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Statistics of tunneling rates in the presence of chaotic classical dynamics is discussed on a realistic
example: a hydrogen atom placed in parallel uniform static electric and magnetic fields, where
tunneling is followed by ionization along the fields direction. Depending on the magnetic quantum
number, one may observe either a standard Porter-Thomas distribution of tunneling rates or, for
strong scarring by a periodic orbit parallel to the external fields, strong deviations from it. For the
latter case, a simple model based on random matrix theory gives the correct distribution.
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I. INTRODUCTION

After many years of intensive research in the “quan-
tum chaos area” it is now commonly accepted that the
quantum behavior of complex systems may be strongly
correlated with the character of their classical motion
[1, 2, 3, 4, 5]. Even such a purely quantum phenomenon
as tunneling may be profoundly affected by chaotic classi-
cal dynamics. For regular systems a smooth dependence
of the tunneling rate on parameters is expected. In the
presence of chaotic motion, the tunneling rates typically
strongly fluctuate, the game is then to identify both the
average behavior and the statistical properties of the fluc-
tuations.

Imagine the situation when the wavefunction is pre-
dominantly localized in a region of regular motion. The
tunneling to the chaotic sea surrounding the regular is-
land, called “chaos assisted tunneling” (CAT) has been
quite thoroughly studied [6, 7, 8, 9, 10, 11, 12, 13, 14, 15].
It may be characterized by the statistics of tunneling
rates, or directly measurable quantities such as tunnel-
ing splittings between doublets of different symmetries
[10] or tunneling widths [11, 12] where the tunneling to
the chaotic sea leads eventually to decay (e.g. to ioniza-
tion of atomic species). Model based on random matrix
theory (RMT) [16, 17] show that distributions of both
quantities are closely correlated with both the splittings
[10] and square roots of the widths [11] having a common
Cauchy (lorentzian-like) distribution with an exponential
cutoff for extremely large events. Such a situation occurs
for sufficiently small h̄ (in the semiclassical regime) when
the tunneling coupling is much smaller than the mean
level spacing in a given system.

Another possibility occurs when virtually all accessi-
ble phase space (at a given energy) is chaotic: the tun-
neling occurs through a potential (rather than dynam-
ical as in the previous case) barrier. Then a standard
RMT based answer leads to the Porter-Thomas distri-
bution of widths (or its appropriate many channel ex-
tension) as applied in various areas from nuclear physics

[16], mesoscopics [18] or chemical reactions [19] to name
a few. Creagh and Whelan [20, 21, 22, 23] developed
a semiclassical approach to tunneling (for a semiclas-
sical treatment concentrating on other aspects of tun-
neling see e.g. [24, 25]) which enabled them to give an
improved statistical distribution of tunneling rates [26].
The distribution has been tested on a model system and
shown to faithfully represent the tunneling splitting dis-
tribution provided the classical dynamics is sufficiently
chaotic. However, this distribution fails for systems when
scarred [27, 28, 29, 30, 31] wavefunctions dominate the
process. In order to take into account scarring, the same
authors [23] developed a more complicated semiclassical
theory which, in a model system, accurately describes
the numerically observed tunneling rates.

The aim of this paper is twofold. Firstly, we propose
a simpler approach to the effect of scarring than that
in [23]. Our approach is less general, as it is limited to
the case when only one channel contributes to tunneling.
This is, however, a very frequent situation: because tun-
neling typically decays exponentially with some parame-
ter, most contributions are often hidden by a single dom-
inant one. The formulas that we obtain are also much
simpler. Secondly, we consider the tunneling rate dis-
tribution in a challenging, realistic system - a hydrogen
atom in parallel electric and magnetic fields. As men-
tioned by Creagh and Whelan, one expects there the
above mentioned problems due to scar-dominated tun-
neling. Here again we test the proposed distribution on
a vast set of numerical data. Thirdly, in contrast with
most of the previous studies, we do not consider here
a situation where tunneling manifests itself as a quasi-
degeneracy between a pair of even-odd states, but rather
the case when tunneling is followed by a subsequent ion-
ization of the system and manifests itself in the widths
(ionization rates) of resonances. The analysis for both
cases is similar, but not identical.
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II. THE DISTRIBUTION FOR TUNNELING

RATES FOR SCAR DOMINATED CHAOTIC

TUNNELING

Let us recall first shortly the analysis of chaotic tun-
neling used in [26], which makes it possible to predict
the distribution of tunneling rates in terms of classical
quantities. This approach is based on the standard semi-
classical expansion of the Green function as a sum over
classical orbits (which is used e.g. in periodic orbit the-
ory à la Gutzwiller), but incorporates in addition some
complex orbits, that is orbits where time, position and
momentum can be made complex. Such orbits may tun-
nel through the potential well and eventually lead to es-
cape at infinity; they are essential for the calculation of
tunneling rates. In the one-dimensional case, it is well un-
derstood that tunneling can be quantitatively described
using a single complex orbit known as the instanton: the
orbit propagates under the potential well with a purely
real position, and purely imaginary time and momentum,
until it emerges in the real phase space when the poten-
tial barrier is crossed (it can be visualized as a standard
real orbit in the inverted potential). The action SI of
the instanton is then purely imaginary SI = iK and the
tunneling rate is, not surprisingly, essentially described
by the exp(iSI/h̄) = exp(−K/h̄) contribution.

For a multidimensional system, the situation is some-
how comparable, except that there are now several in-
stanton orbits. It also turns out that the structure of
the tunneling complex orbits can be extremely compli-
cated [25, 32]. However, because of the exponential de-
crease of the tunneling rate, in the semiclassical limit
h̄ → 0, there are cases when the instanton orbit with the
smallest imaginary action will give the dominant contri-
bution. Creagh and Whelan succeeded in expressing the
tunneling rate in terms of the action and stability ex-
ponent of the instanton orbit [21]. They were able to
describe the situation of a symmetric double well, where
tunneling manifests itself through the existence of pairs
of quasi-degenerate states, i.e. to calculate the splitting
of the doublets. Comparison with “exact” numerical
results for a model system showed a very good agree-
ment [20, 21]. They were also able to describe the sit-
uation of tunneling outside a single potential well (with
chaotic dynamics inside the well) followed by “ioniza-
tion”, that is particle directly escaping toward infinity.
The quantity of interest is the “weighted” density of
states, where the weight is given by the widths Γn of
the resonances with energies En:

f(E) =
∑

n

Γn˽(E − En) (1)

In the semiclassical approximation, it can be written – in
the spirit of periodic orbit theory – as the sum of smooth
and oscillatory terms:

f(E) ≈ f0(E) + fosc(E), (2)

