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Abstract

We apply methods from strict quantization of solvable symmetric spaces to obtain universal defor-
mation formulae for actions of every three-dimensional solvable Lie group. We also study compatible
co-products by generalizing the notion of smash product in the context of Hopf algebras. We investigate
in particular the dressing action of the ‘book’ group on SU(2).

1 Introduction

Let G be a group acting on a set M . Denote by ̍ : G · M ջ M : (g, x) 7ջ ̍g(x) the (left) action and
by ˺ : G · Fun(M) ջ Fun(M) the corresponding action on the space of (complex valued) functions (or
formal series) on M (˺g := ̍⋆

g−1). Assume that on a subspace A ⊂ Fun(G), one has an associative C-algebra

product ⋆G
A

: A · A ջ A such that

(i) A is invariant under the (left) regular action of G on Fun(G),

(ii) the product ⋆G
A

is left-invariant as well i.e. for all g ∈ G; a, b ∈ A, one has

(L⋆
ga) ⋆G

A (L⋆
gb) = L⋆

g(a ⋆G
A b).

Given a function on M , u ∈ Fun(M), and a point x ∈ M , one denotes by ˺x(u) ∈ Fun(G) the function on
G defined as

˺x(u)(g) := ˺g(u)(x).

Then one readily observes that the subspace B ⊂ Fun(M) defined as

B := {u ∈ Fun(M) | ∀x ∈ M : ˺x(u) ∈ A}

becomes an associative C-algebra when endowed with the product ⋆M
B

given by

u ⋆M
B v(x) := (˺x(u) ⋆G

A ˺x(v))(e) (1)

(e denotes the neutral element of G). Of course, all this can be defined for right actions as well.

Definition 1.1 Such a pair (A, ⋆G
A

) is called a (left) universal deformation of G, while Formula (1) is
called the associated universal deformation formula (briefly UDF).
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In the present article, we will be concerned with the case where G is a Lie group. The function space A will
be either
- a functional subspace (or a topological completion) of C∞(G, C) containing the smooth compactly supported
functions in which case we will talk about strict deformation (following Rieffel [Rie89]),
or,
- the space A = C∞(G)[[~]] of formal power series with coefficients in the smooth functions on G in which
case, we’ll speak about formal deformation. In any case, we’ll assume the product ⋆G

A
admits an asymptotic

expansion of star-product type:

a ⋆G
A b ∼ ab +

~

2i
w(du,dv) + o(~2) (a, b ∈ C∞

c (G)),

where w denotes some (left-invariant) Poisson bivector on G[BFFLS]. In the strict cases considered here,
the product will be defined by an integral three-point kernel K ∈ C∞(G · G · G):

a ⋆G
A b(g) :=

∫

G·G

a(g1) b(g2)K(g, g1, g2)dg1 dg2 (a, b ∈ A)

where dg denotes a normalized left-invariant Haar measure on G. Moreover, our kernels will be of WKB

type [Wei94, Kar94] i.e.:

K = Ae
i

~
Φ,

with A (the amplitude) and Φ (the phase) in C∞(G · G · G, R) being invariant under the (diagonal)
action by left-translations.
Note that in the case where the group G acts smoothly on a smooth manifold M by diffeomorphisms:
̍ : G·M ջ M : (g, x) 7ջ ̍g(x), the first-order expansion term of u⋆M

B
v, u, v ∈ C∞(M) defines a Poisson

structure wM on M which can be expressed in terms of a basis {Xi} of the Lie algebra g of G as:

wM = [we]
ij

X⋆
i ∧ X⋆

j , (2)

where X⋆ denotes the fundamental vector field on M associated to X ∈ g.

