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Abstract
After a presentation of the context and a brief reminder of deformati@mtigation, we indicate how the
introduction of natural topological vector space topologies on Hopf aégedissociated with Poisson Lie groups,
Lie bialgebras and their doubles explains their dualities and provides aebemnsive framework. Relations with
deformation quantization and applications to the deformation quantizatigmwohstric spaces are described.
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1 Introduction

1.1 Presentation of the context.

The expression “quantum groups” is a name coined by Drinfede ]) in the £rst half of the 80’s which
is superb, even if the notion is not necessarily quantum hadbjects are not really groups. But they are Hopf
algebras and their theory can be viewed as an avatar of dafiemguantization[[BEFLS] (sef [D02] for a recent
review which this presentation complements), applied ¢ogantization of Poisson-Lie groups.

The philosophy underlying the role dieformations in physichas been consistently put forward by Flato,
almost since the de£nition of the deformation of rings anélalgs by Gerstenhab64], and was eventually
expressed by him in2]. In short, the passage from ovel l&f physical theory to another, when a new
fundamental constant is imposed by experiments, can bastodd (and might even have been predicted) using
deformation theory. The only question is, in which categdoywe seek for deformations? Usually physics is
rather conservative and if we start e.g. with the categorgssbciative or Lie algebras, we tend to deform in the
same category.

But there are important instances of generalizations sffitinciple. The most elaborate is maybe noncommu-
tative geometry, where the strategy is to formulate the &fiodned” (commutative) geometry in terms of algebraic
structures in such a way that it becomes possible to “plugha’deformation (noncommutativity) in a quite natu-
ral, and mathematically rigorous, manner. We shall notalatie on that aspect here, refering e.glO] fora
presentation, td [CDV(2] for important recent examplesafgommutative manifolds, and tb [C$94, CHS92] for
the basics and a relation with deformation quantization.

We shall concentrate on another prominent example: quagtonps. Instead of looking at the associative
algebra of functions over a Poisson-Lie group or at the epied) algebra, one makes full use of the Hopf algebra
structure in both cases. In general both the product anddpeoduct have to be (compatibly) deformed, but
cohomological resultsg] and secti3.1) show thdten the Lie group is semi-simple, the deformation is
always equivalent to a “preferred” one, that is, a defororatvhere only the product or the coproduct (resp.) is
deformed. The group aspect is a special case of deformatiantigation and we shall show that the enveloping
algebra aspect can be seen as its dual, in the sense of tmablgrtor spaces duality.

1.2 Deformation theory of algebras.
A concise formulation of a Gerstenhaber deformation of gelada (associative, Lie, bialgebra, etc.) [is [Gpr64,

BFGPol)



Defnition 1 A deformation of an algebra A over a £eld is a K[[v]]-algebrNaA such thatA/vA ~ A. Two
deformation®A andA’ are said equivalent if they are isomorphic o¥€f{v]] andA is said trivial if it is isomorphic
to the original algebra A considered by base £eld extensical&fv]]-algebra.

Whenever we consider a topology AnA is supposed to be topologically free. For associative (rei) algebras,
De£niti0nﬂ tells us that there exists a new produ@tesp. brackef, -]) such that the new (deformed) algebra is
again associative (resp. Lie). Denoting the original cositpan laws by ordinary product (resg:, -}) this means
that, foru,v € A (we can extend this t8[[v]] by K[[v]]-linearity) we have:

[

Uxv = uv+4 z v'C(u,v) (1)
r=1
[uv] = {uvi+ ivrBr(u,v) 2

where theC; are Hochschild 2-cochains and tRe(skew-symmetric) Chevalley 2-cochains, such thatfeyw € A
we have(ux V) xw = ux (vVxw) and.#[[u,V],w] = 0, where” denotes summation over cyclic permutations.

For a (topologicalpialgebra(an associative algebfawhere we have in addition a coproddct A — A® A
and the obvious compatibility relations), denoting dy the tensor product dK[[v]]-modules, we can identify
A&, A with (A®A)[[v]], where® denotes the algebraic tensor product completed with respsome topology
(e.g. projective for Fechet nuclear topology on A), we similarly have a deformeproductA = A+ Sr1V Dy,

Dy € Z(A ARA), satisfyingA(uxv) = A(u) A(v). In this context appropriate cohomologies can be introduce
[GS90,[Bongp]. There are natural additional requirementsibpf algebras.