Explicitly, the smooth term reads

f0(E) =
1

2̉

exp (−K/h̄)
√

(−1)d−1 det(W − I)
(3)

where K is the (imaginary) action of the periodic instan-
ton (that is the full orbit back and forth across the poten-
tial well), d the number of freedoms of the system and W
the 2(d − 1) × 2(d − 1) stability matrix of the instanton.
The oscillatory term is not explicitly written by Creah
and Whelan, but it is rather simple to calculate it from
their papers. In the simple case where the classical orbit
which is the real continuation of the instanton inside the
potential well is a periodic orbit (this is for example the
case when the instanton is along a symmetry axis of the
potential), it is not surprising that the oscillatory terms
will be governed by the properties of this real periodic
orbit. Indeed, it is known that the eigenstates inside the
well will be scarred by such an orbit, thus showing ei-
ther an increased or decreased probability density at the
point where the instanton emerges. It is thus reasonable
to expect that scarred (resp. anti scarred) states will
show an increased (resp. decreased) tunneling probabil-
ity. The modulations of the weighted density of states
are thus related to the action of the real periodic orbit.
More specifically, one gets:

fosc(E) =
1

̉
Re

∞
∑

j=1

exp [(−K + ijS)/h̄]
√

(−1)d−1 det(WM j − I)
(4)

where S is the (real) action of the periodic orbit in the
well and M its stability matrix. The sum over j just takes
into account the repetitions of this orbit. This approach
is restricted to a low tunneling rate, when repetitions
of the instanton give negligible contributions. The fact
that, in the contribution of the instanton, there is a 1/2̉
prefactor, half the prefactor for the oscillatory term, is
not trivial, but explained in ref. [20].

III. THE HYDROGEN ATOM IN PARALLEL

FIELDS

We consider a hydrogen atom placed in static paral-
lel magnetic and electric fields. The Hamiltonian of the
system is (for infinite mass of the nucleus, neglecting rel-
ativistic and QED corrections, in atomic units)

H =
p2

2
− 1

r
− Fz +

˼2

8
(x2 + y2) +

˼

2
Lz (5)

where ˼ stands traditionally for the magnetic field in
atomic units (≈ 2.35 × 105 Tesla) while F is the static
electric field (in atomic units of ≈ 5.1 × 1011 V/m) as-
sumed to be oriented, together with the magnetic field,
along the Oz axis. The system obeys cylindrical symme-
try and Lz is a constant of motion. The last, Zeeman
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term in the Hamiltonian gives thus a constant shift (for
a given Lz) and will be omitted for simplicity.

Classically, the atom may ionize for energies Ecl >
−2

√
F . Note that ionization occurs in the z direction

- the diamagnetic term provides a two-dimensional har-
monic oscillator binding potential in the perpendicular
directions.

The character of the classical motion depends on the
energy as well as on the relative magnitude of electric and
magnetic fields, as discussed long time ago in [33, 34]. In
fact the system obeys the standard classical scaling laws
[35, 36]. Explicitly, scaling with respect to the magnetic
field as r̃ = r˼2/3, p̃ = p˼−1/3, ǫ = E˼−2/3, f = F˼−4/3,
L̃z = Lz˼

1/3, leads to a new Hamiltonian dependent on
two parameters only, the scaled energy ǫ and scaled elec-
tric field f

H̃ =
p̃2

2
− 1

r̃
− fz̃ +

1

8
(x̃2 + ỹ2) = ǫ. (6)

Later on we shall drop the˜sign using classically scaled
variables only.

With this scaling and for f = 0 (pure magnetic field),
the motion is predominantly regular for small ǫ < −0.5;
for larger ǫ a gradual transition to chaos takes place so
that, for ǫ > −0.12, practically all the available phase
space becomes chaotic [35, 36]. This character of the
motion is basically preserved for f > 0, provided

ǫ < ǫion = −2
√

f, (7)

i.e., below the classical ionization threshold.
Quantum mechanics does not preserve the scaling. In-

stead of finding, however, eigenenergies at given values
of magnetic ˼ and electric F fields, it is a celebrated tra-
dition now to consider scaled spectra [35, 36], i.e. choose
values of external fields as to obtain eigenenergies at
fixed ǫ. This procedure is straightforward. Rewriting
the Schrödinger equation, one may obtain a generalized
eigenvalue problem for fixed ǫ (and f in our case) from

which quantized field values ˼
−1/3
n are obtained. If one

were to get back to the original problem, then a given
˼n value together with the definition of ǫ yields the en-
ergy En which is an eigenvalue of the original Schrödinger
equation for that ˼n field value. The set of ˼n obtained
for a fixed values of ǫ and f corresponds to the very same

classical dynamics while different ˼
−1/3
n play the role of

different values of the effective Planck constant h̄eff .
One may then expect that to study quantum tunnel-

ing in the semiclassical regime with a well defined clas-
sical mechanics, it is sufficient to diagonalize a standard
scaled problem. This is, however, not completely true:
indeed, because tunneling implies that the electron ion-
izes, the energy spectrum is not a discrete spectrum of
bound states, but rather composed of resonances. Far
below the classical ionization threshold, the widths of
the resonances are extremely small and can be neglected.
Then diagonalization of the Hamiltonian in a convenient
basis set may produce a discrete energy spectrum which

very well approximates the true resonances. On the other
hand, far above the ionization threshold, the spectrum is
continuous and basically unstructured. We are interested
in the intermediate situation, in the vicinity of the clas-
sical ionization threshold, where the resonances have a
small but significant width due to tunneling followed by
ionization. The treatment of tunneling resonances ne-
cessitates a further standard extension, known from the
pure magnetic field case above the ionization threshold
[37, 38]: a complex rotation approach [39, 40, 41]. The
idea is to apply the following complex scaling (or rota-
tion if viewed in the complex plane): r → r exp(iΘ),
p → p exp(−iΘ) to the Hamiltonian of the system, where
Θ is a real positive parameter representing the complex
rotation angle (typically of the order of 0.1 rad). The
transformed Hamiltonian is no longer an Hermitian op-
erator, and its diagonalization yields complex eigenval-
ues En − iΓn/2, where En is the energy of the reso-
nance and Γn its width, i.e. the inverse of its lifetime.
Well below the classical ionization threshold, eq. (7), the
widths should be vanishingly small; with increasing f,
some states, notably those extended in z direction, i.e.,
along the “ionization direction”, should have increased
imaginary parts indicating tunneling ionization. Above
the threshold, eq. (7), ionization becomes classically al-
lowed and the widths are expected to be large. Moreover,
in the tunneling regime, the widths should on the aver-
age exponentially decrease in magnitude with decreasing
h̄ according to an exp(−K/h̄) law with K being a char-
acteristic tunneling action.

IV. NUMERICAL RESULTS - SHIFT OF THE

EFFECTIVE IONIZATION THRESHOLD

The expectations described in the previous section are
based on a rough classical analysis of the ionization pro-
cess. In order to test these ideas and the semiclassical
prediction for the widths of the resonances, we have per-
formed extensive numerical studies of the energy spec-
trum of the system. The matrix representing the complex
rotated Hamiltonian in a Sturmian basis set [42] is easily
obtained, as matrix elements have strong selection rules
and are all known as simple analytic expressions. The
matrix in then diagonalized using the Lanczos algorithm
[43], producing several hundreds or thousands fully con-
verged eigenvalues. We have carefully checked that all
eigenvalues presented in this paper are fully converged.
The only limitation is that the calculation is performed
in double precision, yielding about 12 significant digits.
This also implies that widths (tunneling rates) smaller
than 10−12 cannot be accurately computed.