Strict deformation theory in the WKB context was initiated by Rieffel in [Rie93] in the cases where G is either
Abelian or 1-step nilpotent. Rieffel’s work has led to what is now called ‘Rieffel’s machinery’; producing a
whole class of exciting non-commutative manifolds (in Connes sense) from the data of Abelian group actions
on C⋆-algebras [CoLa01].
The study of formal UDF’s for non-Abelian group actions in our context was initiated in [GiZh98] where the
case of the group of affine transformations of the real line (‘ax + b’) was explicitly described.
In the strict (non-formal) setting, UDF’s for Iwasawa subgroups of SU(1, n) have been explicitly given in
[BiMas01]. These were obtained by adapting a method developed by one of us in the symmetric space
framework [Bie00]. In particular when n = 1 one obtains strict UDF’s for the group ’ax + b’ (we recall this
in the appendix).
In the present work, we provide in the Hopf algebraic context (strict and formal) UDF’s for every solvable
three-dimensional Lie group endowed with any left-invariant Poisson structure. The method used to obtain
those is based on strict quantization of solvable symmetric spaces, on existing UDF’s for ’ax + b’ and on a
generalization of the classical definition of smash products in the context of Hopf algebras. As an application
we analyze the particular case of the dressing action of the Poisson dual Lie group of SU(2) when endowed
with the Lu-Weinstein Poisson structure.

2 UDF’s for three-dimensional solvable Lie groups

In this section G denotes a three-dimensional solvable Lie group with Lie algebra g.

Definition 2.1 Let w be a left-invariant Poisson bivector field on G. The pair (G,w) is called a pre-

symplectic Lie group.
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The terminology ’symplectic’ is after Lichnérowicz [LiMe88] who studied this type of structures.
One then observes

Proposition 2.1 (i) The orthodual s of the radical of we

s := (rad we)
⊥

is a subalgebra of g.

(ii) Every two-dimensional subalgebra of g can be seen as the orthodual of the radical of a Poisson bivector.

(iii) The symplectic leaves of w are the left classes of the analytic subgroup S of G whose Lie algebra is s.

We now fix a pair (g,we) to be such a pre-symplectic Lie algebra with associated symplectic Lie algebra
(s,we|s⋆·s⋆). We assume

dim s = 2.

We denote by d the first derivative of g:
d := [g, g].

Note that d is an Abelian algebra.

2.1 Case 1: dim d = 2

In this case g can be realized as a split extension of Abelian algebras:

0 ջ d −ջ g−ջa ջ 0,

with dim a = 1. We denote by
̊ : a ջ End(d)

the splitting homomorphism.

2.1.1 s ∩ d 6= d

In this case one sets
p := s ∩ d,

and one may assume
a ⊂ s.

Note that s is then isomorphic to the Lie algebra of the group ’ax + b’.

2.1.1.1 The representation ̊ is semisimple

In this case one has q ⊂ d such that

q ⊕ p = d and

[a, q] ⊂ q.

Let Q and S denote the analytic subgroups of G whose Lie algebras are q and s respectively. Consider the
mapping

Q · S ջ G : (q, s) 7ջ qs. (3)

Assume this is a global diffeomorphism. Endow the symplectic Lie group S with a left-invariant deformation
quantization ⋆T as constructed in [BiMas01] or [BiMae02] (see also the appendix of the present paper). One
then readily verifies

Theorem 2.1 Let (HS , ⋆T ) be an associative algebra of functions on S such that HS ⊂ Fun(S) is an
invariant subspace w.r.t. the left regular representation of S on Fun(S) and ⋆T is a S-left-invariant product
on HS. Then the function space H := {u ∈ Fun(G) | ∀p ∈ Q : u(q, .) ∈ HS} is an invariant subspace of
Fun(G) w.r.t. the left regular representation of G and the formula

u ⋆ v(q, s) := (u(q, .) ⋆T v(q, .))(s)

defines a G-left-invariant associative product on H.
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2.1.1.2 The representation ̊ is not semisimple

Since it cannot be nilpotent one can find bases {A} of a and {X,Y } of d such that

span{X} = p

and

̊(A) =

(
1 ̄

0 1

)
̄ ∈ R0.

Lemma 2.1 g can be realized as a subalgebra of the transvection algebra of a four-dimensional symplectic
symmetric space M .

Proof. The symplectic triple associated to the symplectic symmetric space (cf. [Bie95] or [Bie00] Definition
2.5) is (G, ̌,Ω) where

G = K ⊕ P

K = span{k1, k2}

P = span{e1, f1, e2, f2};

with Lie algebra table given by

[f1, k1] = e1

[f1, k2] = e2 + ̄e1

[f1, e1] = k1

[f1, e2] = k2 + ̄k1;

f2 being central. The symplectic structure on P is given by

Ω = ˺e∗1 ∧ f∗
1 + ˻e∗2 ∧ f∗

2 (˺, ˻ 6= 0).