Equwalencemeans that there is an isomorphidin=1+5;",V'T;, T € Z(A Ag so thatT, (u*'v) = (T,ux
T,v) in the associative case, denoting-byresp. «') the deformed laws i (resp. A'); and similarly in the Lie,
bialgebra and Hopf cases. In particular we see((ferl) that a deformation is trivial at order 1 if it starts with a
2-cocycle which is a 2-coboundary. More generally, exaatiyabove, we can shofv [BFRLS] [G$90, Bdn92] in
the Hopf case) that if two deformations are equivalent uptaesordet, the condition to extend the equivalence
one step further is that a 2-cocycle (defned usingthk <) is the coboundary of the requird@gd.; and therefore
the obstructions to equivalence lie in the 2-cohomoladigyparticular, if that space is null, all deformations are
trivial.

Unit. An important property is that deformation of an associative algebra with ufithat is called a unital
algebra) is again unital, anetjuivalent to a deformation with the same unttis follows from a more general
result of Gerstenhaber (for deformations leaving unchdrgsubalgebra) and a proof can be found in [¢S88].

Remark 1 In the case of (topologicabialgebrasor Hopfalgebrasequivalenceof deformations has to be under-
stood as an isomorphism of (topologicHl)[v]]-algebras, the isomorphism starting with the identity far tlegree

0 inv. A deformation is again saittivial if it is equivalent to that obtained by base £eld extensior. Hrapf
algebras the deformed algebras may be taken (by equivaleniave the same unit and counit, but in general not
the same antipode.

1.3 Deformation quantization and physics.

Intuitively, classical mechanics is the limit of quantumahanics wherh = %r goes to zero. But how can this
be realized when in classical mechanics the observabldsimzions over phase space (a Poisson manifold) and
not operators? The deformation philosophy promoted byFhbws the way: one has to look for deformations
of algebras of classical observables, functions over Boigsanifolds, and realize there quantum mechanics in an
autonomousnanner.

What we call “deformation quantization” relates to (and gahiees) what in the conventional (operatorial)
formulation are the Heisenberg picture and Weyl's quatibngprocedure. In the Iattel], starting with a
classical observable(p,q), some function on phase spaké (with p,q € R’), one associates an operator (the
corresponding quantum observalf&u) in the Hilbert spac&?(RR¢) by the following general recipe:

U Qu(u) = [ G mexpli(PE +Qun)/Mw(E.n) d'Ed'n ©

whereu’is the inverse Fourier transform of P, and Q, are operators satisfying the canonical commutation
relations[Py,Qg] = ihd,p (a,B = 1,...,£), w is a weight function and the integral is taken in the weak oper
ator topology. What is called in physics normal (or antindjneeidering corresponds to choosing for weight



w(é,n) = exp(f%(fzi n?)). Standard ordering (the case of the usual pseudodiffeleppierators in mathe-
matics) corresponds w(&,n) = exp(—izén) and the original Weyl (symmetric) ordering vo= 1. An inverse
formula was found shortly afterwards by Eugene Wiggﬂﬁd maps an operator into what mathematicians
call its symbol by a kind of trace formula. For examjfde de£nes an isomorphism of Hilbert spaces between
L?(R?") and Hilbert-Schmidt operators drf(R¢) with inverse given by

u = (2rth) " Tr[Q1(u) exp((§.P+n.Q)/if)] (4)

and if Q1 (u) is of trace class one has(T¥1(u)) = (2rth)~* [uw’ = Try (u), the “Moyal trace”, wherew' is the
(symplectic) volumealx on R%. Looking for a direct expression for the symbol of a quantemmutator, Moyal
found [Moy49%] what is now called the Moyal bracket:

00 2r
_ -1 _ 4 2r+1
M (ug,up) = v rsinh(VP) (ug, Up) = P(ug, Up) +r; CEs] P (U, up) (5)

)!

where 2 = iR, P'(ug,up) = At A (4§ up)(d),.j,U2) is ther™ power ¢ > 1) of the Poisson bracket
bidifferential operatoP, ik, jx = 1,...,2¢, k= 1,...,r and (Ai) = (§'). To £x ideas we may assume here
u, U € €°(R?%) and the sum is taken as a formal series. A corresponding farfouthe symbol of a product
Q1(u)Q1(v) can be found in6], and may now be written more clearlg @doyal)star product

0 Vr
Uy #m Uz = eXp(VP) (Uy, Up) = Utz + r—IP’(ul, Up). (6)
r=1""

The formal series may be deduced (see ¢.g. [Bie00]) fromtagrial formula of the type:
(Up # Up) (X) = Ci / Us(X+ Y)Up(x + 2)e” WA 0D dydz )
R2! xR2¢

It was noticed, however after deformation quantization imt®@duced, that the composition of symbols of pseu-
dodifferential operators (ordered, like differential ogters, “£rstg, thenp”) is a star product.