It turns out that, below the classical ionization thresh-
old, eq. (7), the widths of the resonances are usually very
small. Moreover, as we are interested in the situation
when the classical dynamics inside the potential well is
chaotic, we have to use a rather large value of the scaled
energy ǫ – typically ǫ = −0.1 – which in turns correspond
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to a rather small value of the scaled electric field at the
ionization threshold, that is typically f = 0.0025 from
eq. (7). For these values, we observed that the numeri-
cally computed widths are all vanishingly small, smaller
than the 10−12 accuracy of the numerics.

This can be understood from eq. (3). Indeed, the sta-
bility exponent of the instanton orbit is in our specific
case enormous. The reason is that the potential in the
vicinity of the saddle point is very anisotropic. It is
strongly bounded by the diamagnetic term in the trans-
verse (x, y) plane but has a only a very smooth potential
maximum in the field (z) direction. The instanton can be
seen as a real orbit propagating in the inverted potential.
This inverted potential has a shallow minimum in the z
direction but falls down very rapidly in the transverse
directions: the instanton moves along a sharp potential
ridge and is thus extremely unstable. We show in the
appendix how to calculate the action K and stability
matrix W of the instanton. For small f (the regime we
are interested in), the following approximate expressions
are sufficient:

K(ǫ) = −2̉(ǫ − 2f1/2)

21/2f3/4
(8)

and

(−1)d−1 det(W − I) = exp

(

̉

21/2f3/4

)

(9)

For f = 0.0025, the denominator in eq. (3) is thus of
the order of 10−43, which explains that the widths cannot
be measured in a numerical experiment [53].

An alternative, equivalent, “quantum” explanation can
be given. The magnetic field term in the Hamiltonian is
responsible for a harmonic potential in the direction per-
pendicular to the fields. Thus the quantum mechanical
energy of the motion in the x−y plane cannot be smaller
than the energy of the lowest state of the corresponding
oscillator. For Lz = m = 0 the energy in question is
the ground state energy E0 = ˼/2 while for other (con-
served) m values it is Em = (|m| + 1)˼/2. Reaching the
energy of the classical ionization threshold is thus not suf-
ficient for the quantum system to ionize. It requires the
additional zero-point energy Em to be able to overcome
the potential barrier. As the harmonic potential is quite
strong, this excess energy is rather high and has the effect
of tremendously reducing the ionization probability. For
the scaled problem, the energy shift Em translate into a
shift of the scaled energy:

ǫm = Em˼−2/3 =
|m| + 1

2
˼1/3 =

|m| + 1

2
h̄eff . (10)

The equivalence of the two points of view can be es-
tablished by noting that the expression (9) has itself an
exponential dependence, which can be combined with the
numerator in eq. (3). We obtain:

f0(E) =
1

2̉
exp

[

2̉(ǫ − 2f1/2 − h̄eff/2)

h̄eff21/2f3/4

]

(11)

which can also be written as:

f0(E) =
1

2̉
exp

[−K(ǫ̂)

h̄eff

]

(12)

where (here for m = 0)

ǫ̂ = ǫ − ǫm. (13)

The physical meaning of these equations is rather clear.
In effect, tunneling can be described with a stan-
dard exponential[action/h̄eff ], provided the amount ǫ0 =
h̄eff/2 of energy is subtracted from the total available en-
ergy ǫ. The global effect of the degrees of freedom trans-
verse to the instanton is nothing but a shift of the energy
available for tunneling by the zero-point energy in the
transverse direction.

Such an analysis does not take into account the az-
imuthal symmetry around the fields axis and the fact
that the contributions of the various m values can be
separated in the numerical calculation. Not surprisingly,
tunneling is much more effective for m = 0 states which
are not repelled from the z axis by a centrifugal potential
and thus feel more efficiently the instanton. In the quan-
tum point of view, such states have the lowest transverse
zero-point energy ǫ0. For other m values, the treatment
of Creagh and Whelan has to be adapted: instead of
considering the full semiclassical Green function of the
system, one must expand it on the various m subspaces
and use only the relevant component in each subspace.
A similar problem occurs in periodic orbit theory when
one is interested in the contribution to the density of
states of an orbit along the z axis. How to deal with
such a problem has been described in a general manner
by Bogomolny [44, 45] and in a specific case by Shaw and
coworkers [46]. The rule is that higher powers of the sta-
bility matrix come into play, for example M |m|+1 instead
of M for the real orbit. The situation is similar for the
instanton, resulting in the denominator being raised to
power |m|+ 1. The net effect is again taken into account
by shifting the scaled energy by ǫm = (|m|+1)ǫ0, i.e. the
transverse zero-point energy in the m subspace. Thus re-
sults in an effective quantum ionization threshold:

ǫq
ion = −2

√

f +
|m| + 1

2
h̄eff (14)

Because of the transverse zero-point energy, in the
presence of magnetic field, larger electric field strengths
are necessary to observe the same ionization yield, or,
conversely, larger scaled energy is required for a fixed
electric field strength. We have thus performed numerical
diagonalization of the scaled Hamiltonian above the clas-
sical ionization threshold, eq. (7). The results is shown
in Fig. 1, where the widths of the resonances are plot-
ted versus the quantized value of ˼−1/3 = 1/h̄eff , the
inverse of the effective Planck’s constant. At low ˼−1/3,
i.e. large h̄eff , the transverse zero-point energy is so large
that the quantum ionization threshold, eq. (14), is far
above the scaled energy of the state which consequently
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FIG. 1: The ionization rates (widths) of resonances of the hy-
drogen atom in parallel electric and magnetic fields, as a func-
tion of the effective principal quantum number ˼−1/3 = 1/h̄eff

which plays the role of the inverse of the effective Planck’s
constant. The diagonalization is performed at fixed value of
the scaled energy ǫ and yields complex eigenvalues, their real
part corresponds to quantized values of magnetic field ˼ for
fixed values of ǫ and f . (a) shows data obtained for angu-
lar momentum m = 0, scaled electric field f = 0.0025 and
ǫ = −0.085, i.e. above the classical ionization threshold as
given by condition (7). Observe very small ionization widths

for ˼−1/3 < 28, then a rapid, on average increase and satu-
ration for ˼−1/3 > 33.3. The region of rapid increase corre-
sponds to tunneling as explained in the text. The dashed ver-
tical line gives the quantum ionization threshold, eq. (14). (b)
shows the data for m = 3, f = 0.0025, and ǫ = 0.005 showing
a similar behavior. Now the threshold is at ˼−1/3 ≈ 19.

has a vanishingly small ionization rate. This corresponds
to the region ˼−1/3 < 28 in Fig. 1(a), where the widths
are smaller than the numerical accuracy. As ˼−1/3 is in-
creased, the quantum ionization threshold decreases and
significant tunneling takes place, as observed in the range
28 < ˼−1/3 < 35. Finally, at sufficiently high ˼−1/3 value,
the scaled energy is higher than the quantum ionization
threshold and direct ionization takes place. There, the
ionization rates are large, comparable to the spacing be-
tween consecutive resonances and the tunneling regime
is left. In the figure, the ˼−1/3 value where the quantum
ionization threshold is reached is marked by the dotted
line, and agrees with the numerical results. The two val-
ues of ǫ for m = 0 and m = 3 have to be chosen quite
different in order to observe the transition within the
range of ˼−1/3 available from numerical diagonalization.
Let us note that also in the pure magnetic field case, the
statistics of level spacings in the vicinity of the ionization
threshold is sensitive to the very same quantum threshold
law [38, 47].

