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Abstract

A Rayleigh-Bénard cell has been designed to explore the Prandtl (Pr) dependence of tur-
bulent convection in the cross-over range 0.7 < Pr < 21 and for the full range of soft
and hard turbulences, up to Rayleigh number Ra ≃ 1011. The set-up benefits from the
favourable characteristics of cryogenic helium-4 in fluid mechanics, in-situ fluid property
measurements and special care on thermometry and calorimetric instrumentation. The ef-
fective heat transfer Nu(Ra, Pr) has been measured with unprecedented accuracy for cryo-
genic convection experiments. Spin-off of this study include improved fits of helium ther-
modynamics and viscosity properties. Three main results were found. First the Nu(Ra)
dependence exhibits a bimodality of the flow with 4−7% difference in Nu for given Ra and
Pr. Second, a systematic study of the side-wall influence reveals an significant bias on the
heat transfer. Third, the Nu(Pr) dependence is very small or null : the absolute value of
the average logarithmic slope (dlnNu/dlnPr)Ra is smaller than 0.03 in our range of Pr.

1 Introduction

Static equilibrium in a column of fluid corresponds to a balance between many parameters
such as the weight, the pressure gradient, the temperature difference, etc. The occurrence
of a small local perturbation can initiate a global convective motion. Rayleigh-Bénard
convection is a reference configuration for convection studies: a fluid cylinder (height h,
section S) located between two horizontal plates is submitted to a temperature difference
∆T between the plates. In our case the upper plate is maintained at constant temperature
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and ∆T results from a constant heat flux Q̇ applied at the bottom plate. For high enough
∆T the convective flow turns into a turbulent regime.

For a given fluid at mean temperature T with a mass density ̊, and for fixed geomet-
rical conditions, the convective flow is characterized by one single parameter ∆T or the

dimensionless Rayleigh number defined as: Ra = ˺gh3∆T
̆̃

. In this expression:
- ̆ is the kinematic viscosity, ̃ the thermal diffusivity ; their ratio is the Prandtl number:
Pr = ̆/̃,
- ˺ is the constant-pressure thermal expansion coefficient,
- g is the gravity acceleration.

The Nusselt number gives the apparent thermal conductivity in the cell: Nu = Q̇h
̄S∆T

(̄ is
the fluid thermal conductivity). In a given cell, Nu should depend only of Ra and Pr.

The unique properties of cryogenic 4He allow to control high Rayleigh numbers[1, 2, 3,
4]. These were used in Grenoble[3, 5] to reach Ra higher than 1014 in high cells (aspect
ratio 1/2, h = 20 cm) : in such conditions we observed for the first time the so-called
ultimate regime predicted by Kraichnan[6] forty years ago.

Helium gives also the opportunity to easily vary the Prandtl number on an unusual
range. We have done a specific study of the Pr variation effect in a small size cell (called
the mini-cell, aspect ratio 1/2, h = 2 cm), for 3.106 < Ra < 1011 corresponding to the
soft and hard turbulence regimes where experimentally controlled Pr can be achieved
independently of Ra (the lowest explored Ra in this work is below 104 and the convection
threshold was found to be the same as in the large cells, around 4.104). This Ra range
fully covers the turbulent regimes preceding the transition towards the ultimate regime and
allows a comparison with other experiments using various fluids, and also several models.

Iso-Ramax curves have been calculated at various pressures and temperatures for the
mini-cell and for the maximum temperature difference ∆Tmax compatible with a Boussi-
nesq criterion[7], here defined as: ˺∆T < 20%. This criterion is also respected in the
experimental data. In density-temperature coordinates iso-Ramax curves are shown on
figures 1-a and reffig:RaMaxi-b as the thick full lines. The divergence of 1

̆̃
, easily acces-

sible in 4He (2.2 bars, 5.2 K) is clearly illustrated by the extremely high Ra which can
be achieved in reasonable experimental conditions (∆T > 1 mK). The small lines on
figure 1-a correspond to isochores.

Similarly iso-Pr are shown on figure 2. In the large cells[3, 5], the Pr variation is only
obtained for Ra above 1010. Clear understanding of the Pr variation is difficult in these
cells due to the occurrence of the ultimate regime. With cell dimensions divided by ten,
the Pr variation is already observable around Ra = 107. The points represent the various
experimental conditions selected for our mini-cell experiment, which will be described later.