The subalgebra

span{X :=
1

2
(k1 + e1), Y :=

1

2
(k2 + e2), A := f1, }

is then isomorphic to g.

Note that the transvection subalgebra
S = g ⊕ Rf2

is transverse to the isotropy algebra K in G. As a consequence the associated connected simply connected
Lie group S acts acts transitively on the symmetric space M . Since dimM = dimS = 4, one may identify
M with the group manifold of S. It turns out that the symplectic symmetric space M admits a strict
deformation quantization which is transvection invariant [Bie00]. Therefore one has

Theorem 2.2 The symplectic Lie group S admits a left-invariant strict deformation quantization. Since G

is a group direct factor of S, the deformed product on S restricts to G providing a UDF for G.

2.1.2 s = d

In this case, a UDF is obtained by writing Moyal’s formula where one replaces the partial derivatives ∂i’s
by (commuting) left-invariant vector fields X̃i associated with generators Xi of d: for a, b ∈ C∞(G)[[~]], one
sets

a ⋆~ b := a. exp

(
we|d

ij
չ

X̃i ∧
ջ

X̃j

)
.b
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2.2 Case 2: dim d = 1

In this case g is isomorphic to either the Heisenberg algebra or to the direct sum of R with the Lie algebra
of ’ax + b’. The first case has been studied by Rieffel in [Rie89]. Let then

g = L ⊕ RZ

where L = span{A,E} with [A,E] = E. Up to automorphism one has either s = L, s = span{E,Z} or
s = span{A,Z}. The last ones are Abelian thus UDF’s in these cases are obtained the same way as in
Subsection 2.1.2. The first case reduces to an action of ’ax + b’ and has therefore been treated in [BiMas01]
or [BiMae02].

3 Crossed, Smash and Co-products

Every algebra, coalgebra, bialgebra, Hopf algebra and vector space is taken over the field k = R or C.
For classical definitions and facts on these subjects, we refer to [Swe69], [Abe80] or more fundamentally to
[MiMo65].

To calculate with a coproduct ∆, we use the Sweedler notation [Swe69]: ∆(b) =
∑

(b)

b(1) ⊗ b(2).

For the classical definitions of a B-module algebra, coalgebra and bialgebra we refer to [Abe80].

The literature on Hopf algebras contains a large collection of what we can call generically semi-direct
products, or crossed products. Let us describe some of them. The simplest example of these crossed products
is usually called the smash product (see [Swe68, Mol77]):

Definition 3.1 Let B be a bialgebra and C a B-module algebra. The smash product C♯B is the algebra
constructed on the vector space C ⊗ B where the multiplication is defined as

(f ⊗ a)
⇀
⋆ (g ⊗ b) =

∑

(a)

f (a(1) ⇀ g) ⊗ a(2)b , f, g ∈ C , a, b ∈ B. (4)

Assuming B is cocommutative, we now introduce a generalization of the smash product.

Definition 3.2 Let B be a cocommutative bialgebra and C a B-bimodule algebra (i.e. a B-module algebra
for both, left and right, B-module structures). The L-R-smash product C♮B is the algebra constructed on
the vector space C ⊗ B where the multiplication is defined by

(f ⊗ a) ⋆ (g ⊗ b) =
∑

(a)(b)

(f ↼ b(1))(a(1) ⇀ g) ⊗ a(2)b(2) , f, g ∈ C , a, b ∈ B. (5)

Remark 3.1 The fact that the L-R-smash product C♮B is an associative algebra follows by an easy adap-
tation of the proof of the associativity for the smash product [Mol77].

In the same spirit, one has

Lemma 3.1 If C is a B-bimodule bialgebra, the natural tensor product coalgebra structure on C⊗B defines
a bialgebra structure to C♮B.