V. NUMERICAL RESULTS AT CONSTANT

MODIFIED SCALED ENERGY

The behavior observed in Fig. 1 has important con-
sequences. To study tunneling, we should consider only
the region just below the threshold; this region is very
small and the tunneling rate changes very rapidly with ˼.
Thus, scaled spectroscopy is not appropriate for the anal-
ysis of statistical properties of tunneling. As it is clear
from the discussion above and the examples depicted in
the figures, the proper parameter characterizing the spec-
trum is not ǫ but rather ǫ̂ = ǫ− ǫm. In order to overcome
the difficulty described in the previous section, a simple
solution is thus to scale the problem following the effec-
tive quantum ionization threshold instead of the classi-
cal one. One then gets rid of the huge denominator due
to the transverse motion and may more easily concen-
trate on the interesting dynamics, namely the interplay
between the instanton and the chaotic dynamics inside
the potential well. We will thus solve the Schroedinger
equation, not at constant scaled energy ǫ, but at con-
stant modified scaled energy ǫ̂, eq. (13). This results in
the following generalized (non linear) eigenvalue problem
for the effective Planck’s constant h̄n and the eigenstates
̏n(r) :

(

− h̄2
n

2
∆ + h̄n

|m| + 1

2
− ǫ̂ − 1

r
− fz +

x2 + y2

8

)

̏n(r) = 0

(15)
with ∆ the Laplace operator.

This equation is solved by expansion over a Sturmian
basis and a modified version of the Lanczos algorithm
adapted to such a generalized eigenvalue problem [48].
We have been able to obtain a few thousands of resonance
widths for a given m value, all lying in the tunneling
regime. An example is presented in Fig. 2.

As expected from eq. (12), the ionization rate shows
an overall exponential decrease with 1/h̄eff . The rate of
this decrease is directly related to the tunneling action
of the instanton: the prediction of eq. (12) is shown as
a dashed line in the figure. Obviously, the agreement
is excellent. It should be noted that the semiclassical
prediction is entirely obtained from classical ingredients
and free of any parameter. Note also the existence of very
large fluctuations – characteristic of chaotic tunneling –
around the mean value.

In order to make a more quantitative test, we remove
the global exponential decrease and define, following [21],
a rescaled width:

yn =
̊0(En)

f0(En)
Γn. (16)

where ̊0(E) is the density of states.
From its definition, the yn should have average value

unity in the semiclassical limit. The distribution of the
yn (same data than in Fig. 2) is shown in Fig. 3, on a
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FIG. 2: Widths (ionization rates) of the resonances of the hy-
drogen atom in parallel electric and magnetic fields, computed
at constant modified scaled energy, eq. (13), ǫ̂ = −0.1005, i.e.
0.0005 below the quantum ionization threshold, eq. (14). Pa-
rameters are m = 0, f = 0.0025. The widths (in logarithmic

scale) are plotted versus ˼−1/3 = 1/h̄eff . The data show the
exponential decrease of the rate for h̄eff → 0 characteristic for
tunneling process. The dashed line is the average behavior
predicted from the semiclassical analysis, eq. (12). One may
also notice periodic short-range modulations of the ionization
rates (with a period close to 0.4); this is a manifestation of
scarring by the periodic orbit along the fields axis and is dis-
cussed in section VI.

linear scale. It has very large fluctuations – several or-
ders of magnitude with a large proportion of very small
ionization rates – but we checked that the average value
of yn is constant across the spectrum within a few per-
cent (although the Γn themselves vary over five orders of
magnitude) and equal to 0.95±0.03. This is only slightly
smaller than unity. The difference might be due to devi-
ations from harmonicity of the potential in the vicinity
of the saddle point (an assumption made in our calcu-
lation). Another plausible source of deviation is the as-
sumption made in the calculation of Creagh and Whelan
that every electron which tunnels through the barrier will
eventually ionize; although this is very likely to happen,
the channel along the z axis may also reflect a small part
of the electronic wavefunction, even after tunneling took
place. This would manifest itself by the yn being smaller
than unity.

The main point remains that semiclassics is able to pre-
dict quantitatively the average behavior of the ionization
rates in the tunneling regime.

VI. FLUCTUATIONS OF THE IONIZATION

RATES – EFFECT OF SCARRING

Beyond the average behavior discussed in the previous
section, we are also interested in the fluctuations of the

10 20 30 40 50

γ−1/3

0

5

10

15

20

y
 (

re
s
c
a

le
d

 i
o

n
iz

a
ti
o

n
 r

a
te

)

= 1/h̄eff

FIG. 3: Rescaled widths (ionization rates) yn, eq. (16), of
the resonances of the hydrogen atom in parallel electric and
magnetic fields (same data as in Fig. 2). As expected from
the semiclassical analysis, the yn values have an average value
close to unity, with large fluctuations. Note especially the
large proportions of very small widths, characteristic of chaos
assisted tunneling.

ionization rates. The most probable origin of these fluc-
tuations is the fact that the classical dynamics inside the
potential well is chaotic. This implies that the resonance
wavefunctions in the well display apparently erratic fluc-
tuations from state to state. States with a large probabil-
ity density near the classical saddle point are more likely
to tunnel and ionize that the ones with small probability
density. As a simple approximation, the tunneling prob-
ability and thus the ionization rate is proportional to the
squared overlap between the eigenstate and a wavepacket
optimally tuned for tunneling, i.e. built to follow the in-
stanton trajectory. Creagh and Whelan have shown how
to explicitly build such a wavepacket [23]. For a quan-
tum chaotic system, the simplest model for describing the
statistical properties of the energy spectrum and eigen-
states is to use Random Matrix Theory (RMT) [16, 17].
There, it is assumed that any unknown matrix element
will be statistically described by a Gaussian distribution.
In our case, although the system is not time-reversal in-
variant (because of the magnetic field), it has a general-
ized time-reversal symmetry and the Gaussian Orthogo-
nal Ensemble (GOE) of random matrices must be used.
Thus the matrix element is purely real and its square,
and consequently the ionization rate, will be described
by a Porter-Thomas distribution [16, 49]:

P (y) =
1√

2̉yȳ
exp(−y/2ȳ) (17)

where ȳ is the mean value of y, unity in our case. In
Fig. 4, we show the numerically obtained distribution
for the m = 3 series compared with the Porter-Thomas
prediction, on a double-logarithmic scale which is more
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FIG. 4: Statistical distribution of the rescaled ionization
rates (widths) y of the resonances of the hydrogen atom in
parallel electric and magnetic fields. The data are taken at
fixed modified scaled energy ǫ̂, eq. (13), and rescaled accord-
ing to eq. (16) in order to take into account the exponential
decrease due to the tunneling through the potential barrier.
These data are obtained for the m = 3 series at scaled electric
field f = 0.0025. In order to improve the statistics, several
distributions obtained for various values of ǫ̂ slightly below
-0.1 are used. The inset shows the distribution P (y) on a

double logarithmic scale, with a y−1/2 behavior at small y
characteristic of ionization with only one open channel, and
a exponential tail at large y. The numerical results are shown
by the histogram, the dashed line is the Porter-Thomas dis-
tribution, eq. (17) predicted by Randon Matrix Theory, while
the solid line is the prediction of eq. (22) obtained by taking
into account the scarring of the eigenstates by the orbit along
the field axis. Note that there is no adjustable parameter.
The main figure shows the distribution of

√
y, which is not

singular as y → 0, on a double linear scale. The prediction of
Random Matrix Theory is a pure Gaussian. For the m = 3
series, the effect of scarring is small and both theoretical dis-
tributions agree well with the numerical results.

convenient to display the large fluctuations. The agree-
ment is excellent, which proves that the distribution of
ionization rates in our realistic problem can be quantita-
tively predicted, using a combination of semiclassics (for
the mean value) and Random Matrix Theory (for the
fluctuations).