It is worth noticing that the divergence in Ramax is due to: 1

̆̃
= Cp̊2

̀̄
, ̀ being the

fluid viscosity and Cp the specific heat at constant pressure. The Prandtl number varies

as: Pr = Cp̀
̊̃

. The Cp divergence appears far away from the critical point and gives a

long range effect to the rapid variation of Ra and Pr. For each experimental point on
figure 2, ∆T has been widely varied up to three decades. This is the largest excursion
ever achieved in Rayleigh-Bénard experiments under the Boussinesq condition. This gives
access to power law exponent Nu vs. Ra at constant Pr and independently of the fluid
properties knowledge. However these properties have to be precisely determined for the
Nu vs. Pr dependence studies.

This experiment has been designed to study the Prandtl dependence in the cross-over
range 0.7 < Pr < 21 and for a large excursion of Ra numbers. The thermal control and
measurement accuracy are unprecedented in cryogenics convection experiments. It reveals
two unexpected effects. This paper gives a detailed description of the apparatus (section
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Figure 1: a-Isochores and iso-Ramax in the density-temperature plane. b- Semi log enlarge-
ment of subplot a, corresponding to the experiments described in the text. The maximum
Ra achieved within Boussinesq conditions in the 2 cm high cell is 1011. The dark area
corresponds to the 2-phases region.

2) and improvements of 4He properties fits (section 3). In section 4, we recall the three
main results : the bimodality of the flow, the side-wall effect and the Prandtl number
dependence. Section 5 proposes some perspectives for convection studies.

2 Instrumentation

2.1 The Rayleigh-Bénard cell design

The experimental set-up, presented on figure 3, is placed under high cryogenic vacuum.
The 1/2 aspect ratio mini-cell (h = 2 cm), is also shown on figure 4. The stainless-steel
cylindrical wall is 0.25 mm thick. It can hold pressures up to several tens of bars. The
upper plate is part of a main Cu flange which ensures the thermal link to the liquid He
bath, through a calibrated brass plate and a high conductivity Cu post[8, 9]. The lower
plate is also made of copper. In such a cryogenic helium/opper set-up and for the Ra
numbers of this study, the plate properties (finite conductivity and heat capacity) don’t
alter the dynamical formation of the coherent structures (plumes,...) [10, 11].

Special care has been taken during the cell assembly. The rugosity of the plate surfaces
in contact with the fluid is estimated less than 2 ̅m. The silver soldering of the wall and
the copper rings ensures the connection to the plates. For all the cells developed in our
group, the side wall design is chosen in order to have a perfect cylinder on all the active
length of the cell[8, 9]. The plates parallelism is guaranteed by special machining procedure
performed after the silver soldering: the distance between plates is 19.99 �0.02 mm.
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Figure 2: Iso-Pr curves and experimental points explored in this work. The dark area
corresponds to the 2-phases region.

The cell is filled through a capillary closed with a cold needle valve located in the main
helium bath. This capillary is connected in series with a capacitance cell, that will be
further described, and the Rayleigh-Bénard cell.

2.2 Experimental procedure

Each cell plate has two Ge resistors from the same batch with close resistance values and
temperature dependence. The upper flange is temperature regulated with a PID analog
regulator with a fifth Ge resistor. The temperature difference ∆T between the plates
in the Rayleigh-Bénard cell is determined from the measurement of the ratio of two Ge
resistors using a specially designed resistance ratio bridge operating at 30 Hz with 1 ̅A
current amplitude. The resistance ratio variation with and without heating gives ∆T
through the calibration of the resistors and the additional measurement of the upper plate
temperature. This procedure is valid even for ∆T larger than 1 K, as checked with the
direct temperature measurement of each plate. The ratio without heating (zero ∆T ) is
monitored during twelve hours before and after each measurement cycle. In less than
one hour the equilibrium value is obtained, except for the data close to the critical point:
in such conditions the thermal diffusion time diverges and the used zero ∆T is the one
obtained at a lower density.

