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GENERIC BERNSTEIN-SATO POLYNOMIAL ON AN IRREDUCIBLE

AFFINE SCHEME

ROUCHDI BAHLOUL

Abstract. Given p polynomials with coefficients in a commutative unitary integral
ring C containing Q, we define the notion of a generic Bernstein-Sato polynomial on an
irreducible affine scheme V ⊂ Spec(C). We prove the existence of such a non zero rational
polynomial which covers and generalizes previous existing results by H. Biosca. When
C is the ring of an algebraic or analytic space, we deduce a stratification of the space of
the parameters such that on each stratum, there is a non zero rational polynomial which
is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of
A. Leykin obtained in the case p = 1.

Introduction and Main Results

Fix n ≥ 1 and p ≥ 1 two integers and v ∈ Np. Let x = (x1, . . . , xn) and s = (s1, . . . , sp)
be two systems of variables. Let k be a field of characteristic 1 0. Let An(k) be the ring
of differential operators with coefficients in k[x] = k[x1, . . . , xn] and D (resp. O) be the
sheaf of rings of differential operators (resp. analytic functions) on Cn for which we denote
by Dx0

(resp. Ox0
) the fiber in x0.

Let f = (f1, . . . , fp) be in k[x]p (resp. Op
x0

) and consider the following functional
identity:

b(s)fs ∈ An(k)[s] · fs+v,

(resp. Dx0
[s] instead of An(k)[s]) where fs+v = fs1+v1

1 · · · f
sp+vp
p . This identity takes

place in the free module generated by fs over k[x, 1
f1···fp

, s] (resp. Ox0
[ 1
f1···fp

, s]).

The set of such b(s) is an ideal of k[s] (resp. C[s]). This ideal is called the (global)
Bernstein-Sato ideal of f (resp. local Bernstein-Sato ideal in x0) and we denote it by Bv(f)
(resp. Bv

x0
(f)). When p = 1, this ideal is principal and its monic generator is called the

Bernstein polynomial associated with f . Historically, I.N. Bernstein [Be] introduced the
(global) Bernstein polynomial and proved its existence (i.e. the fact that it is not zero).
J.E. Björk [Bj] has given the proof in the analytic case. Let us cite also M. Kashiwara
[K] who proved, moreover, the rationality of the roots of the local Bernstein polynomial.
For p ≥ 2, the algebraic case can be easily treated in the same way as for p = 1. For
the analytic case, the proof of the non nullity of Bv

x0
(f) is due to C. Sabbah ([S1] and

[S2]). Let us also cite A. Gyoja [Gy] who proved that Bv
x0

(f) contains a non zero rational
polynomial. The absolute Bernstein-Sato polynomial naturally leads to the notion of a
generic Bernstein-Sato polynomial which we shall explain in what follows.

Let C be a unitary commutative integral ring with the following condition:
For any prime ideal P ⊂ C and for any n ∈ N r {0}, we have:

n ∈ P ⇒ 1 ∈ P.

1all the fields considered in this paper are of characteristic 0

1



2 ROUCHDI BAHLOUL

This condition is equivalent to the fact that for any P ⊂ C, the fraction field of C/P is of
characteristic 0. Note that this condition is satisfied if and only if there exists an injective
ring morphism Q ↪→ C.

We shall see C as the ring of coefficients or parameters. Indeed, let f = (f1, . . . , fp) in
C[x]p = C[x1, . . . , xn]p.

Let us denote by An(C) the ring of differential operators with coefficients in C[x], that
is the C-algebra generated by xi and ∂xi

(i = 1, . . . , n) where the only non trivial commu-
tation relations are [∂xi

, xi] = 1 for i = 1, . . . , n (hence C is in the center of An(C)).
We denote by Spec(C) (resp. Specm(C)) the set of prime (resp. maximal) ideals of

C which is the spectrum of C (resp. the maximal spectrum). For an ideal I ⊂ C, we
denote by V (I) = {P ∈ Spec(C) ; P ⊃ I} the affine scheme defined by I and Vm(I) =
V (I)∩Specm(C). Remark that we shall only work with the closed subsets of Spec(C) and
forget the sheaf structure of a scheme.

We are going to introduce the notion of a generic Bernstein-Sato polynomial of f on an
irreducible affine scheme V = V (Q) ⊂ Spec(C) (that is when Q is prime).
So let Q be a prime ideal of C and suppose that none of the fj ’s is in Q[x].
The main result of this article is the following.