The results for the m = 0 series are shown in Fig. 5.
The overall agreement is rather good, with a clear y−1/2

behavior at small y and an exponentially small tail at
large y. However, a significant deviation is clearly visible
at intermediate values. What is the origin of this devi-
ation ? We have been able to show that it is directly
related to the unstable periodic orbits inside the chaotic
potential well. The quantitative interpretation is based
on the semiclassical prediction, eqs. (1-4). A clue is pro-
vided by a careful inspection of Fig. 2 which shows that
fluctuations around the average trend are not random
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FIG. 5: Same as figure 4, but for the m = 0 series. The ef-
fect of scarring is much more important and large deviations
from the Porter-Thomas (Random Matrix Theory) distribu-
tion (dashed line) are observed. In contrast, the agreement
with the model taken into account the scarring by the z orbit,
eq. (22) and solid line, is much better. This proves that our
model – with no adjustable parameter – describes properly
the physics of tunneling and ionization of chaotic states in
the presence of scarring.

but clearly display a short-range oscillation (about 100
oscillations in the covered range). The simplest way of
measuring this oscillations is to perform a Fourier trans-
form with respect to 1/h̄eff , a standard tool in periodic
orbit theory. We define:

g(s) =
2̉

∆

∑

n

Γn exp (K/h̄n) exp (−is/h̄n) (18)

where the sum is taken over some range of 1/h̄ of length
∆. The function g(s) is shown in Fig. 6 both for m = 0
and m = 3. As expected, g(0) is very close to unity (this
proves that the actual average width is well predicted by
the semiclassical formula, eq. (12). g(s) has a very large
peak around s/2̉ = 2.655, with harmonics at integer
multiples, but also smaller peaks at other values. From
eq. (4), the peaks are expected to take place at the actions
of the periodic orbits inside the well which are real con-
tinuations of the imaginary instanton. In our case, this
orbit is entirely along the z axis and its classical action
Sclas is easily computed. We find Sclas/2̉ = 2.655 for
the parameters of the figure, in perfect agreement with
the numerical quantum calculation. It should be noticed
that we use for the classical calculation the scaled energy
-0.1005, i.e. the value of the modified scaled energy of
the quantum calculation [54]. The fact that both agree
validates our correction and fully confirms the important
role of the zero-point transverse energy.

The semiclassical formula (4) also predicts the ampli-
tude of the peak that should be observed in the Fourier
transform g(s). There is however an important subtlety
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FIG. 6: Fourier transforms of the distribution of widths (ion-
ization rates) with respect to 1/h̄eff , eq. (18), obtained for
f = 0.0025 and ǫ̂ = −0.1005 in the m = 0 (a) and m = 3 (b)
series. It displays a large peak (hardly visible) at s = 0 with
amplitude unity, as expected from semiclassics; this peak de-
scribes the average behavior of the widths. The other peaks
correspond to modulations of the width associated with peri-
odic orbits inside the inner potential well. The peaks are much
more pronounced for the m = 0 series (a) than for the m = 3
series (b), because the former are more strongly scarred by
the orbit along the fields axis, with action Sclas/2̉ = 2.655.
The repetitions of this orbit are clearly visible, with ampli-
tudes forming a geometric series. The heights of these peaks
are directly related to the instability of the periodic orbit
along the fields axis. In (a), the amplitude of the first peak
is 0.589 ± 0.005 in excellent agreement with the semiclassical
prediction 0.592, which involves exclusively classical proper-
ties of the periodic orbits. The other peaks, appearing at ac-
tions clustered slightly below the repetitions of the main orbit,
correspond to other orbits in the inner potential well, which
are slightly off the z axis but approach the saddle point. In
(b), the centrifugal potential prevents the periodic orbits from
strongly scarring the quantum states, and the amplitudes of
the peaks (especially the ones associated with repetitions of
the z orbit) are much smaller.

here. The monodromy matrix of the real orbit along
the z axis enters the formula. It turns out that, be-
cause the orbit is very close to the saddle point (reached
at ǫ = −2

√
f, it undergoes an infinite series of bifurca-

tion as ǫ → −2
√

f. At closely spaced ǫ values, the orbit
loses and regains stability. At each bifurcation, a new
periodic orbit is born, which is off the z axis, but close
to it. Such a phenomenon is well known when a par-
ticle either approaches a saddle point (see for example
the Henon-Heiles model in [50]) or explores a channel
with a long-range potential, as for example is the case
for a Rydberg series converging to an ionization thresh-
old [51]. We show in Fig. 7 the trace of the stability
matrix of the z orbit as a function of the scaled energy ǫ
for f = 0.0025, which clearly shows this series of stable-
unstable bifurcations. However, we also plot on the same
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FIG. 7: Trace of the stability matrix M of the periodic or-
bit along the fields axis, as a function of the scaled energy
(dotted line). The orbit is stable when the trace is in the
[-2,2] range, unstable otherwise. There is a series of stable-
unstable bifurcations accumulating at the the saddle point
energy ǫ = −0.1 (f = 0.0025 in this plot). In contrast, the

contribution |
p

− det(WM − 1)/
p

− det(W − 1)|, plotted as
a solid line, is a smooth function of ǫ. It is precisely this con-
tribution which enters the denominator of the semiclassical
expansion, eq. (4).

figure the denominator of the semiclassical contribution,
eq. (4), to the ionization rate, whose calculation is de-
tailed in the Appendix. The fact that what counts is not
the real orbit itself but its combination with the instan-
ton completely eliminates the series of bifurcations and
gives a smooth contribution as the scaled energy is var-
ied, as observed in the numerical quantum experiment.
Moreover, the semiclassical formula (4) predicts for g(s) a
peak at Sclas/2̉ = 2.655 with amplitude 0.592, while the
numerical result is 0.589± 0.005, in excellent agreement.
Similarly, the harmonics of the peak form approximately
a geometric series with amplitude ≈ 0.59j for the jth rep-
etition of the primitive real orbit. The physical interpre-
tation is clear: because the motion in the inner potential
well is chaotic, each time the quantum particle leaves the
vicinity of the saddle point (along the z axis), it explores
some part of the chaotic phase space and roughly only
59% of the electronic density is reflected by the nucleus
back along the z axis.