A ratio variation of 10−5 at 5 K corresponds to 25 ̅K for ∆T . The stability of the
set-up and electronic apparatus is better than 30 ̅K over 12 h. The radiation heat losses
are estimated to be around 10 nW which gives typically 50 ̅K for ∆T . This is of the
order of the adiabatic gradient temperature difference[7, 8] in the 2 cm high cell, this
effect limiting the smallest achievable ∆T . More than 3 decades of variation of ∆T have
been achieved for given mean temperature and density, from below the convection onset

4



Figure 3: Scheme of the experimental set-up.

up to the turbulent regimes. In large cells, an original thermocouple technique is more
appropriate than a resistance bridge: the ∆T zeroing procedure is not compatible with the
large thermal relaxation times.

A four wires voltage standard (Electronics Development Corporation) gives a constant
heating power to the lower plate. In order to limit local overheating the heater is distributed
on the surface. All the copper pieces are made out of a commercial non-annealed Cu, which
was characterized in another experiment: its thermal conductivity is around 400 W/m.K.
We have measured the wall thermal conductance between 4.5 and 6 K. For cross-validation,
two measurements have been done with an empty cell and with helium at 80 g/cm3. After
subtraction of the diffusive helium contribution both results agree within 2.5%: in this
difference 2% are explained by the cell design[9]. This side-wall contribution is described
by: −40.1 + 44.75.T in ̅W/K including the conductance of the copper heating wires
(33 ̅W/K at 4.5 K with 20% uncertainty) going to the lower plate. The lower plate heat
capacity, as measured by a relaxation method, is 73 mJ/K including addenda (Ge resistor
holders and copper ring). The brass plate heat leak has a measured resistance of 53 K/W
at 4.3 K.

2.3 Densitometry

In order to determine the Ra and Nu with an absolute resolution of a few percent, a density
precision of 1%, at least, is needed. The dead volume coming from the filling capillary
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Figure 4: 4 a- The Rayleigh-Bénard cell. 4b- Photograph of the experimental set up.

going to room temperature is too large to determine the He density during the cell filling
procedure with enough precision. We thus have performed an in-situ measurement using a
capacitive probe located in a specific cell, in order to have a much better resolution. The
density is extracted from the Clausius-Mosotti relation: ǫ−1

ǫ+2
= 4̉˿

3M
̊, where ǫ, ̊, M , ˿ are

respectively the permittivity, the density, the molar mass and the polarisability of helium
(˿ = 0.123296 cm3/mol)[12].

Two capacitances are placed in a ratio bridge. The two porous frames of the ”ac-
tive” capacitance (C ≃ 17.5 pF) are made out of printed circuits and 0.1 mm separated.
This capacitance is located in the capacitive cell and totally immersed in helium. Under
these conditions the mechanical dependence with pressure effects is minimized. On the
inner part of each frame a circular electrode (16 mm diameter) is engraved together with
a guard ring. Special attention in the design reduces differential contraction effect and
parasitic capacitances : no spurious effect were detected and no temperature effects were
observed. The other capacitance (Cr = 9.4 pF ) made out of mica, is located at 4.2 K in
the calorimeter vacuum. It is the reference one.

The bridge operates at 3 kHz. The ratio between both capacitances is a direct mea-
surement of ǫ. The density measurement range is 0 − 140 kg/m3, under pressures from
0 up to 7 bars and temperatures between 4.5 and 6.5 K. Over ten days the stability is
10−5 (�40 g/m3), that is better than 0.1% in density for Ra above 2.106. Two calibrations
of the capacitance ratio at the beginning and at the end of the experiment agree within
30 g/m3. The signal averaged over 30 s has a resolution of 10−7 (less than 1 g/m3), which
can be maintained over a few hours.

In principle k = C
ǫCr

should be a constant over the density range. We have achieved low
and high densities calibrations. During the low pressure calibration, the cell, connected to a
few litres reservoir at room temperature, is regulated at 5.432 K. For pressures lower than
1000 mbar, no condensation occurs in the filling line. In order to have stable operation
conditions we restrain the low-pressure calibration below 350 mbars: a precise pressure
measurement gives access to the density through ref. [13] . At high density we measured
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Figure 5: Calibration of the density measurement cell. Insert: Difference, in percent,
between the density estimations with and without pressure correction.

the density following a procedure described below for the absolute temperature calibration
(see Thermometry). For example, with 31 ̅W heating power applied on the bottom plate,
we extract a density of 112.73 kg/m3 from the measured boiling temperature (4.7088 K
with ∆T = 6.5mK).