One recognizes iff|(6) a special case[df (1), and similarlyiferbracket. So, via a Weyl quantization map, the
algebra of quantized observables can be viewed as a defomudithat of classical observables.

But the deformation philosophy tells us more. Deformatiomrmtization is not merely “a reformulation of
guantizing a mechanical systeOl], e.g. in the framdvad Weyl quantization:The process of quantization
itself is a deformationin order to show that explicitly it was necessary to trearnautonomousnanner signi£cant
physical examples, without recourse to the traditionakajeeial formulation of quantum mechanics. That was
achieved in [BEFLS] with the paradigm of the harmonic oatilt and more, including the angular momentum
and the hydrogen atom. In particular what plays here theafollee unitary time evolution operator of a quantized
system is the “star exponential” of its classical HamiltmiH (expressed as a usual exponential series but with
“star powers” oftH/ih, t being the time, and computed as a distribution both in phpaeesvariables and in
time); in a very natural manner, the spectrum of the quantperator corresponding tid is the support of the
Fourier-Stieltjes transform (it) of the star exponential (what Laurent Schwartz had caledspectrum of that
distribution). Further examples were (and are still beihgyeloped, in particular in the direction of £eld theory.

That aspect of deformation theory has since 25 years or sodba@ended considerably. It now includes general
symplectic and Poisson (Enite dimensional) manifolds, \uttther results for infnite dimensional manifolds,
for “manifolds with singularities” and for algebraic vatiees, and has many far reaching ramif£cations in both
mathematics and physics (see e.g. a brief overviey in [DS0®3 in quantization itself[[Wey$1], symmetries
(group theory) play a special role and an autonomous thefstaorepresentations of Lie groups was developed,
in the nilpotent and solvable cases of course (due to therii@poe of the orbit method there), but also in signi£cant
other examples. The presentation that follows can be sean astension of the latter, when one makes full use
of the Hopf algebra structures and of the “duality” betwekea group structure and the set of its irreducible
representations.

Finally one should mention that deformation theory and HalgEbras are seminal in a variety of problems
ranging from theoretical physics (see e.Kmsom)lu'ding renormalization and Feynman integrals and
diagrams, to algebraic geometry and number theory (seg&@@1,[KZ01]), including algebraic curvebla Zagier
(cf. [EM0J] and Connes’ lectures at Céije de France, January to March 2003).




2 Sometopological Hopf algebras

We shall now briery review applications of the deformatioeadity of algebras in the context of Hopf algebras

endowed with appropriate topologies and in the spirit obdefation quantization. That is, we shall consider Hopf
algebras of functions on Poisson-Lie groups (or their togicial duals) and their deformations, and show how this
framework is a powerful tool to understand the standard gkasrof quantum groups, and more. In order to do so
we £rst recall some notions on topological vector spaces jppigt gnhem to our context.

2.1 Waell-behaved Hopf algebras

DeEnition 2 A topological vector space (tvs) V is saigll-behavedfV is either nuclear and Fechet, or nuclear

and dual of Féchet [Grt5b[ Té61].

Proposition 1 If V is a well-behaved tvs and W a tvs, then
(i) V* =V (i) (VRV)* ~V*&V* (iii ) Homg (V,W) ~ V*&W

where \* denotes the strong topological dual of ¥ the projective topological tensor product and the base £eld
KisR orC.

Defnition 3 (A, u,n,A,€,S) is a WB (well-behaved) Hopf algebra [BEGR94] if
e Ais awell-behaved topological vector space.

e The multiplicationu : A2A — A , the coproduch : A — AA , the unit , the counite , and the antipode
S are continuous.

e 1, n,A € and S satisfy the usual axioms of a Hopf algebra.

Corollary 1 If (A,u,n,A,€,S) is a WB Hopf algebra, the(A*, A, te, tu, tn, ') is also a WB Hopf algebra.

2.2 Examples of well-behaved Hopf algebras [BFGP94]

Let G be a semi-simple Lie group andts complexi£ed Lie algebra. For simplicity we shall assureeels linear
(i.e. with a faithful £nite dimensional representation) the same results hold, with some modi£cation in the
proofs, for any semi-simple Lie group.