It is important to remark that the oscillations of the
widths, eq. (4), induced by the orbit along the z axis and
all its repetitions add coherently. Indeed, if we assume
for simplicity that the jth repetition contributes with am-
plitude Rj (with R ≈ 0.59 in our case) and phase j̏,
the series, including the smooth term f0 can be summed
exactly, leading to the following contribution to the ion-
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ization width:

f(h̄) =
1

2̉
exp (−K/h̄)

1 − R2

1 + R2 − 2R cos (Sclas/h̄ − ̏)
(19)

This, in turn, predicts that the average normalized
widths are not uniformly distributed, but should follow
the distribution:

ȳ(h̄) =
1 − R2

1 + R2 − 2R cos (Sclas/h̄ − ̏)
(20)

The physical interpretation of this distribution is simple.
It is nothing, but the function giving the intensity trans-
mitted through a Fabry-Perot optical cavity with reflex-
ion coefficients R for the combination of the two mirrors,
phase shift ̏ at the reflections and optical length Sclas/h̄
in units of the wavelength. This is of course a periodic

function of the variable 1/h̄ with period 2̉/Sclas. It has
maxima at Sclas/h̄−̏ equal to an integer multiple of 2̉
– where the value of the function is (1 + R)/(1 − R) –
and minima at half-integer multiples where the function
is (1 − R)/(1 + R). If R is large, the maxima are sharp
peaks. The analogy with the Fabry-Perot cavity is more
than formal: it actually describes how the electronic den-
sity can be resonantly trapped inside the inner potential
well along the z axis, resulting in enhanced tunneling
amplitude and ionization rate. Because the dynamics is
chaotic, such a resonant enhancement is only partial (R
must be smaller than unity) resulting in scarring of the
wavefunction rather than complete localization.

In order to test whether this distribution adequately
describes the numerical result, we have “folded” all the
numerical values yn inside a single “free spectral range”
of the Fabry-Perot cavity, by plotting them against:

xn =
Sclas˼

−1/3
n

2̉
(mod. 1) =

Sclas

2̉h̄n
(mod. 1) (21)

where ˺ (mod. 1) denotes the fractional part of the num-
ber ˺. The result is shown in Fig. 8. Clearly the largest yn

values are grouped around a well defined x value, as ex-
pected. Large fluctuations still exist; in order to smooth
them, we plot also the running average (over 100 val-
ues) which clearly presents a resonant behavior around
x = 0.54. The semiclassical prediction, using the R value
deduced from the classical stability of the orbit, is shown
as a dashed line and agrees fairly well with the numerical
result. This proves that the orbit along the z axis plays
the dominant role in our problem. To be completely hon-
est, we must mention that the phase ̏ = 0.54×2̉, which
is directly related to the position of the maximum in the
plot, has not been extracted from the classical dynamics
but fitted to the numerical data.

The last step is to characterize precisely the fluctu-
ations of the individual widths that appear on top of
the global exponential decrease and the modulations dis-
cussed above. Such fluctuations are thought to be un-
avoidable in a chaotic system, and are even a signature
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FIG. 8: Rescaled ionization rates yn, eq. (16), of the m = 0
series for f = 0.0025 and ǫ = −0.1005, as a function of x,
eq. (21). x represents (within a multiplicative 2̉ factor), the
phase accumulated by the wavefunction along the periodic or-
bit in the inner potential well. There are large fluctuations, as
expected in a chaotic system, but the average behavior is ob-
viously dependent on x, which proves that the periodic orbit
strongly affects the width. A pure Random Matrix approach
predicts a uniform distribution independent of x. The solid
line is a running average which smoothes the fluctuations and
clearly shows the resonant behavior of the average width with
x. The dashed line is the semiclassical prediction, eq. (23),
which incorporates the effect of the periodic orbit.

of the presence of chaos. In a semiclassical point of view,
they can be seen as the effect of the whole set of (unsta-
ble) periodic orbits in the inner potential well. Each orbit
approaching the saddle point contributes an oscillatory
term analogous to eq. (4) to the width and the individual
widths are just the result of the superposition of plenty
of such terms which oscillate rapidly: it results in ap-
parently random fluctuations around the mean value. A
number of peaks are visible in the Fourier transformed
spectra in Fig. 6; semiclassical theory tells us that they
appear at the actions of periodic orbits. In our specific
case, it is visible that most of them are clustered at ac-
tions slightly smaller than the action of the z orbit and its
repetitions. Physically, they correspond to orbits mainly
located close to the z axis, born from the z orbit at the
bifurcations discussed above. There is actually a very
large number of such orbits with similar shapes, but dif-
fering by small details. Thus, it is in general difficult to
associate a peak in the Fourier transform with a single
periodic orbit. Except for the lowest members, we could
not assign unambiguously such peaks. This is not a sim-
ple problem: indeed, many orbits are very close in phase
space and, for a finite value of h̄eff , cannot be considered
as isolated in the sense that the saddle point approxima-
tion around each orbit – a key ingredient of periodic orbit
theory – is not valid. In such circumstances, it is not pos-
sible to separate the contributions of the various orbits
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FIG. 9: Distribution of actions of trajectories launched from
a plane z = z0 = 8.82 towards the saddle point as a function
of the momentum along the z axis for m = 0, f = 0.0025
and ǫ = −0.1005. The action is calculated along a given
trajectory till it hits the same plane also with positive mo-
mentum. Observe a clear structure of strips. Arrows indicate
actions corresponding to peaks in the Fourier transform of the
widths. The circle indicates the second repetition of the orbit
along the z axis with maximum action 2Sclas/2̉ = 5.31 and
momentum pz = 0.2643.

which have to be grouped together using for example a
uniform approximation [52]. Note that this is a funda-
mental difficulty of periodic orbit theory, not a practical
problem related to the proliferation of the number of or-
bits.

An interesting illustration of this problem may be ob-
tained by launching a bunch of trajectories from the sec-
tion z = z0 close to the saddle point. Following the real
trajectories (all started with positive momentum in z)
until they hit again the same plane z = z0 with positive
momentum one can get a feeling of the relevant dynamics.
For a fully chaotic system one could naively expect that a
plot of say actions calculated along the trajectory versus
the initial momentum along the z axis will not show any
structure. This is not true in our system as visualized
in Fig. 9. Observe a strongly not ergodic behaviour with
allowed actions forming almost parallel strips. A clear
accumulation of actions in strips correlate nicely with
peaks in the Fourier transform, Fig. 6(a), in the range
just below the second repetition at 2Sclas/2̉ = 5.31
of the straight line periodic orbit. To each strip, apart
from other non-periodic trajectories, several periodic or-
bits contribute which slightly differ in shape (and action).
As mentioned already this makes a clear association be-
tween peaks in the Fourier transform and given periodic
orbits impossible.

The basic assumption, usual in studies of quantum
chaos, is that the effect of long periodic orbits is to create
fluctuations well described by Random Matrix Theory.
As – see above – the ionization rate appears as the square

of some real matrix elements, the simplest hypothesis is
to assume that the fluctuations are described by a Porter-
Thomas distribution, eq. (17). However, the mean value
ȳ is now taken as predicted by the semiclassical theory,
i.e. eq. (20). As the xn values are uniformly distributed,
this results in a global statistical distribution:

P (y;R) =

∫ 1

0

1
√

2̉yȳ(x)
exp

(

− y

2ȳ(x)

)

dx (22)

where

ȳ(x) =
1 − R2

1 + R2 − 2R cos 2̉x
(23)

This distribution is plotted in Fig. 5 as a solid line.
It clearly very significantly improves over the Porter-
Thomas distribution and is in excellent agreement with
our numerical data. Especially, it correctly describes the
excess of large ionization widths.