The calibration results are summarized on figure 5 where C
ǫCr

is plotted as a function

of the pressure P . C
ǫCr

varies by 6.10−5 over the whole range and we have assumed a linear
variation versus P . Such behaviour are typical of a residual mechanical deformation. On
the figure insert the difference between density with and without the linear correction is
plotted versus ̊. This ˽̊ is less than 0.5% and goes through a minimum at 0.15% around
the critical density. In all the following we obtain the density from the linear pressure
correction and we estimate the ̊ uncertainty around 0.1%.

When both cells are filled and the needle valve is closed, no temperature dependence of
the capacitive signal is expected. However a 0.3% tiny reproducible (on a few months scale)
variation was observed as seen on figure 6. This was explained by the helium compression in
the upper part of the filling line close to the needle valve in thermal contact with the main
helium bath at 4.22 K. We have evidenced a linear correlation through the comparison of
the total measured density and the calculated density in the capillary. The slope, plotted
on the insert of figure 6 is the ratio between the total volume and the capillary dead
volume : the value 23 �4 is in fair agreement with a less precise value extracted from
a geometric determination. The �4 uncertainty on the volume ratio (due to the scatter
of points) corresponds to a measured density uncertainty less than 0.06% on the whole
densities and temperature range. It confirms by an independent way our formerly quoted
0.1% density uncertainty. Note that this capillary effect has strictly no influence on the
density measurement in the cells.
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Figure 6: Measurement of the helium compression effect in the filling capillary. Insert :
Measured ratio of the cells volume divided by the 4.22 K capillary volume versus density.

2.4 Thermometry

A one millikelvin uncertainty on the mean temperature gives an uncertainty up to 1% on
the Ra and Nu values, in the range of temperature and density of this experiment. In order
to compare the various data issued from several references[14, 15, 16, 17, 13, 18, 19, 20, 12],
we use the ITS-90[21] critical temperature: Tc = 5.1954 K and adjust the thermometer
in-situ calibration onto that value. This calibration procedure is illustrated on figure 7 at
a density of 51.5 kg/m3 where the condensation is expected at: T = Tc − 47.4 mK. We
apply a small 125 ̅W heating power and monitor both ∆T across the Rayleigh-Bénard
cell and the gas density ̊gas in the capacitive cell. The temperature of the upper plate is
slowly lowered. The sharp drop of ∆T and ̊gas is the signature of the condensation in the
cell. It is worth to note that the density measurement is more precise than the ∆T one to
identify condensation and enables a 1 mK resolution.

3 4He properties

3.1 Thermal expansion coefficient

The reference fits of Arp and McCarty[17, 13] accounts for 4He thermodynamics properties
over a wide temperature and pressure range (0.8 − 15000 K, 0 − 2000 MPa) but ignores
the critical divergence, which has been fitted by Kierstead[15, 16]. Unfortunately, the
temperature and density validity ranges of the two fits don’t overlap. Besides, extrapolation
of the thermal expansion coefficient from both fits suggests up to 25% discrepancy between
these fits, which is incompatible with the extrapolation uncertainty. Figure 8 illustrates
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Figure 7: Full squares: Cell density versus top plate temperature around the condensation
onset. Dotted circles: Plates temperature difference in arbitrary units.

Figure 8: Comparison between the thermal expansion coefficients : present measurements
(full circles) and fits (lines and pluses) at density ̊ = 74 kg/m3. Kierstead[16] and McCarty
and Arp[13] fits have been extrapolated in the circled area. The XHePak fit (pluses) is the
commercial fitting package cited in ref. [4]
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Figure 9: Capacitive measurement of the ̊ increase in the capacitive cell due to the
Rayleigh-Bénard cell heating versus the plates temperature difference in the convection
cell.

this discrepancy for a density of ̊ = 74 kg/m3.