221 Examplel
%" (G), the algebra of the smooth functions @nis a WB Hopf algebra (Frchet and nuclear).

2.2.2 Example?2

2(G) =%>(G)*, the algebra of the compactly supported distribution&ois a WB Hopf algebra (dual of Echet
and nuclear). The product is the transposed map of the coprofls* (G) that is, the convolution of distributions.

2.2.3 Example3

' (G), the algebra of coefcient functions of £nite dimensionatesentations o6 (or polynomial functions on
G) is a WB Hopf algebra, the Hopf structure being that inducethfz™ (G).
A short description of that algebra is as follows: We take ta&ef irreducible £nite dimensional represen-

tations ofG such that there i®ne and only onelement for each equivalence class, andt i G, its contra-
Burnside

gredient# is also inG. We defne Cj= vect{coefEcient functions oft} ~ ~  End(Vy) for me G. Then
Ig.
#(G) 2 écr = @D End(Vr). So we take o7’ (G) the “direct sum” topology ofH End(Vy). Then.#'(G)
neG neG neG

is dual of Fechet and nuclear, that is, WB.



224 Example4

Let «7(G), the algebra of “generalized distributions”, be defneddbyG) = 7 (G)* © Mg End(Vr). The
(product) topology is Fechet and nuclear, and therefor§ G) is WB.

2.3 Inclusions [BP9g, BFGP9]]

We denote byUg the universal enveloping algebra gfand by CG the group algebra of. All the following
inclusions are inclusions of Hopf algebras, 5, U, m mean adensenclusion.

Ug € Z(G) > CG H(G)
u m (*)
Ug ¢ 2(G) > CG ¢~ (G)

(x) is true if and only ifG is linear, but comparable results can be obtainedfaon linear.

3 Topological quantum groups

We shall now deform the preceding topological Hopf algelaiad indicate how this explains various models of
guantum groups. For clarity of the exposition, throughtig Section and the remainder of the paper, we shall
limit to a minimum the details concerning the Hopf algebnauciures other than product and coproduct. But
whenever we write Hopf algebras and not only bialgebrasreteyant structures are included in the discussion
and dealing with them is quite straightforward.

3.1 Quantization
Theorem 1 ([Pri89]) Letg be a semi-simple Lie algebra aritlg, 1o, Ag) denote the usual Hopf structure oly.

1. If (Uig, 1) is a deformation (as an algebra) qUg([t]], to) then Uig g Ug[[t]] (i.e. Ug is rigid).
2. If (Ug][[t]], to,2) is a deformation (as a Hopf algebra) @tUg|[t]], Lo, o) then

3R € (Ug® Ug)[[t] such that o = Id and A(a) = R.Ao(a).RL, Vac Ug.

An isomorphismg (it is not unique!) appearing in item 1 above is calleDrinfeld isomorphism

Corollary 2 ([BFGP9]) Let G be a linear semi-simple Lie group apde its complexi£ed Lie algebra.
1. If Urg is a deformation oflg (a “quantum group”) then(U:g, tt, &) ~ (Ug][[t]], to, RAOP(l).

Hopf
2. 4(G) = (o (G)[[t]], o, R - Ao - B 1) is a Hopf deformation of7 (G) and Uy g gp 24(G).

Hopf
3. %(G) == (2(G)[[t]], to, R - Ao - B~ 1) is @ Hopf deformation of7(G) andUig © %(G).

4. 67(G) := %(G)* and #4(G) := «4(G)* are quantized algebras of functions. They are Hopf defaonat
of €°(G) and 72 (G).

Similar results hold in the non linear ca96] and foeotVB Hopf algebras (e.g. constructed with inEnite
dimensional representation§) [Bi¢l96].

Proof. (1) Direct consequence of Theordin 1. ®)e (Ug® Ug)[[t]] C («/(G)&«/(G))[[t]]. We obtain
coassociativity fromlg € <7 (G). (3) By restriction of (2). (4) By simple dualization from (2hd (3). [ |

Remark 2 “Hidden group structure” in a quantum grougHere the deformations apeeferred that is, the product

on Z(G) and ong(G) (resp. the coproduct o#;”(G) and ons%(G)) is not deformed and the basic structure
is still the product on the grou@. So this approach gives an interpretation of the Tannalarkghilosophy in

the case of quantum groups: it has often been noticed thtteigeneric case, £nite dimensional representations
of a quantum group are (essentially) representations ofassical limit. So the algebras involved should be the
same, which is justifed by the above mentioned rigidity tesuDrinfeld. This shows that the initial classical



group is still there, acting as a kind of “hidden variablasthis quantum group theory, which is exactly what we
see in this quantum group theory. This fact was implicit innBald’s work. The Tannaka-Krein interpretation

of the twisting of quasi-Hopf algebras can be found in Magidg e.g. 2]). It was made explicit, within the
framework exposed here, if [BEGP94].