If C and B are Hopf algebras, C♮B is a Hopf algebra as well, defining the antipode by

J⋆(f ⊗ a) =
∑

(a)

JB(a(1))⇀ JC(f)↼ JB(a(2)) ⊗ JB(a(3)) (6)

=
∑

(a)

(1C ⊗ JB(a(1))) ⋆ (JC(f) ⊗ 1B) ⋆ (1C ⊗ JB(a(2))).

Now by a careful computation, one proves
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Proposition 3.1 Let B be a cocommutative bialgebra, C be a B-bimodule algebra and (C♮B, ⋆) be their
L-R-smash product.
Let T be a linear automorphism of C (as vector space). We define:

(i) the product •T on C by
f •T g = T−1 (T (f).T (g)) ;

(ii) the left and right B-module structures,
T
⇀ and

T
↼, by

a
T
⇀ f := T−1 (a ⇀ T (f)) and f

T
↼a := T−1 (T (f) ↼ a) ;

(iii) the product, ⋆T , on C ⊗ B by

(f ⊗ a) ⋆T (g ⊗ b) = T−1 (T(f ⊗ a) ⋆ T(g ⊗ b)) where T := T ⊗ Id.

Then (C, •T ) is a B-bimodule algebra for
T
⇀ and

T
↼ and ⋆T is the L-R-smash product defined by these

structures.
Moreover, if (C, .,∆C , JC ,⇀,↼) is a Hopf algebra and a B-module bialgebra, then

CT := (C, •T ,∆T
C := (T−1 ⊗ T−1) ◦ ∆C ◦ T, JT

C := T−1 ◦ JC ◦ T,
T
⇀,

T
↼)

is also a Hopf algebra and a B-module bialgebra. Therefore, by Lemma 3.1,

(CT ♮B, ⋆T ,∆T = (23) ◦ (∆T
C ⊗ ∆B), JT

⋆ ),

is a Hopf algebra, ∆T being the natural tensor product coalgebra structure on CT ♮B (with (23) : C ⊗ C ⊗
B ⊗ B ջ C ⊗ B ⊗ C ⊗ B, c1 ⊗ c2 ⊗ b1 ⊗ b2 7ջ c1 ⊗ b1 ⊗ c2 ⊗ b2) and JT

⋆ being the antipode given on CT ♮B

by Lemma 3.1. Also, one has

∆T = (T−1 ⊗ T−1) ◦ (23) ◦ (∆C ⊗ ∆B) ◦ T and JT
⋆ = T−1 ◦ J⋆ ◦ T with T = T ⊗ Id.

4 Examples in deformation quantization

4.1 A construction on T
⋆(G)

Let G be a Lie group with Lie algebra g and T ⋆(G) its cotangent bundle. We denote by Ug, Tg and Sg

respectively the enveloping, tensor and symmetric algebras of g. Let Pol(g∗) be the algebra of polynomial
functions on g∗. We have the usual identifications:

C∞(T ∗G) ≃ C∞(G · g∗) ≃ C∞(G)⊗̂C∞(g∗) ⊃ C∞(G) ⊗ Pol(g∗) ≃ C∞(G) ⊗ Sg.

First we deform Sg via the “parametrized version” Utg of Ug defined by

Utg =
Tg[[t]]

< XY − Y X − t[X,Y ];X,Y ∈ g >
.

Utg is naturally a Hopf algebra with ∆(X) = 1 ⊗ X + X ⊗ 1, ǫ(X) = 0 and S(X) = −X for X ∈ g. For

X ∈ g, we denote by X̃ (resp. X) the left- (resp. right-) invariant vector field on G such that X̃e = Xe = X.
We consider the following k[[t]]-bilinear actions of B = Utg on C = C∞(G)[[t]], for f ∈ C and ̄ ∈ [0, 1]:

(i) (X ⇀ f)(x) = t(̄ − 1) (X̃.f)(x),

(ii) (f ↼ X)(x) = t̄ (X.f)(x).

One then has

Lemma 4.1 C is a B-bimodule algebra w.r.t. the above left and right actions (i) and (ii).
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Definition 4.1 We denote by ⋆̄ the star product on (C∞(G) ⊗ Pol(g∗)) [[t]] given by the L-R-smash product
on C∞(G)[[t]] ⊗ Utg constructed from the bimodule structure of the preceding lemma.