The same approach can be used for the data in other m
series. However, as is obvious in Fig. 6(b), the contribu-
tion of the z orbit is much smaller in e.g. the m = 3 series.
As mentioned above, this is well understood semiclassi-
cally. In simple words, as the centrifugal term is more
important, it keeps the electron away from the z axis and
strongly diminishes the contribution of this orbit. The R
parameter for the m = 3 series can be extracted from the
Fourier transform in Fig. 6(b) and is close to 0.1. The
semiclassical prediction, which can be calculated in the
spirit of refs. [45] and [46], is [R(m = 0)]4 ≈ 0.12 in rea-
sonably good agreement. For such a small R value, the
deviation of the distribution (22) from Porter-Thomas is
very small. This explains why the Porter-Thomas distri-
bution correctly reproduces the results of the numerical
experiment, see Fig. 4. We have also obtained results for
the m = 1 and m = 2 series, shown in Figs. 10 and 11.
Significant deviations from Porter-Thomas are observed,
although smaller than for the m = 0 series. Again, the
modified distribution, eq. (22), agrees very well with the
numerical results.

An alternative approach to the statistical properties of
the ionization widths is possible. From the semiclassical
approach, we know both the average trend and the mod-
ulations; we can thus subtract (or rather divide) these
factors out in order to concentrate on the fluctuations.
We thus rescale the numerical data to the expected av-
erage+oscillatory behavior, that is define:

zn =
yn

ȳ(h̄n)
(24)

with ȳ is defined in eq. (20).
The statistical distribution of the z variable is shown

in Fig. 12, for the m = 0 series. As can be seen, it agrees
very well with a pure Porter-Thomas distribution. This
fully confirms that, once the average and oscillatory be-
havior have been properly taken into account, only the
standard fluctuations described by Random Matrix The-
ory persist.
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FIG. 10: Same as figures 4 and 5, but for the m = 1 series.
The effect of scarring is intermediate and some deviations
from the Porter-Thomas (Random Matrix Theory) distribu-
tion (dashed line) are observed. In contrast, the agreement
with the model taken into account the scarring by the z orbit,
eq. (22) and solid line, is much better.

0 1 2 3 4

y
1/2

0.0

0.5

1.0

1.5

P
(y

1
/2
)

10
−6

10
−4

10
−2

10
0

10
2

y

10
−4

10
−2

10
0

10
2

10
4

P
(y

)

FIG. 11: Same as figures 4 and 5, but for the m = 2 series.
The effect of scarring is small and only marginal deviations
from the Porter-Thomas (Random Matrix Theory) distribu-
tion (dashed line) are observed.

Finally, we have studied a slightly less realistic system:
the two-dimensional hydrogen atom in parallel electric
and magnetic fields, obtained from the previous system
by imposing that the motion takes place in the (x, z)
plane. The classical dynamics is exactly the same than
for m = 0 states (obviously the motion is planar for such
cases). One could thus naively expect the same proper-
ties for the ionization widths for the quantum system.
This is however not entirely true for two reasons:

• The zero-point transverse motion is now in one di-
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FIG. 12: Statistical distribution of the ionization widths,
rescaled according to eq. (24), to take into account tunneling
and the effect of the periodic orbit along the field axis. A good
agreement is obtained with the Porter-Thomas distribution,
eq. (17), shown as a dashed line. The data are the same
as in Fig. 5. The fact that a good agreement is obtained
indicates that our model describes scarring and tunneling in
a satisfactory manner.

mension instead of two. Thus, the shift energy is
reduced by a factor 2 compared to eq. (10):

ǫ2D =
1

4
˼1/3 =

1

4
h̄eff . (25)

The modified scaled energy, eq. (13), must be mod-
ified accordingly.

• The stability matrix is a 2×2 matrix instead of a 4×
4 matrix. As explained in the appendix, this results
in a denominators in eqs. (1)-(4), to be square roots
of the three-dimensional results for m = 0.

The net effect is that the instability of the real orbit in
the potential well is significantly reduced, simply because
there is less space for the electron to escape far from the
z axis. The analysis is similar to the three-dimensional
m = 0 case, with the parameter R being now taken at
power 1/2, i.e. R ≈ 0.77 instead of R ≈ 0.59. Stronger
deviations from the Porter-Thomas distribution are thus
expected for the yn. Figs. 13 and 14 show that it is indeed
the case. Once more, the agreement with the modified
Porter-Thomas distribution, eq. (22) is very good.

VII. CONCLUSION

In this paper, we have studied the widths (ionization
rates) of resonances of a realistic system, the hydrogen
atom in parallel electric and magnetic fields, in condi-
tions where the classical dynamics is chaotic. We have
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FIG. 13: Same as figures 4 and 5, but for the two-dimensional
hydrogen atom in parallel electric and magnetic fields. Be-
cause of the reduced dimensionality, the motion transverse
to the z periodic orbit is less unstable than in the three-
dimensional atom, and the effect of scarring is enhanced. Very
large deviations from the Porter-Thomas (Random Matrix
Theory) distribution (dashed line) are observed, but the im-
proved model, eq. (22) (solid line), reproduces well the nu-
merical results.
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FIG. 14: Same as Fig. 12, for the two-dimensional model of
the atom in parallel electric and magnetic fields (data as in
Fig. 13). Again, scarring is well accounted for by our model.

shown that, using a semiclassical approach without any
adjustable parameter but only with classical ingredients,
we are able to predict analytically the average behavior of
the widths. We have also shown the existence of a mod-
ulation of the average width associated with a periodic
orbit and calculated quantitatively its properties, again
using only classical ingredients. Finally, the residual fluc-
tuations have been shown to be accurately described by a

Random Matrix Model. This proves that a proper com-
bination of semiclassics and Random Matrix Theory can
predict the behavior of the system vs. ionization.

Our results are comparable to the ones obtained on a
model system in [23]. For example, their Fig. 1 is clearly
comparable to our Fig. 8. Note however that, due to the
specificities of our realistic system, the expressions we ob-
tain have a simpler form. On a different model system,
Bies et al. [31] observed also deviations from the Porter-
Thomas distribution. Part of the deviation is due to the
relatively small value of the effective Planck constant, but
another part is certainly due to scarring. Their Figs. 4
and 5 are again very comparable to our Fig. 8. Because
they do not consider a scaling system, the classical dy-
namics – and consequently the properties of the periodic
orbits – change with energy which makes a comparison
with our distribution rather difficult. We however have
little doubt that the basic process at work is similar to
ours.
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APPENDIX: CLASSICAL DYNAMICS NEAR

THE SADDLE POINT

In this appendix, we discuss how the various classical
quantities which enter the semiclassical formula can be
calculated in our specific system, the hydrogen atom in
parallel electric and magnetic fields.