Theorem 1. There exists h ∈ C r Q and b(s) ∈ Q[s1, . . . , sp] r 0 such that

h b(s)fs ∈ An(C)[s]fs+v +
(

Q[x,
1

f1 . . . fp
, s]

)

fs.

Such a b(s) is called a (rational) generic Bernstein-Sato polynomial of f on V = V (Q)
(see the notation and the remark below).

In the case where p = 1, the generic and relative (not introduced here) Bernstein
polynomial has been studied by F. Geandier in [Ge] and by J. Briançon, F. Geandier and
P. Maisonobe in [Br-Ge-M] in an analytic context (where f is an analytic function of x).
In [Bi] (see also [Bi2]), H. Biosca studied these notions with p ≥ 1 in the analytic and the
algebraic context (that which we are concerned with) and proved that when

• C = C[a1, . . . , am] or
• C = C{a1, . . . , am} and

Q = (0) so that V is smooth and equal to Cm or (Cm, 0), we have a generic Bernstein-
Sato polynomial. It does not seem straigthforward to adapt her proof to the case where
Q 6= (0) (i.e. when V is singular). Let us also say that she did not mention the fact
that the polynomial she constructed is rational even though a detailed study of her proof
shows that it is. As it appears, our main result covers and generalizes the previous existing
results in this affine situation.

Notation. Let P be a prime ideal of C. For c in C, denote by [c]P the class of c in the

quotient C/P and (c)P = [c]P
1 this class viewed in the fraction field of C/P. We naturally

extend these notations to C[x], An(C) and C[x, 1
f1···fp

, s].

Remark. Using these notations, we can see that the polynomial b(s) of theorem 1 is a
Bernstein-Sato polynomial of (f)P for any P ∈ V (Q) r V (h). This justifies the name of
a generic Bernstein-Sato polynomial on V (Q).

As an application of theorem 1, we obtain some consequences :

Corollary 2. Fix a positive integer d and a field k.
For each j = 1, . . . , p, take fj =

∑

|α|≤d aα,jx
α with α ∈ Nn and aα,j an indeterminate.
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Take a = (aα,j) for |α| ≤ d and j = 1, . . . , p such that we see f = (f1, . . . , fp) in k[a][x]p.
Denote by m the number of the aα,j’s.
Then there exists a finite partition of km = ∪W where each W is a locally closed subset of
km (i.e. W is a difference of two Zariski closed sets) such that for any W , there exists a
polynomial bW (s) ∈ Q[s1, . . . , sp]r0 such that for each a0 in W , bW (s) is in Bv(f(a0, x)).

Remark.

• This corollary generalizes to the case p ≥ 2 the main result of A. Leykin [L] and J.
Briançon and Ph. Maisonobe [Br-Mai] in the case p = 1.

• There is another way to generalize these results: Given a well ordering < on Np

compatible with sums, it is possible to prove the existence of a partition km = ∪W
into locally closed subsets with the following property: For any W , there exists a
finite subset GW ⊂ k[a][x] such that for any a0 ∈ W , the set GW (a0) is a <-Gröbner
basis of the Bernstein-Sato ideal Bv(f(a0, x)), see [Br-Mai] and [Ba].

Proof of Corollary 2. We remark that we can give the same statement as in corollary 2
for any algebraic subset Y ⊂ km as a space of parameters. The statement of corollary 2
will then follow from the proof of this more general statement, that we shall give by an
induction on the dimension of Y . If dimY = 0, the result is trivial. Suppose dimY ≥ 1.
Write Y = Vm(Q1) ∪ · · · ∪ Vm(Qr) where the Qi’s are prime ideals in km (we identify
the maximal ideals of k[a] and the points of km). For each i, let hi ∈ k[a] r Qi and
bi(s) ∈ Q[s] r 0 be the h and b(s) of theorem 1 applied to Qi. Now, write

Y =
(

r
⋃

i=1

Vm(Qi) r Vm(hi)
)

⋃

Y ′,

with Y ′ =
⋃

(

Vm(Qi)∩Vm(hi)
)

for which dimY ′ < dim Y . Apply the induction hypothesis
to Y ′. We obtain that Y is a union (not necessarily disjoint) of locally closed subsets V
such that for each V there exists bV (s) ∈ Q[s] r 0 which is in Bv(f(a0, x)) for any a0 ∈ V .
Let us show now how to obtain the annouced partition. Let B be the set of the obtained
polynomials bV ’s. Set B = {b1, . . . , be}. For any i = 1, . . . , e, let Ei be the set of the V ’s
for which bi = bV . Put

• W1 =
⋃

V ∈E1

V ,

• W2 =
(

⋃

V ∈E2

V
)

r
(

⋃

V ∈E1

V
)

,

...
• We =

(

⋃

V ∈Ee

V
)

r
(

⋃

V ∈E1∪···∪Ee−1

V
)

.