Proposition 4.1 For G = R
n, ⋆ 1

2

is the Moyal star product (Weyl ordered), ⋆0 is the standard ordered star
product and ⋆1 the anti-standard ordered one. In general ⋆̄ yields the ̄-ordered quantization, within the
notation of M. Pflaum [Pfl99].

Remark 4.1 In the general case, it would be interesting to compare our ̄-ordered L-R smash product with
classical constructions of star products on T ⋆(G), with Gutt’s product as one example [Gut83].

4.2 Hopf structures

We have discussed (see Lemma 3.1) the possibility of having a Hopf structure on C♮B. Let us consider
the particular case of C∞(Rn)[[t]]♮UtR

n = C∞(Rn)[[t]]♮SR
n (Rn is commutative). SR

n is endowed with its
natural Hopf structure but we also need a Hopf structure on C∞(Rn)[[t]] = C∞(Rn)⊗R[[t]]. We will not use
the usual one. Our alternative structure is defined as follows.

Definition 4.2 We endow R[[t]] with the usual product, the co-product ∆(P )(t1, t2) := P (t1 + t2), the co-
unit ǫ(P ) = P (0) and the antipode J(t) = −t. We consider the Hopf algebra (C∞(Rn), .,1,∆C , ǫC , JC), with
pointwise multiplication, the unit 1 (the constant function of value 1), the coproduct ∆C(f)(x, y) = f(x+y),
the co-unit ǫ(f) = f(0) and the antipode JC(f)(x) = f(−x). The tensor product of these two Hopf algebras
then yields a Hopf algebra denoted by

(C∞(Rn)[[t]], .,1,∆t, ǫt, Jt).

Note that ∆t and Jt are not linear in t. We then define, on the L-R smash C∞(Rn)[[t]]♮SR
n,

∆⋆ := (23) ◦ (∆t ⊗ ∆B), ǫ⋆ := ǫt ⊗ ǫB and J⋆ as in Lemma 3.1 .

Proposition 4.2 (C∞(Rn)[[t]]♮SR
n, ⋆̄,1 ⊗ 1,∆⋆, ǫ⋆, J⋆) is a Hopf algebra.

Remark 4.2 The case ̄ = 1
2 yields the usual Hopf structure on the enveloping algebra of the Heisenberg

Lie algebra.

5 The ‘Book’ Algebra

Definition 5.1 The book Lie algebra is the three-dimensional Lie algebra g defined as the split extension
of Abelian Lie algebras a := R.A and d := R

2:

0 ջ d ջ g ջ a ջ 0,

where the splitting homomorphism ̊ : a ջ End(d) is defined by

̊(A) := Idd.

The name comes from the fact that the regular co-adjoint orbits in g⋆ are open half planes sitting in g⋆ = R
3

ressembling the pages of an open book.
We are particularly interested in this example because the associated connected simply connected Lie group
G turns out to be the solvable Lie group underlying the Poisson dual of SU(2) when endowed with the
Lu-Weinstein Lie-Poisson structure [LuWe90]. Explicitly, one has the following situation (see [LuRa91] or
[Sle98]). Set K := su(2) and consider the Cartan decomposition of KC = sl2(C):

KC = K ⊕ iK.

Fix a maximal Abelian subalgebra a in iK, consider the corresponding root space decomposition

KC = K+ ⊕ aC ⊕ K−,

7



and set
d := K+ ≃ C ≃ R

2.

The Iwasawa part a ⊕ K+ is then a realization of the book algebra g = a · d. One denotes by

KC = KG

the Iwasawa decomposition of KC. For an element ˼ ∈ KC, we have the corresponding factorization:

˼ = ˼K˼G.

The dressing action
G · K

̍
−ջ K (7)

is then given by
̍g(k) := (gk)K .

In the same way, denote by
KC ջ K : A 7ջ AK

the projection parallel to g. The infinitesimal dressing action of G on K is now given by

X⋆
k = −Lk⋆e

[(
Ad(k−1)X

)
K

]
, X ∈ g.