3.2 Uni£cation of models and generalizations
3.21 Drinfeld models

We call “Drinfeld model of quantum group” a deformationlog for g simple, as given in7]. We have seen
in the preceding section that from any Drinfeld motey of a quantum group (which can be generalized to any
deformation of the Hopf algebridg), we obtain a deformation a?(G) and .« (G) that containdJ;g as a sub-
Hopf algebra. S#; (G) and.«4 (G) are quantum group models that describe Drinfeld models. By¥ity, 6 (G)

and s%(G) are “quantum group deformations” & (G) and 7 (G). The deformed product os?’(G) is the
restriction of that org™(G). Furthermore, as we shall see, these deformations coimgtdehe usual “quantum
algebras of functions”. Let us look more in detail#t(G):

3.2.2 Faddeev-Reshetikhin-Takhtajan (FRT) models

In [FRT88] quantized algebras of functions are def£ned insevhgenerators and relations, the key relation being
given by the star-triangle (Yang-Baxter) equatidR,T ®Id)(Id®T) = (Id® T)(T ®Id)R, for a given R-matrix
Re End(V ®V) and forT € End(V), Vbeing a £nite dimensional vector space.

As our deformations are given by a twRt it is not surprising, from a structural point of vie9|21at,
dually, we obtain in each case a Yang-Baxter relation and “saRa-type” quantized algebra of functions. Our
Fréechet-topological context permits to write precisely saatonstruction for the inEnite-dimensional Hopf alge-
bras involved.

3.2.2.1. Linear caself G is semi-simple and linear, there exigtsa £nite dimensional representation ®f
such thatZ(G) ~ C[rj; 1 < i, j < N] where thers; are the coefEcient functions @f Denote by(7%(G), *) the
deformation of72°(G) obtained in this way and by the matrix[75j]. De£neT; ;=T ®@Id andT, :=1d® T. Then
we have

Proposition 2 ((BEGP94, BP94])

1. {m;;1<i, ] < N}is atopological generator system of thgft]]-algebra.z (G).

2. There exists an invertibl® € £ (V@ Vp)[[t]] such thatZ - Ty« T, = To+ Ty - Z (S0.54(G) is a “quantum
algebra of functions” of type FRT).

3. We recover every quantum group given[in [FRT88] by thisstroistion.

Sketch of proof
1. Perform a precise study of the deformed tensor produ&pesentations.

2. Since the deformations4(G) are given by a twisR, «4(G) is quasi-cocommutative, i.e. there exists
R e (o7 (G)®47(G))][[t] such thato o Ar(a) = RA(a)R™* with o(a® b) = b® a. Standard computations
give the result.

3. We want to follow the way used ifi [Drig7] to link Drinfeld f6RT models. But the main point is that our
deformations are obtained through a Drinfeld isomorphidra.therefore have to show:
- There exists a specifc Drinfeld isomorphism deforming thadard representation gfinto the represen-

tation of Utg used in [Dri8f].

- Two Drinfeld isomorphisms give equivalent deformations. [ |

For instance, the FRT quantization 8f(n) can be seen as a Hopf deformation.#f(SU(n)) (with non
deformed coproduct). Moreover, this Hopf deformation pgeto¢> (G).



Remark 3

1. This proposition justifes the terminology “deformationfiem employed but never justifed in these cases.
See e.g.|[GGSP1] where it is shown that relations of typR T, = T,T.% need not defne a deformation,
even ifZ is Yang-Baxter.

2. Starting from Drinfeld models, our construction produc& Fmodels also for e.gG = Spinn) and for
exceptional Lie groups. In addition, at least some multipgeter deformation§ [Re$90] can be easily treated

in this way [BEGP].

3.2.2.2. Non-linear case.

Proposition 3 ([BP9§]) If G is semi-simple with £nite center, there exists a densalgabra of(4°(G),*) gen-
erated by the coeffcient functions of a £nite number of (plysisiBnite dimensional) representations.

