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Abstract

An efficient method to describe the nonlinear evolution of Stimulated Brillouin Scattering in long

scale-length plasmas is presented. The method is based on a decomposition of the hydrodynamics

variables in long- and short-wavelength components. It makes it possible to describe the self-

consistent coupling between the plasma hydrodynamics, Stimulated Brillouin Scattering, and the

generation of harmonics of the excited ion acoustic wave (IAW). This description is benchmarked

numerically and proves to be reliable even in the case of an undamped ion acoustic wave. The

momentum transferred from the electromagnetic waves to the plasma ions is found to induce a

plasma flow which modifies the resonant three wave coupling between the IAW and the light waves.

A novel picture of SBS arises, in which both IAW harmonics and flow modification reduce the

coherence of SBS by inducing local defects in the density and velocity profiles. The spatial domains

of Stimulated Brillouin activity are separated by these defects and are consequently uncorrelated,

resulting in a broad and structured spectrum of the scattered light and in a temporally chaotic

reflectivity.
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The description of parametric instabilities in laser-produced plasmas using simple coupled

mode equations for three wave interaction is no longer sufficient whenever the longitudinal

plasma waves are driven to large amplitudes. Then the nonlinearities of the longitudinal

wave can induce detuning with respect to the three wave resonance. This is one of the

reasons usually invoked to explain why these simplified models overestimate the scattering

levels of Stimulated Brillouin Scattering (SBS). In this article we concentrate on SBS, which

is the process by which the incident laser wave couples to an ion acoustic wave (IAW) to

give rise to a scattered transverse wave. The generation of the harmonics due to the IAW

fluid-type nonlinearity [1, 2, 3, 4, 5] is already known to be able to reduce significantly

the SBS reflectivity when compared with the results involving simply a linearized IAW.

However, the previous fluid-type models for SBS in Refs. [1, 2, 3, 4], aimed at taking into

account the IAW nonlinearity, were incomplete because they did not properly describe the

flow modification [6, 7] caused by the incident transverse wave momentum deposition. All

the mentioned models [1, 2, 3, 4, 5] also ignored multi-dimensional effects. On the other

hand, kinetic effects associated with particle trapping [8] give also rise to a nonlinear IAW

frequency shift and therefore modify the SBS nonlinear behavior.

In the present Letter, we reconsider the effect of the IAW nonlinearities on SBS by ac-

counting properly for the flow modification caused by SBS. We first derive approximate

equations describing simultaneously the plasma hydrodynamics (i.e. the long wavelength

density and flow profiles), SBS, and the harmonic generation of the excited IAW resulting

from fluid-type nonlinearity. Our method consists in decomposing the fluid variables into

long and short wavelength components, the latter corresponding to the SBS generated IAW

and its harmonics[9]. Our new code, based on this harmonic decomposition method, makes

it possible to describe plasmas of spatial sizes of the order of realistic laser produced plasmas

(of mm-size, typically), because it does not resolve the IAW ̅m-scale. We then continued

a step further by checking the capacity of our approach to account for kinetic effects ef-

fects by implementing in the IAW propagator a nonlinear frequency shift modeling particle

trapping.[8]

The transverse electric field is described by E(x, t) = e−iω0t
(

E+eik0z + E−e−ik0z
)

+ c.c.

where E+(x, t) and E−(x, t) are the forward- and backward propagating light field compo-

nents, respectively, both enveloped in time and space with respect to the light frequency ̒0

and the wave number k0. This wave number is taken for a fixed reference plasma density
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Neq which yields, using the critical electron density nc, k2
0 = ̒2

0(1 − Neq/nc)/c
2. For the

plasma density n(x, t) and the velocity v(x, t) we use a decomposition separating the long-

wavelength components N0(x, t) and v0(x, t) and the short-wavelength components np(x, t)

and vp(x, t), with |p| = 1, 2, ...,

n = N0 +
(

n1e
iksz + n2e

iksz + .. + c.c.
)

,

v = v0 +
(

v1e
iksz + v2e

iksz + .. + c.c.
)

,

the first (p=0) representing the hydrodynamic evolution, and the terms with p >0, the

fundamental ion acoustic wave, p =1, excited by SBS, and its harmonics, p >1. The

reference wave number for the IAW is the wavenumber of backscattering, ks = 2k0, for

which the ponderomotive force is proportional to ∝ E+E∗
− exp(i2k0z).