A choice of a pre-symplectic structure on G—or equivalently (up to a scalar) a choice of a two-dimensional
Lie algebra s in g— then yields, via the dressing action (7), a Poisson structure ws on K (cf. (2)):

Lk
−1

⋆k

(ws
k) :=

(
Ad(k−1)S1

)
K
∧

(
Ad(k−1)S2

)
K

where {S1, S2} is a basis of s. Note that this Poisson structure is compatible with the Lu-Weinstein structure.
For each choice of symplectic Lie subalgebra s of g, the preceding section then produces deformations of
(K,ws).

Appendix: UDF’s for ’ax + b’

Let S =′ ax + b′ denote the two-dimensional solvable Lie group presented as follows. As a manifold, one has

S = R
2 = {(a, ℓ)},

and the multiplication law is given by

(a, ℓ).(a′, ℓ′) := (a + a′, e−a′

ℓ + ℓ′).

Observe that the symplectic form on S defined by

̒ := da ∧ dl

is left-invariant.
We now define two specific real-valued functions. First, the two-point function A ∈ C∞(S · S) given by

A(x1, x2) := cosh(a1 − a2)

where xi = (ai, ℓi) i = 1, 2. Second, the three-point function Φ ∈ C∞(S · S · S) given by

Φ(x0, x1, x2) :=

∮

0,1,2

sinh(a0 − a1)ℓ2

where
∮

stands for cyclic summation. One then has
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Theorem 5.1 [Bie00, BiMas01] There exists a family of functional subspaces

{H}~∈R ⊂ C∞(S)

such that

(i) for all ~ ∈ R,
C∞

c (S) ⊂ H~;

(ii) For all ~ ∈ R\{0} and u, v ∈ C∞
c (M), the formula:

u ⋆~ v(x0) :=

∫

M·M

u(x1) v(x2)A(x1, x2) e
i

~
Φ(x0,x1,x2) dx1 dx2 (8)

extends as an associative product on H~ (dx denotes some normalization of the symplectic volume on
(S, ̒)). Moreover, (for suitable u, v and x0) a stationary phase method yields a power series expansion
of the form

u ⋆~ v(x0) ∼ uv(x0) +
~

2i
{u, v}(x0) + o(~2); (9)

where { , } denotes the symplectic Poisson bracket on (S, ̒).

(iii) The pair (H~, ⋆~) is a topological (pre) Hilbert algebra on which the group S acts on the left by auto-
morphisms.

Now setting R
2 = a · l; a ∈ a, ℓ ∈ l, one gets the linear isomorphisms

C∞(S) ≃ C∞(l)⊗̂C∞(a) ≃ C∞(l)⊗̂C∞(l∗) ⊃ C∞(l) ⊗ Pol(l∗) ≃ C∞(l) ⊗ Ul.

The quantization (8) on such a space turns out to be a L-R-smash product. Namely, one has

Proposition 5.1 The formal version of the invariant quantization (8) is a L-R-smash product of the form
⋆T (cf. Proposition 3.1).

Proof. Let S(l) denote the Schwartz space on the vector space l. In [Bie00], one shows that the map

S(l)
T

−ջ S(l)
u 7ջ T (u) := F−1̏⋆

~
F (u),

where

̏~ : l∗ ջ l∗ : a 7ջ
2

~
sinh(

~

2
a),

is a linear injection for all ~ ∈ R (F denotes the partial Fourier transform w.r.t. the variable ℓ). An
asymptotic expansion in a power series in ~ then yields a formal equivalence again denoted by T :

T := Id + o(~) : C∞(l)[[~]] ջ C∞(l)[[~]].

Carrying the Moyal star product on (a · l, ̒) by T := T ⊗ Id yields a star product on S which coincides
with the asymptotic expansion of the left-invariant star-product (8) [Bie00, BiMas01].

Subsection 4.2 then yields

Corollary 5.1 The (formal) UDF (8) admits compatible co-product and antipode.
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Deformation theory and quantization I. Deformations of symplectic structures. Ann. Physics 111

(1978), no. 1, 61–110. Deformation theory and quantization II. Physical applications. Ann. Physics
111 (1978), no. 1, 111–151.

[Bie95] Pierre Bieliavsky. Espaces symétriques symplectiques. Ph. D. thesis, Université Libre de Bruxelles,
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