3.2.3 Jimbo models

These are model§ [Jin}85] with generat&s, Ki andK;*. For G = SU(2) [BFP92] andG = SL(2,C) [MZ9§]
we realizeUgs!(2) and Utsl(2,C) as dense sub-Hopf algebras.@f(G), vt € C\ 2nQ (with g = €'). Forsl(2)
this gives the original model of Jimbp [Jin}85]. For the Ldealgebras((2,C) this unifes[[MZ9p] all the models
proposed so far in the literature for a quantum Lorentz gradip obtain hereonvergentieformations (not only
formal).

Forsl(2,C) it was £rst proposed iff [PWPO0] to consider the quantum do{ibi8fiPof Ugsu(2) asg-deformed
Lorentz group. It was known fron) [RStg§90] that in such casesdouble, as an algebra, is the tensor product
of two copies ofUisu(2). See also[[OSWZ91, SWZP1], an93] for a dual version andhemsemi-direct
product form.

3.2.4 Deformation quantization

From the main construction, using deformationd)gf we deduce the following general theorem:

Theorem 2 ([BP96]) Let G be a semi-simple connected Lie group with a Poissorstriecture. There exists a
deformation(4;"(G), ) of € (G) such that« is a (differential) star product.

Remark 4
e When LigG) is the double of some Lie algebra, the same result holds.
e The fact that is differential comes from the twigtAoP 2, R € (Ug x Ug)[[t]].

e Since from any Drinfeld quantum group we obtain a star prgdared since any FRT quantum group can
be seen as a restriction of such a star product, we have shtwaethe data of a “semi-simple” quantum
group is equivalent to the data of a star produc#t(G) satisfyingA(f xg) = A(f) xA(g). The functorial
existence results of Etingof and Kazhdfin [EK96] on the gaation of Lie bialgebras (see alsp [Enr02])
show that the latter is true also for “non semi-simple” quamgroups.

e Techniques similar to those indicated here can be applieth&rg-algebras (more general quantum groups
such as those i7] and more recent examples, Yang@é&ny, In particular those used in the case of
the Jimbo models should be applicablegtalgebras de£ned by generators and relations. That dineatio
research has not yet been developed.

4 Topological quantum double
From now on we use the Sweedler notation for the coprodliets§8]: in a coalgebréH,A), A(x) = ¥ x X(1) ®
X(Z) and, by coassociativit)@d ®A)A(X) = (A(X) |d)A(X) = Z(X) X(l) ® X(z) (024 X(3).

In [Pri87] Drinfeld de£nes the quantum doubleldfg (see also[[Stsp4]). This can be adapted to the context of
topological Hopf algebra§ [BonP4].



4.1 Defnitions

Let A be 2(G), o (G), Z(G) or #(G). If A= (A u,A,S) thenA* = (A*'A, ', 'S). DefneA® = Ar €0-0P —
(A% A TP tPP) whereu®P(x®y) := u(y®x) andS°P is the antipode compatible witla®P andA.

If we consider the vector spagé ® A, Drinfeld [Dri87] de£nes the quantum double as follows :

i) D(A) ~ A%® A as coalgebras,

i) (f @ 1da).(1dgo®b) = f @b,

iii) (Idpo ® €s).(€ @1da) = AL phy S (€ @1da) (Idyo @ €)), where{es} is a basis oA and {€'} the dual
basis.

The Drinfeld double was expressdd [MR90] in a Sweedler famufially paired Hopf algebras as an example
of a theory of ‘double smash products’. Adapting that foratigih to our topological context we can now defne
the double as:

Degnition 4 The double of A, DA), is the topological Hopf algebréA*®A, up, ‘P2 A, 'SP S) with

((feajo(@eb) = Y f<g, SP(agz)?am) >®ap)b
@

Y <9u.am > < 'SP(gg).as > fop @apb
&

where< , > denotes the pairing AA, “?” stands for a variable in A an@ is the completed inductive tensor
product.

As topological vector spaces we had¢A) = A“®@A. ThusD(A)* = AQA* andD(A)** = D(A). SoD(A) is
“almost self dual” (it is self dual up to a completion) andés:exive.