We use the paraxial approximation to reduce the wave equation for the total electromag-

netic field E to two “paraxial” equations for E+(x, t) and E−(x, t),

Lpar(E+) = −i(̒0/2nc) [n1E− +(N0 − Neq)E+] , (1)

Lpar(E−) = −i(̒0/2nc) [n∗
1E+ +(N0 − Neq)E−] , (2)

with the paraxial operator Lpar(E�) = [∂t + c�∂z + ̆t −i(c2/2̒0)∇
2
⊥]E�, where c+ and c−

stand for the group velocity of the forward/backward propagating light, respectively, with

c+ = c2k0/̒0 = −c−, and ̆t denotes the damping of the transversal waves. The right-hand-

side (rhs) source terms in equations (1) and (2) account for (i) resonant 3-wave coupling due

to SBS, with the fundamental ion sound wave, n1, and for (ii) refraction on long-wavelength

density modifications, N0−Neq, causing e.g. self-focusing. In comparison with the full wave

equation without decomposition into E�, this model allows a considerably coarser spatial

resolution and thus much less numerical expense.

For the long-wavelength hydrodynamic component we use the following set of equations,

assuming isothermal conditions, and written in the conservative form on the left-hand side

(lhs):

∂tN0 + ∇N0v0 = (∂tn)IAW , (3)

∂t (N0v0) + ∇ (N0v0v0) + c2
s∇N0 = (4)

−N0c
2
s∇U0 + (∂tnv)IAW ,

where the rhs source terms, (∂tn)IAW and (∂tnv)IAW, describe the momentum transfer into

the flow due to the IAW excitation by SBS, with (∂tnv)IAW ≡ 2cs (2̆s1 − v0 ⋅ ∇) |n1|
2/N0,
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and (∂tn)IAW ≡ −2cs∇ (|n1|
2/N0) . The ponderomotive force is given by ∇U0 = ǫ0∇(|E+|

2+

|E−|
2)/ncTe. The equations describing the IAW driven by SBS, n1, and its harmonics, nl>1

(using the convention n−l = n∗
l for the complex conjugate) can be written, in the so-called

weak coupling regime, as follows

[

∂t + ̆sl + i̒l + (v0z + vgl)∂z − i(cs/2lks)∇
2
⊥

]

nl =

−i(kscs/2)N0

[

˽l,1

(

ǫ0E+E∗
−/ncT

)

+ 2Ql/N
2
0

]

(5)

with Ql = (l/2)
∑

nhnl−h for h 6= 0 and l 6= h, where cs = [(ZTe + 3Ti)/Mi]
1/2 is the IAW

speed (with Z and Mi as the ion charge and mass), v0z the z-component of the flow v0; vgl

and ̒l denote the group velocity and the “local” frequency of the l-th IAW harmonic, both

accounting for the dispersion due to Debye shielding increasing with the harmonic order.

They are given by vgl = cs(1 + l2k2
s̄

2
D)−3/2 and by ̒l(z) = ̒s(lkscs) + lksv0z(z) with the

IAW frequency ̒s(k) = kcs(1 + k2̄2
D)−1/2. Equations (1)-(5) describe what we call the

harmonic decomposition model. They form a closed system describing SBS in a temporally

and spatially evolving plasma. They can be shown to conserve momentum [7] at the lowest

order in 1/(ksℓ‖) and in 1/(ksℓ⊥)2 (with the inhomogeneity length ℓ‖ = |∂zv0/v0|
−1 and

ℓ⊥ = |∇⊥v0/v0|
−1).

In the following we emphasize the particular importance (i) of the SBS-induced flow

modification, originating from the rhs term of Eq. (3) as well as of the term (∂tnv)IAW

on the rhs of Eq. (4), and (ii) of the IAW harmonic generation described by the coupling

terms ∝
∑

nhnm−h in the rhs of Eq. (5). In order to stress the effect of each mechanism,

we neglect for simplicity the IAW damping, (while being aware that the IAW damping

coefficient is usually of the order of a few percent of the IAW frequency). Indeed, the

SBS-induced flow modification due to momentum transfer, first pointed out by Rose in

Ref.[6], cannot be ignored in the regime of absolute instability corresponding to weak IAW

damping, because it is just in this regime that the stationary 1D limit of Eqs. (3) and (4)

exhibits the most pronounced flow modification. Namely, the generation of the backscattered

light gives rise to a transfer of momentum to the bulk plasma in the spatial domain of

