Ωd ջ
0, we can thus use the asymptotic form of rp valid for
large u given by Eq. (8). Performing the integral over ̒
analytically and including damping to first order in ˼/Ω
yields

F = − h̄Ω

4̉d3

∫ ∞

0

dx x2 e−x ·
∑

λ =±1

(

̄

2
√

1 − ̄e−x
− ̄˼

2̉Ω(1 − ̄e−x)

)

. (11)

This result shows clearly that anti/symmetric modes give
Casimir forces of opposite sign. The first term in the
parenthesis can be computed by expanding the square
root in a power series in ̄e−x, leading to an infinite series
given in [9, 33]. The second term, the correction due
to damping, can be explicitly integrated in terms of the
Riemann Zeta function ˿, so that we finally have

F = − h̄Ω

4̉d3

(

˺ − ˼˿(3)

4̉Ω

)

, (12)
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FIG. 6: Casimir force (2) (plain), p-polarization evanescent
contribution (dashed) and analytical short-distance limit (12)
for Cr (dotted).

where

˺ =
1

4

∞
∑

n=1

(4n − 3)!!

n3(4n − 2)!!
≈ 0.1388, (13)

and

˿(3) =

∞
∑

n=1

1

n3
≈ 1.202 . (14)

Our result Eq. (12) for the short-distance Casimir force
is compared in Fig. 6 to the full integral Eq. (2) and to
the evanescent p-polarization contribution: it turns out
to be quite accurate for distances d ≤ 0.03̄SPP where
̄SPP = 338 nm is the wavelength of the surface plasmon
polariton with the largest frequency [35]. In the case of
chromium, the first order correction in ˼/Ω is 1.75% the
zeroth order value of the force.

We finally note that the correction of order ˼/Ω derived
here must not be confused with the one for the finite
conductivity of the media. Finite conductivity (i.e., a
non-perfect mirror) is already taken into account by the
finite value of the plasma frequency Ω and is responsible
for the appearance of the short-distance regime where
the Casimir force ∼ 1/d3 [19]. At large distances, a finite
Ω leads to a small correction to the well-known Casimir
force ∼ 1/d4 between perfect conductors [2, 9].

V. CONCLUSION

We have pointed out that the Casimir attraction be-
tween realistic materials can be quantitatively under-
stood, at short distances, in terms of the interaction be-
tween electromagnetic surface plasmon (or phonon) po-
laritons. The modes overlap the vacuum gap and split
into symmetric and antisymmetric combinations which
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contribute with different signs to the Maxwell stress ten-
sor and hence to the Casimir force. We derived an an-
alytic formula that recovers previous results for nonab-
sorbing materials and evaluated a correction due to ab-
sorption. Our results have been validated by comparing
to a numerical calculation based on Lifshitz theory.

The approach presented here has the advantage of link-
ing in a transparent way the Casimir force to the actual
physical properties of the material surface. This suggests
the possibility of engineering the surface plasmon polari-
ton dispersion relation to modify the Casimir force. In-
deed, as it has been shown, the Casimir force at short dis-
tances is entirely due to the interaction between surface
plasmon polaritons. Magnetic materials which exhibit
Casimir repulsion and support s-polarized surface waves
when Re ̅ < -1 [37] are good candidates. The folding of
the dispersion relation in the k-space by a grating, known
to change the surface wave behaviour [38] could also lead
to a substantial modification of the Casimir force.

Acknowledgments. — This work has been supported by
the bilateral French-German programme “Procope” un-
der project numbers 03199RH and D/0031079.

APPENDIX A: ANGULAR SPECTRUM

ANALYSIS

In this appendix, we compute the Casimir force in
terms of an angular spectrum representation of the elec-
tromagnetic fields that is adapted to the planar geometry
at hand.

Letting the vacuum gap occupy the region −d < z < 0,
we can expand the electric field in the gap as

E(x, ̒) =
∑

µ = s, p

∫

d2K
(

Eµ
−(K)e−ikzz

e
−
µ +

Eµ
+(K)eikz(z+d)

e
+
µ

)

eiK·X (A1)

where K = (kx, ky) is the component of the wavevector

parallel to the interfaces and kz =
√

(̒/c)2 − K2 its per-
pendicular component. e

±
µ (̅ = s, p) are the unit polar-

ization vectors, and Eµ
±(K) are the amplitudes of down-

and upwards propagating plane waves. A similar expan-
sion holds for the magnetic field H(x, ̒) with amplitudes
Hµ

±(K). We get the averaged Maxwell stress tensor by
integrating incoherently over the contributions Tµ

zz(K) of
individual modes. For the particular case of a p-polarized
evanescent mode (K > ̒), we get by straightforward al-
gebra

T p
zz(K) = −2̅0v

2 Re
[

Hp∗
+ (K)Hp

−(K)
]

, (A2)

The up- and downward propagating amplitudes are of
course related via the reflection coefficient from the upper
interface. Taking the phase references in Eq. (A1) into
account, we have

Hp
− = rpHp

+eikzd = rpe−
ω

c
vdHp

+ ≈ �Hp
+, (A3)

where the last equality applies in the vicinity of the cou-
pled surface resonances defined by Eq. (5). The condition
rpe−

ω

c
vd = +1 thus corresponds to a symmetric magnetic

field distribution on both interfaces, because Hp
+ = Hp

−.
In addition, with our sign convention, this mode gives
an attractive contribution proportional to −|Hp

−|2 to the
stress tensor (A2). The opposite is true for antisymmet-
ric modes.
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