4.2 Extension theory

o If Ais cocommutative then the prodyat of D(A) is thesmash producﬁ onA%®A
u((foa)@(geb)= % flag) —g)@apb
a

where— denotes the coadjoint action Afon A%, < a — f,b>= > @ < f,S(aq))bay) >. This product is
the “zero class” of an extension theory, defned by Swe] cla35|£ed by a space of 2-cohomology
HZ,(A,A%). The products are of the form, fara 2-cocycle,

;ﬂ((f@a)@(g@b))z(;)f(()49)( 2) @ bz))) ®ag) b
a)(b

e The coproduct oD(A) is a smash coproduct for the trivial co-action. We can dedtie theory and, putting
the two things together, we obtain an extension theory falgkbras which is classifed by a cohomology
spaceHz, (A%, A).

Question: Are there other possible de£nitions of the double as an sidefA° by A?
Answer: NO, for A= 7(G) [Bon94], becauseiZ,(Z(G),¢*(G))= {0}.

5 Crossed products and defor mation quantization

In this section we shall see that the Hopf algebra techniguesented in the preceding sections can be useful not
only to understand quantum groups, but also to develop veg/farmulas in deformation quantization itself.

In order to shed light on the general de£nition which follows, return to the simplest case of deformation
quantization: the Moyal product dR?. We look atR? asT*R = R x R* and therefore can writg*(R?) ~
€™ (R)®%™(R*). We consider £rst two functions of a special kind in this algelitx) = u(xy,x2) = f(x1)P(x2)
andv(x) = v(x1,X2) = g(x1)Q(x2) wheref,g € 65°(R) andP,Q are polynomials irPol(R*) ~ SR. We can then
write is the usual coproduct on the symmetric algeRaasA(P) (X2, y2) = P(x2 +y2)(not§t'°nz Py (%2)P2) (¥2))-

P)



We now look at Formula{k?) for the Moyal star product®fand perform on it some formal calculations (we
do not discuss the convergence of the integrals involvep)tola constant (depending dihwe get:

(UxV)(x) = / U(X+y)V(x+2)e " 0D dydz
R2xR2
- /]RZ oo T TYDPOR +Y2)0(a +21)Q(xe + 22)€ rO12Y2m) dy dy,dz dz,

= /]RZ f(X1+Y1)Q(X2+22)e” 'iﬂ‘ylzzdyleZ' /RZ g(x1+21)P(x2 + yg)eiﬁyzzldyzdzl

— z ((35(1) f)(xl)Q(Z)(xz).(ﬁFT(l)g)(xl)P(z) (X2) (up to a constant)
PIQ)

with (%E(l) =Qu) (:Fiﬁo'?xl) (the same foP), sinceFF (aF:(h)(a)) (x) = Fihdkh(x) for h € €5 (R) with F=(h)(ar)
defned agy h(x)ejF'ﬁX“dx This suggests the following small generalization of thasimproduct:

Defnition 5 Let B be a cocommutative bialgebra and C a B-bimodule alggbea C is both a left B-module
algebra and a right B-module algebra such tifat— f) — b=a— (f — b)]. We de£ne the L-R smash product
on C® B by

(foa)«(gob) = (f < by))(aq) — 9) @ap)by).
(a)

Proposition 4 The L-R smash product is associative.

5.1 Relation with usual deformation quantization
Let G be a Lie groupT*G its cotangent bundlg, = Lie(G). We have

EP(T*G) =€ (Gx g*) 2 €°(G)&E*(g*) D €~ (G) ® Pol(g*) ~ ¢*(G) ® Sg.
We defne a deformation & “(G) ® Sg by a L-R smash product:

e We deformSg by the “parametrized version” dfg: Ug[[t]] = Xy y;rgt[x s This is a Hopf algebra

with A, € andSas forUg.

e Let{X ;i=1,...,n} be abasis of and)z (resp.)?i) be the left (resp. right) invariant vector £elds Gn
associated witkx;. ForA € [0, 1] we consider the following actions &= Ug][[t]] onC = ¢ (G):

1 (% = F)(0) =t —1)(% -F)(%)
2. (f %) (X) =tA (% -F)(x).

Lemma 1l These actions defne 6ff°(G) a B-bimodule algebra structure.

De£nition 6 We denote by, the L-R smash product o#*(G) ® Pol(g*) given by this B-bimodule algebra
structure ong™* (G).

Proposition 5 For G = R", ;5 is the Moyal (Wey! ordered) star produes is the standard ordered star product
and in generak, is calledA-ordered star product oft?" [P=99].