In our experiment, the high sensitivity of the capacitive cell gives access to ˺, in a
temperature and pressure range overlapping with both fits. The Rayleigh-Bénard cell
heating increases the density in the capacitive cell. For low ∆T across the convection cell,
the density variation is given by: ˽̊ = ∆T

2
̊˺ v2

v1+v2

, where v1 and v2 are the capacitive
cell and Rayleigh-Bénard cell volumes respectively. The results are shown on figure 9. We
extract the slope of these curves for ∆T going to 0, for given temperature and density
conditions. We have also done a correction[9] to take into account the volume of the 4.2 K
filling capillary below the needle valve: this correction represents a few percent at low and
high densities and is smaller than 0.5% between 40 and 80 kg/m3. Each point corresponds
to a Temperature-Density condition which fully falls into the validity range of either one
of the two fits.

Determination of the geometrical coefficient v2

v1+v2

is illustrated on figure 10 (the capil-

lary volume introduces less than 1% correction on this formula and this correction is not
shown here but it is taken into account in the analysis of ref. [9]). Figure 10 shows the quan-
tity ˺est/

˺v2

v1+v2

= ˺est/
2˽̊
̊∆T

where ˺est is an estimated ˺ value from the literature[17, 13, 16].

The x-axis is chosen in order to avoid the degeneracy for the data taken at same density
but at various temperatures. Most of the data are compatible with the value 11.15 �0.25.

As expected the data using the values from ref. [13] are very reliable far from the
critical point, but they need a correction which rises up to about 20% when approaching
this regime. The data from ref. [17] are in good agreement with those of ref. [13] at low
density but need a correction of several percent at high density. In the critical region
ref. [16] appears to give the best agreement, as illustrated in Figure 8. The various ˺
values are summarized in Table 1.
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Figure 10: Geometrical coefficient (see text) versus ̊ + 5T for the determination of the
helium expansion coefficient.

̊ T ˺measur.
∆˺measur.

˺measur.

˺MCA ˺Kierstead Measur. vs.

Fit disagr.
(kg/m3) (K) (K−1) (%) (K−1) (K−1) (%)

16.76 5.114 0.387 5 0.395 -2
16.70 6.270 0.266 6 0.266 0.1
51.4 5.438 2.23 3 2.311 -3.5
51.4 5.573 1.72 4 1.716 0.3
51.3 5.844 1.11 4.5 1.128 -2
51.25 6.252 0.762 4.5 0.745 2.5
74.60 5.268 14.7 14.001 5
74.31 5.305 9.48 4.5 9.3682 1
74.21 5.346 7.18 2.5 6.7188 6.5
74.06 5.503 3.21 3 2.671 18
73.87 5.999 1.170 3.5 1.027 13
73.73 6.600 0.616 3.5 0.587 5
112.3 5.260 0.349 5.5 0.340 2.5
112.6 4.725 0.478 3.5 0.453 5.5
134.6 4.490 0.1104 5.5 0.1115 -1

Table 1 : ˺measur. : expansion coefficient measurements, ∆˺measur. total uncertainty on
˺measur., ˺MCA : expansion coefficient estimated with McCarty and Arp 1990 fit[13] ;

˺Kierstead : expansion coefficient estimated with Kierstead fit[16].

In our Rayleigh-Bénard data analysis, the ˺ coefficient and other thermodynamical
coefficients such as (Cp − Cv) are obtained from the first order partial derivatives of the
pressure versus temperature or density. Such a way of deriving properties ensures the self-
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consistency between thermodynamics parameters. As a consequence, taking into account
our measurements we have corrected the fits at their source, that is directly on the fit of
(∂P/∂̊)T,MCA of ref. [13] :

(∂P/∂̊)T = (∂P/∂̊)T,MCA[1 + (4.62 − 0.658T )[0.246 − 0.00117(̊ − 67)2]]

for densities above 60 kg/m3 and T < 7 K. Below 60 kg/m3 no correction was used.
With this correction, Kierstead fit (unchanged) and Arp and McCarty fit (modified and
extrapolated) reconnect.

We should mention here that Cv can’t be derived from the state equation. In the
zero-density region, Cv is known exactly (perfect gas) and in the critical region, it has
been fitted by Moldover[14]. In between, we resorted to exact thermodynamics relation to
bridge to either one of these two regions.