SBS activity. This momentum transfer results in a decrease ∆v ≡ v0,out − v0,in < 0 of

the flow v0 in the direction of propagation of the laser, the net flow decrease being given

by ∆v ≃ −2RSBS(2ǫ0|E+|
2/NeqTe)(1 − Neq/2nc). Here, RSBS denotes the SBS reflectivity

corresponding to the considered SBS active region.
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Fig1.ps

FIG. 1: SBS reflectivity RSBS versus time for the case of an undamped IAW with the parameters

IL = 2.5 ⋅1014W/cm2 for λ0 = 1.064µm at Te = 1keV, N0/nc =0.1 (taken at center), 2k0λD =0.27,

Lini ≃ 160λ0. The solid line is obtained from the decomposition code considering all terms, the

dashed line from the decomposition code disregarding higher IAW harmonics, and the dash-dotted

line from the ”full” code.

We have performed simulations on the basis of equations (1)-(5) and expanded the IAW

up to its 3rd harmonic, resulting in a set of equations for n1, n2, and n3, with the rhs terms

Q1 = n2n
∗
1 + n3n2∗, Q2 = n2

1 + 2n3n
∗
1, and Q3 = 3n2n1. We did not observe any significant

changes when harmonics above the 3rd order were retained, while restricting to less than 3

harmonics led to important differences. At this stage of our study we restricted ourselves to

one-dimensional (1D) simulations in order to benchmark our harmonic decomposition code

against a “complete” 1D code which does not make the decomposition corresponding to

Eqs. (1)-(3). This latter code solves Helmholtz’s equation for the total electric field E(z, t)

on the first hand, and the system of fluid equations for continuity and momentum, with the

complete ponderomotive force, ∇|E(z, t)|2, as a source term, on the second hand. Here, in

1D, the operator ∇ reduces to the partial derivative ez∂z.

To ensure equivalent boundary and initial conditions we have considered a realistic case

similar to an “exploding foil”, where an initially heated plasma expands starting from an

almost box-like density profile, with smooth shoulders, in the interval z1 < z < z2 along

the laser axis. The plasma profile, with the initial plateau width Lini ≃ 160̄0, successively

undergoes rarefaction from each side, so that the velocity profile eventually tends to a
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monotonous curve varying from negative to positive values with v0 = 0 in the center. The

simulation box is chosen in such a way that the rarefaction of the profile does not significantly

change the boundary conditions for the light fields at the entrance (zent = 0 < z1) and the

rear side (zrear > z2). The total box size is zrear = 2000/k0 ≃ 320̄0, where ̄0 = 2̉/k0

denotes the laser wavelength. The boundary condition for the incident light at z = 0 is a

constant, E+(0) = const, whereas the backscattered light is seeded with a noise source at

the level 〈|E−(z = zrear)|
2〉 ∼ 10−6|E+(z = 0)|2 and with a spectral bandwidth sufficiently

larger than the IAW frequency, in order to cover all possible SBS resonances in the profile.

In the density profile wings left and right of the central plateau (for times t < Lini/2cs), the

plasma is strongly inhomogeneous in velocity and density so that SBS is inhibited by the

strong flow gradient.

We carried out our simulations in the absolute instability regime of SBS with undamped

IAWs, both to examine the role of flow due to momentum transfer, and to benchmark the

robustness of our decomposition code. Notice that in the case of completely undamped

IAWs the SBS saturation level is, according to Refs. [10, 11], independent of the noise

level. For the chosen electron density Neq/nc = 0.1 and for the plasma length indicated

above, the standard three-wave interaction model for undamped IAWs [10, 11] predicts a

steep increase in the SBS reflectivities RSBS as a function of the laser intensity, varying from

RSBS << 1 for small laser intensities to RSBS ≃ 1 for normalized laser intensities above

a2
0 = ǫ0|E0|

2/ncTe ≃ 0.003, with E0 denoting E0 = E+(z = 0). Our simulations comparing

the decomposition code and the “complete” code show very good agreement, even for the

extreme case shown in Fig. 1, corresponding to the plasma parameters mentioned above and

to a2
0 = 0.025 and 2k0̄D = 0.27 (corresponding to an electron temperature Te = 1keV and

a laser intensity IL = 2.5 ⋅ 1014W/cm2 at ̄0 = 1.064̅m), for which the reflectivity would be

99% in the absence of any IAW nonlinearity or flow modifications. For lower intensity values,

the agreement is even more striking. This excellent agreement between the two codes gives

us confidence in the robustness of the harmonic decomposition description. In the simulation

presented in Figs. 1 and 2, the maximum amplitudes of the harmonics remained below the

validity condition for harmonic expansion, namely |nl/Neq| < 61/2(lks̄D)2 for l = 1, 2, 3.