The Hamiltonian of the system is given, in scaled units,
by eq. (6). The saddle point is located along the z axis
at position:

zsaddle =
1√
f

, (A.1)

with energy ǫion = −2
√

f.
As we are interested in highly excited states lying in

the immediate vicinity of the saddle point energy, it is
convenient to expand the Hamiltonian at second order
around the saddle point. The normal modes of this har-
monic approximation are along the z axis and in the x−y
plane. In the x− y plane, the saddle point is a potential
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minimum associated with a vibration frequency:

̒ρ =

√

1 + 4f3/2

2
. (A.2)

Because of the azimuthal symmetry around the fields
axis, this mode is degenerate. In order to have a chaotic
motion in the inner potential well, the scaled energy must
be large, typically of the order of -0.1, which in turns im-
plies that f is rather small. In most cases, one can thus
forget the f dependence in eq. (A.2) and use the approx-
imation:

̒ρ ≈ 1

2
. (A.3)

Along the z axis, the saddle point is a potential max-

imum. It is thus associated with an eigenmode with
purely imaginary frequency i̒z where:

̒z =
√

2f3/4 (A.4)

The corresponding imaginary period is nothing, but the
period of the instanton. Alternatively, ̒z can be viewed
as the vibration frequency around the saddle point in the
inverted potential. In an harmonic potential, the action
of an orbit is simply (within a 2̉ factor) the ratio of its
excitation energy (with respect to the equilibrium point)
to the frequency. This yields the (imaginary) action of
the instanton given by eq. (8).

The harmonic approximation around the saddle point
can also be used for the calculation of the stability ma-
trix of the instanton. Indeed, as the harmonic potential
separates completely in a transverse and a longitudinal
component, the monodromy matrix of the instanton in
each transverse direction, after propagation during time
t, is simply of the form:

(

cos ̒ρt − sin ̒ρt
sin̒ρt cos ̒ρt

)

(A.5)

The stability matrix of the instanton is obtained by eval-
uating the monodromy matrix at the period of the in-

stanton t = 2ỉ/̒z :

W =

(

cosh
2πωρ

ωz

−i sinh
2πωρ

ωz

i sinh
2πωρ

ωz

cosh
2πωρ

ωz

)

(A.6)

In our case, the ratio ̒ρ/̒z is very large, so that the
hyperbolic trigonometric functions can be approximated
by an exponential, yielding:

√

−det(W − I) ≈ exp

(

̉̒ρ

̒z

)

(A.7)

For the three-dimensional hydrogen atom, the stability
matrix is a 4 × 4 matrix which actually splits in two
2 × 2 identical blocks (along the x and y directions) of
type (A.6). Thus, the contribution (A.7) must be squared
to get the correct semiclassical contribution. In contrast,
for the simplified two-dimensional model, there is only
one such contribution.

If one uses the approximate value (A.3) in eq. (A.7),
one finally gets the contribution (9).

The last ingredient in the semiclassical approximation
is the stability matrix of the real periodic orbit in the in-
ner potential well. As explained in the main text, the se-
ries of bifurcations taking place in the vicinity of the sad-
dle point energy implies that this matrix changes rapidly
with ǫ. On the other hand, when ǫ is varied, the dynamics
inside the potential well is only weakly affected: the main
effect is that the electron spends less or more time in the
immediate vicinity on the saddle point. As the transverse
potential is there rather steep, the stability matrix varies
a lot. These modifications are essentially described by a
multiplication by a matrix similar to (A.5). A small vari-
ation of the period of the orbit is enough to affect strongly
the matrix. However, it is the product of the stability ma-
trices of the instanton and the real periodic orbit which
describes the semiclassical contribution, eq. (4). As it
is the very same matrix type (A.5) which contributes to
the two stability matrix, it turns out that the modulus of
det(WM − I) actually depends weakly on ǫ as shown in
Fig. 7.
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[5] H. J. Stöckmann, Quantum Chaos: An Introduction

(Cambridge University Press, Cambridge, 1999).
[6] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rev. Lett.

64, 1479 (1990).

[7] O. Bohigas, S. Tomsovic, and D. Ullmo, Phys. Rep. 223,
43 (1993).

[8] S. Tomsovic and D. Ullmo, Phys. Rev. E50, 145 (1994).
[9] V. Averbukh, N. Moiseyev, B. Mirbach, and H. J. Korsch,

Z. Phys. D 35, 247 (1995).
[10] F. Leyvraz and D. Ullmo, J. Phys. A 29, 2529 (1996).
[11] J. Zakrzewski, D. Delande, and A. Buchleitner, Phys.

Rev. E57, 1458 (1998).
[12] J. Zakrzewski, D. Delande, and A. Buchleitner, Acta

Physica Polon. A 93, 179 (1998).
[13] S. D. Frischat and E. Doron, Phys. Rev. E57, 1421

(1998).
[14] C. Dembowski et al., Phys. Rev. Lett. 84, 867 (2000).
[15] A. Mouchet and D. Delande, Phys. Rev. E 67, 046216



14

(2003).
[16] T. A. Brody et al., Rev. Mod. Phys. 53, 385 (1981).
[17] M. L. Mehta, Random Matrices (Academic Press, San

Diego, 1991).
[18] R. A. Jalabert, A. D. Stone, and Y. Alhassid, Phys. Rev.

Lett. 68, 3468 (1992).
[19] H. Nakamura and S. Kato, J. Chem. Phys. 112, 1785

(2000).
[20] S. C. Creagh and N. D. Whelan, Phys. Rev. Lett. 77,

4975 (1996).
[21] S. C. Creagh and N. D. Whelan, Ann. Phys. 272, 196

(1999).
[22] S. C. Creagh and N. D. Whelan, Phys. Rev. Lett. 82,

5237 (1999).
[23] S. Creagh, S.-Y. Lee, and N. Whelan, Ann. Phys. 295,

194 (2002).
[24] A. Shudo and K. S. Ikeda, Phys. Rev. Lett. 74, 682

(1995).
[25] A. Shudo and K. S. Ikeda, Physica D 115, 234 (1998).
[26] S. C. Creagh and N. D. Whelan, Phys. Rev. Lett. 84,

4084 (2000).
[27] E. J. Heller, in Classical and Quantum Chaos, edited

by A. Voros, M. Giannoni, and A. Zinn-Justin (Elsevier,
Amsterdam, 1991), Chap. Scars.

[28] E. B. Bogomolny, Physica D 31, 169 (1988).
[29] L. Kaplan, Phys. Rev. Lett. 80, 2582 (1998).
[30] L. Kaplan, Phys. Rev. Lett. 81, 3371 (1998).
[31] W.E. Bies, L. Kaplan, and E.J. Heller, Phys. Rev. E 64,

016204 (2001).
[32] O. Brodier, P. Schlagheck, and D. Ullmo, Ann. Phys.

300, 88 (2002).
[33] P. Cacciani et al., Phys. Rev. Lett. 56, 1467 (1986).
[34] R.L. Waterland, J.B. Delos, and M.L. Du, Phys. Rev. A

35, 5064 (1987).
[35] D. Delande, in Chaos et Physique Quantique—Chaos and

Quantum Physics, Les Houches, école d’été de physique
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