3.2 The transport properties : viscosity and thermal conductivity

A fit of 4He viscosity in the range 4− 20 K and 0 − 10 MPa has been proposed by Stew-
ard and Wallace[22]. In our range of parameters, the fit is an interpolation of isothermal
measurements at 4, 5, 6 and 10 K conducted by these authors. Along the critical isochore,
comparison with viscosity data of Kogan et al.[23] and Agosta et al.[20] shows +7% devia-
tion at 5.2 K, −7% at 7 K. However Steward and Wallace measurements at 4, 5 and 6 K
are in a few percent agreement with the literature, including the 2 references mentioned
above but their data at 10K differs significantly from the litterature. It appeared that this
10 K isothermal entails a strong bias on Steward and Wallace fit down to the lower tem-
peratures : this is consistent with a concern regarding a contamination of helium, due to a
defective purifier[24]. Consequently, we derived a new interpolation between the 4, 5 and
6 K isothermals above 70 kg/m3 and with additional data along the critical isochore[23], in
the zero-density limit (ab-initio calculation of ref. [25]), and on the vapour-liquid curve[12].
The thermal conductivy has been estimated from a specially designed new fit through the
data of Acton and Kellner[18, 19]. We re-computed the density data of these papers, which
had been estimated with the 1973 fit of McCarty[17], even in the critical region. Our new
fit agrees within �2% with the published[18, 19] and unpublished[23] data of Acton and
Kellner. Whenever it was possible, our convection measurements have been conducted
at the same mean temperatures as the one employed by Acton and Kellner, in order to
minimize interpolation errors.

4 Experimental results and analysis

The remaining of this paper presents the heat transfer measurements and their consequence.
First we consider the Nu(Ra) relation. Our high accuracy on Nu gives access to two new
effects : the bimodality of Nu and the side-wall conductivity influence on heat transfer.
We then turn to the Nu(Pr) dependence.

4.1 Bimodality

On figure 11 we show Nu as a function of Ra. In order to display all data with an increased
vertical resolution, Nu is arbitrarily re-normalized by Ra0.31. For comparison, we display
the data at Pr = 0.7 and 1.1 from ref. [26]. The change in slope at Ra ≃ 108

− 2.108

corresponds exactly to the soft-hard turbulent transition in 1/2 aspect ratio cell[27]. In the
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soft regime, the exponent of Nu vs. Ra is close to 0.25 (interpolation over only 1.5 decade),
while in the hard turbulence regime the exponent is close to 0.31, in between the 2/7 and
1/3 predictions of traditional theories[28]. It is interesting to note that the exponent
averaged over these two regimes is close to the 2/7. Another possible interpretation of
the exponent change would be to reject the soft-hard transition picture and rather see
a continuous variation of the exponent resulting from a linear combinaison of two power
laws, although the abruptness of the exponent change, in particular at Pr ≃ 0.95 doesn’t
fully fit in this picture.

For 2.107 < Ra < 2.1010, points can be gathered into two subsets which differ by roughly
5− 7% in Nu. Such a data bimodality cannot be taken into account by the uncertainties,
which are twice smaller than this Nu gap, nor by a Pr dependence. Switches from one set
of data to the other occur varying ∆T under quasi-constant mean temperature and density
conditions (see for example Pr ≃ 0.95) : this definitely rules out that the bimodality would
come from an improper helium property estimation in the T-̊ plane. Such a bimodality
can also be seen in the large cell data from ref. [26], as shown on figure 12. A numerical
simulation conducted for the same cell geometry[29] recently found that two types of large
scale flow can fit the cell. This mechanism of bimodality is consistent with the invariance
of the Nu gap (in log scale) observed in our data.

We cannot decide if the bimodality reveals spurious effect of the boundary conditions
or a macroscopic degree of freedom of the flow with a slow dynamics. In the first hypoth-
esis, each mode could be stabilized by the thermal inertia of boundary conditions and the
switching from one mode to the other should be hysteretic. The precise anchoring mecha-
nism didn’t emerge from a first analysis of the thermal boundary conditions. The second
hypothesis has drastic consequences since the very slow dynamics (at least hundreds of
turn-over times) ruins -for practical reasons- the present definition of Nu : indeed a clean
averaging procedure would request for a time duration incompatible with a laboratory
experiment.