It can be observed, in the spatial profiles shown in Fig. 2 for the backscattered inten-

sity |E−|
2, the fundamental IAW amplitude |n1|, the flow v0, and the plasma profile N0,

that the IAW behavior and flow modifications are entirely connected with the existence of
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Fig2.ps

FIG. 2: Spatial profiles, taken at 2k0cst = 220, of the backscattered intensity (upper subplot),

the fundamental IAW square amplitude |n1|
2, the flow velocity v0, and the density N0 inside the

shoulders of the exploding foil profile.

“defects” in these spatial profiles and with a non-monotonous character in space (see also

Ref.[4]). Namely, SBS develops in distinct spatial domains, interrupted by phase defects,

which originate in the density profile shoulders corresponding to the low density plasma on

the laser entrance side, and which then propagate into the profile plateau. Thus the SBS

activity in each spatial domain appears to be uncorrelated, due to their different origin in

the inhomogeneous velocity profile v0. This feature reflects in the structured nature of the

backscattered light temporal spectrum, shown in Fig. 3 in which distinct peaks appear, and,

consequently, in the temporally chaotic behavior of the reflectivity.
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Our decomposition description makes it possible to discriminate the relative importance of

the various effects contributing to the nonstationary behavior in the SBS reflectivity, as seen

in Fig. 1. By suppressing parts of these effects in different runs, we have found that the most

important effect is the excitation of the IAW harmonics: namely, retaining the harmonic

excitation and neglecting the SBS-induced flow modification lead to results that remain in

reasonably good agreement with the exact model, whereas, retaining the flow modification,

but ignoring the harmonics leads to unphysically high levels of IAW amplitudes. It follows

from these observations that a realistic modeling of SBS requires the proper description

of the IAW harmonics. The 1D simulations presented here would correspond to the SBS

development in a long laser hot spot. We have recently carried out 2D simulations which

confirm the relevance in 2D of the scenario described above whenever the hot spot focus

is not far (less than approximately one Rayleigh length) from the transition between the

inhomogeneous and the homogeneous domain of the plasma density profile (i. e. the shoulder

of the expanding plasma in our case).

Increasing the laser intensity induces stronger IAW amplitudes at which ion and/or elec-

tron kinetic effects take place. We have included phenomenologically weak ion kinetic

effects in our decomposition model by adding a non-linear frequency shift of the form

−ì|n1/Neq|
1/2, [8] in the propagator appearing in the lhs of Eq. (5) describing the evo-

lution of the IAW fundamental component and of its harmonics. Although this is subject of

work in progress, let us mention that we have solved numerically the corresponding equation

Eqs. (1)-(5), and we find that for a positive and sufficiently large ̀ coefficient (≃ 0.5 . . . 0.7),

this shift can smooth out the effect induced by the harmonics and the flow, in a way such that

(i) the “defects” are less pronounced and (ii) the SBS reflectivity diminishes, but without

exhibiting a strong nonstationary behavior. In conclusion, we have shown that the SBS mod-

eling presented here, based on a harmonic decomposition of the hydrodynamics variables,

represent a promising way to describe laser plasma interaction in long scale-length plasmas.

We have benchmarked our code based on the harmonic decomposition in the extreme limit

of the absolute instability regime by neglecting the IAW damping. A novel picture of SBS

arises in which an incoherent superposition of scattered light generated in distinct spatial

domains in the velocity profile leads to a nonstationary character of the SBS reflectivity and

to a significant reduction in the time averaged reflectivity. This harmonic decomposition

description appears to be sufficiently robust and versatile to allow further sophistication by

8



Fig3.ps

FIG. 3: Spectrum of the backscattered light, corresponding to Fig. 1. The frequency is shifted

with respect to the incident laser frequency ω0.

including additional mechanisms such as kinetic effects via an amplitude-dependent nonlin-

ear frequency shift. We currently work on a generalization of the harmonic decomposition

method in order to include the subharmonic IAW decay.
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at Orsay, France. The authors would like to acknowledge fruitful discussion with L. Divol,

J. Myatt, C. Riconda, H. A. Rose, and W. Rozmus.
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