Remark 5 For a general Lie groufs, x, gives in the generic case new deformation quantization ditason

T*G. It would be interesting to study the properties of thegdor a noncommutativ& and their relations with
the star products that are known. In particutar, is formally different from the star product &6 (T*G) given

by S. Gutt in [Gut8B] but preliminary calculations seem tdigate that, in a neighborhood of the unit®f they

are equivalent by a symplectomorphism.



5.2 Application to the quantization of symmetric spaces

DeEnition 7 ([) A symplectic symmetric spade a triple (M, w,s), where(M, w) is a smooth connected
symplectic manifold and:dM x M — M is a smooth map such that:

(i) for all x in M, the partial map : M — M : y+— s(y) := s(x,y) is an involutive symplectic diffeomorphism
of (M, w) called thesymmetryat x.

(i) Forall xin M, x is an isolated £xed point oks
(iii) Forallxandyin M, one has& s = Sy y)-

Two symplectic symmetric spadds, w,s) and (M’, w', ') are isomorphicif there exists a symplectic diffeo-
morphismg : (M, w) — (M, ') such thatps, = s’¢(x>¢.

Defnition 8 Let (g,0) be aninvolutive algebrathat is, g is a £nite dimensional real Lie algebra aralis an
involutive automorphism af. LetQ be a skewsymmetric bilinear form @n Then the triplg(g, 0, Q) is called a
symplectic tripleif the following properties are satis£ed:

1. Letg = t®p wheret (resp.p) is the+1 (resp. —1) eigenspace of. Then[p,p] = ¢ and the representation
of £ onp, given by the adjoint action, is faithful.

2. Qis a Chevalley 2-cocycle for the trivial representatiorgadn R such thatvX € ¢, i(X)Q = 0. Moreover,
the restriction ofQ to p x p is nondegenerate.

The dimension gf de£nes thelimensionof the triple. Two such tripleég;, gi, Q;) (i = 1,2) are isomorphicif
there exists a Lie algebra isomorphigpt g1 — g, such thatio g; = g2 0 y and *Q, = Q1.

Proposition 6 ([) There is a bijective correspondence between the isomarptissses of simply connected
symplectic symmetric spacéd, w, s) and the isomorphism classes of symmetric trigles, Q).

Defnition 9 A symplectic symmetric spagd, w,s) is called anelementary solvablsymplectic symmetric space
if its associated tripldg, 0, Q) is of the following type:

1. The Lie algebra is a split extension of Abelian Lie algebrasndb :

b—g-—a.

2. The automorphisra preserves the splitting=b @ a.

3. There exist§ € £* such thatQ(X,Y) = 6& =< &,[X,Y]4 > (Chevalley 2-coboundary).
For such an elementary solvable symplectic symmetric sffame exists a global Darboux chart such that
(M, ) =~ (p = [@a,Q) [Bie0d]. So we have

EP°(M) =€ (p) ~ C°(NERE(a) =~ € (NRE™(I) 2. € (1) @ Pol(I) [ abze“an%wa) ® Ul

One can now de£ne, ; (Moyal) on¢* (M) ~ ¢*(I& a) or, using our preceding construction, fF (I) @ UL.
In order to have amnvariant star product orM under the action o6 (such thatg = Lie(G)) P. Bieliavsky
[Bie0Q] de£nes an integral transformatiBn ¢ () — (1) and then an invariant star produes by, for T :=
S®ld,
(foa)+s(gob) =T YT (f®a)x, T(gob)).

Letus defne fesg:=S1(SfSg, a>f:=Sla—~Sf) and f2a:=SSf—a).

Proposition 7 ([BBOJ]) s is the L-R smash product ¢&>([), es) by Ul with theUI-bimodule structure given by
s s
= and<+.
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Remark 6 Since we were dealing with quantum groups in the £rst sectisasvant to stress that the homoge-
neous (symmetric) spaces involved here are strictly diffefrom those appearing in the quantum group approach
of quantized homogeneous spari93]. Indeed, in ther|dihe spaces come from Poisson-Lie groups, so that
the Poisson bracket has to be singular; therefore this btdakd a fortiori a star product deforming this bracket)
cannot be invariant (otherwise it would be zero everywheteye the Poisson brackets are invariant and regular.

Acknowledgments. This survey owes a lot to the insight shown by MegHato in pushing forward the deforma-
tion quantization program, including in its aspects relatequantum groups where the inputs of Georges Pinczon
and Murray Gerstenhaber were, as can be seen here, verytimpomhanks are also due to the referee for a
number of valuable comments.
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