It is interesting to notice that this bimodality extends up to the transition to the
ultimate regime for Ra > 2.1011 as shown on figure 12. The strength of the transition to
the ultimate regime, which differs from one experiment to another[3, 4], could be mode
dependent, as proposed in ref. [9]. The Oregon data[4] showing no clear transition seems
to belong to the upper set.

We examine now the consequences of this bimodality for Nusselt measurements in room
temperature convection cells. In our set-up, the convection characteristic time h2/̃ is only
a few tens of seconds, typically ten times smaller than in water at corresponding Ra. One
consequence is the fast convergence of the Nu relaxation and statistics. For example, more
than 330 data points are plotted on figure 11, each Nu has been averaged over typically
1 hour and after a relaxation time of a few hours. Obtaining so many data would have
taken about one year and an half of continuous operation in water. Finding bimodality
may have been possible in helium and not in other fluids because of this huge number of
data combined with the slow dynamics of the macroscopic flow degree of freedom. Besides,
the transient regime from one mode to the other is fast not only because of the short
convection characteristic time but also because of the large heat diffusivity of metallic
materials at cryogenic temperatures: in our plates the diffusion time is a few milliseconds
and a few seconds in the side-wall. At room temperature (and above) the convection
times and materials properties are far less favourable. A consequence of these differences
addresses the experimental procedure of heat transfer measurement or visualization : the
possibility to be in a slow transient regime should be considered. The resulting transient-
regime uncertainty may be a delicate experimental issue for flow characterization studies,
and a limiting factor for precise measurements, at least without new specific cell design.
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Figure 11: NuRa−0.31 vs. Ra in the mini-cell. Black bullets: Pr ≃ 0.73 small framed-dot:
Pr ≃ 0.83, grey bullets: Pr ≃ 0.87, large solid squares: Pr ≃ 0.95 empty square: Pr ≃ 1.4,
X: Pr ≃ 1.6 − 1.9, grey triangles: Pr ≃ 2.1 − 2.5, framed-pluses: Pr ≃ 2.6 − 2.7, framed-
slash: Pr ≃ 2.9−3.4, diamonds: Pr ≃ 3.6−4.3, small solid squares: Pr ≃ 5.8−6.0, empty
triangles: Pr ≃ 10.6 − 11.3, pointing-down triangles: Pr ≃ 14.3 − 15.7, For comparison,
large cell[26] data are plotted with the symbols : black pointing-up-triangles: Pr ≃ 0.7,
large framed-dot: Pr ≃ 1.1.
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Figure 12: NuRa−0.31 vs. Ra in a rough surface cell[26] shows bimodality up to the
transition to the ultimate regime.

4.2 Side-Wall conductivity

A second outcome of this experiment was the finding of a significant and unexpected
influence of the side-wall conductivity on the apparent Nusselt number : typical side wall
found in the literature can indeed change Nu by more than 20%. A specific study has
been conducted. We shall only summarize the results below since this work is published
elsewhere[5].

The side-wall conductivity can be characterized by a dimensionless number, called the
side-wall number W and defined as the ratio of the wall conductivity to the conductivity
of the fluid at rest. Typical values of W for reference experiments range from nearly 0 up
to 3.5. Points on figure 13 gather our heat transfer measurements (restricted to the lower
”modality”). It shows that typical side-wall conductivity’s can change the effective Nu by
more than 20%.

We derived a closed-analytical correction formula for Nu with one adjustable parameter
(continuous line of figure 13). This formula was validated versus W over more than 4
decades of Ra and later by numerical simulations. On the figure, the vertical arrows
represent the correction magnitude numerically estimated by Verzicco[30]. Our correction
model assumes than the effective exchange surface from the plates to the fluid is spatially
extended by a side-wall surface contribution. A Nu correction based on a corrected heat
flux (as proposed in [31]), rather than corrected exchange surface, gives a poorer fit on the
experimental data (less of 2 decades of Ra are well corrected).

The present analysis has numerous consequences. First it explains some surprising
results and discrepancies between published results, as detailed in ref. [5]. Second, the
correction on Nu being Ra dependent, it changes the Nu(Ra) apparent exponent, at least
for Ra < 1010. The examination of several published results indicated that the measured
exponent -often close to 2/7- are significantly underestimated. Values larger than 0.3 are
obtained after correction (some experiments claiming a 2/7 exponent are not subject to
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Figure 13: Nu.Ra−0.31 vs. the square root of the side-wall number W. The symbols are
experimental data obtained in the lower mode, for 109 < Ra < 5.109 in h = 2 cm and 20 cm
cells. The vertical bars represent the magnitude of the side-wall correction estimated from
numerical simulations by Verzicco[30]. The solid line is the present analytical model with
one adjustable parameter.

side-wall correction[9]). Thirdly, it should be noted that the side-wall effect mimics a Ra
dependent exponent, which could be falsely interpreted as an indication of non-power law
behaviour of convection. Finally, the wall-fluid interaction is likely to introduce a new
length scale in the convection problem if the wall thickness is non-uniform (flanges, large
o-ring,...). Such artefact could also cause apparent non-power law behaviour.

The data presented in the rest of this paper are side-wall corrected. Note that the
magnitude of the bimodality presented above is not affected by this correction.

4.3 Prandtl number dependence

Our experiment has been designed to study the influence of Prandtl number near the
diffusivity cross-over Pr ≃ 1. We find a very small -if any- Prandtl number dependence
over a 1.5 decade[35]. This dependence corresponds to an exponent smaller (in absolute
value) than 0.03 in a power law picture. The 2/7 theories[36, 37] predict an exponent
−1/7 ≃ −0.14, incompatible with our result.

A comparison with the prediction of Grossmann and Lohse[34] shows a good agreement
between their predictions, (using their 5 fitting parameters adjusted to fit the data of
ref. [32]) and both our data and those of ref. [33] (excepted for Ra = 1010), as shown on
figure 14. These data are for two different aspect ratio (Γ = 0.5 and 1), but once corrected
for the wall effect, the influence of the aspect ratio seems poor[31]. In particular, all the set
of data from the different groups suggest that the transition from the low Prandtl regime
to the high Prandtl one occurs in the neighbourhood of Pr ≃ 1 and not 0.1 as proposed
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Figure 14: Nu.Ra−1/4 vs. Pr with -from bottom to top- Ra = 108.25 (light gray), Ra = 109

(dark gray) and Ra = 1010 (black). The value Ra = 108.25 corresponds to the beginning
of the hard turbulence regime for aspect ratio Γ = 0.5. Solid circles : present data in the
lower mode, Solid squares : present data in the upper mode, Open circles : data from
ref. [32] (Γ = 0.5 and 1), Open diamonds : data from ref. [33] (Γ = 1). The lines are from
Grossmann and Lohse[34] model with adjustable parameters tuned by these authors on
the solid circles data restricted to aspect ratio Γ = 1.

by Kraichnan[28, 6].

5 Concluding remarks

The found Nu(Ra) and Nu(Pr) dependences are both incompatible with the 2/7 and 1/3
theories[28], at least under their present form. The Grossmann and Lohse theory[34] can
account for our data but the discriminating testing of the 5 fittings parameters have to be
made on a larger range of Ra and Pr numbers.

The bimodality effect indicates that the mean flow confinement has a significant influ-
ence (up to few percents) on the precise Nu(Ra) dependence and this influence should hold
for all aspect ratio of order 1. Since confinement effects (multi-modality, poor spatial homo-
geneity on boundary layers, ...) are not consider by present theories, their predicting power
is indeed limited in precision. This darkens the perspective that very precise Nu(Ra) mea-
surements can discriminate between competing theories. This conclusion is reinforced by
the boundary conditions influence on the global heat transfer, such as side-wall conductiv-
ity [5, 31, 30] and hole-burning effects in plates[10, 38, 11]. This underlines the importance
of alternative approaches to probe the heat transfer mechanism and (in)validate theories.
It also calls for a new generation of cell design with a specific attention dedicated to the
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mean flow and thermal boundary conditions. For example, the influence of the large scale
flow on the heat transfer suggests that large aspect ratio cell could be required to expect
true power law scalings.
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