Note that some of the Wi’s may be empty. The set {(b1, W1), . . . , (be, We)} gives a partition
Y = ∪Wi in a way that bi ∈ Bv(f(a0, x)) for any a0 ∈ Wi.

Corollary 3. Take f1(a, x), . . . , fp(a, x) ∈ O(U)[x] where O(U) denotes the ring of holo-
morphic functions on a open subset U of Cm.
Then there exists a finite partition of U = ∪W where each W is an (analytic) locally closed
subset of U (i.e. each W is a difference of two analytic subsets of U) such that for any
W , there exists a rational non zero polynomial b(s) which belongs to Bv(f(a0, x)) for any
a0 ∈ W .
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Remark. As it will appear in the proof, we have the same result if we replace O(U) by
C{a1, . . . , am} or k[[a1, . . . , am]] (k being an arbitrary field).

Proof. Let us write fj(a, x) =
∑

gα,j(a)xα where gα,j ∈ O(U). Let m be the number
of the gα,j ’s and let us introduce m new variables bα,j . Consider the (analytic) map
φ : U 3 a 7→ (bα,j = gα,j(a))α,j ∈ Cm where C is a fixed arbitrary field. Now apply
corollary 2 to this situation. Let km = ∪W be the obtained partition and for any W ,
let bW ∈ Q[s] be the polynomial given in 2. Now apply φ−1. This gives a partition
U = ∪φ−1(W ). Since φ is analytic, the sets φ−1(W ) are locally closed analytic subsets of
U . It is then clear that for any W and a0 ∈ φ−1(W ), we have bW ∈ Bv(f(a0, x)).

Proof of the main theorem

In order to prove theorem 1, we shall first prove the following.

Theorem 4. Let k be a field and f ∈ k[x]p. Then Bv(f) ∩ Q[s] is not zero.

Note that in [Br], the author proved (for p = 1) that the global Bernstein polynomial
has rational roots for any field k of characteristic zero. The proof of 4 will use the following
propositions.

Proposition 5. Let K be a subfield of a field L. Suppose that f ∈ K[x]p. Let b(s) ∈ K[s]
be such that b(s)fs ∈ An(L)[s]fs+v. Then

b(s)fs ∈ An(K)[s]fs+v.

Proof. The proof is inspired by [Br] in which the case p = 1 is treated. As L is a K-
vector space, let us take {1} ∪ {lγ ; γ ∈ Γ} as a basis so that L[x, s, 1

f1···fp
]fs is a free

K[x, s, 1
f1···fp

]-module with {fs}∪{lγfs; γ ∈ Γ} as a basis. Now let P be in An(L)[s] such

that b(s)fs = Pfs+v. We decompose P = P0 + P ′ where P0 ∈ An(K)[s] and P ′ has its

coefficients in
⊕

γ∈Γ

K · lγ . Now, we have:

b(s)fs = P0f
s+v + P ′fs+v,

with b(s)fs and P0f
s+v in K[x, s, 1

f1···fp
]fs and P ′fs+v in

⊕

γ∈Γ

K[x, s,
1

f1 · · · fp
]lγfs. By

identification, we obtain:

b(s)fs = P0f
s+v.

Proposition 6. ([Br] and [Br-Mai]) Given f ∈ C[x]p, we have :

1. The set {Bv
x0

(f); x0 ∈ Cn} is finite.
2. Bv(f) is the intersection of all the Bv

x0
(f) where x0 ∈ Cn.

Proof of theorem 4. We shall divide the proof into two steps:
(a) First, suppose that k = C. By [S1], [S2] and [Gy], as mentioned in the introduction,
each Bv

x0
(f) contains a non zero rational polynomial. By the previous proposition, we can

take a finite product of these polynomials and obtain a rational polynomial in Bv(f).
(b) Now suppose that k is arbitrary. Let c1, . . . , cN be all the coefficients that appear in the
writing of the fj ’s and consider the field K = Q(c1, . . . , cN ). There exist e1, . . . , eN ∈ C

and an injective morphism of fields φ : K → C such that φ(ci) = ei for any i. We
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denote by the same symbol φ the natural extension of φ from K[x] to C[x] and from
An(K)[s] to An(C)[s]. Now, consider in C[s] the Bernstein-Sato ideal Bv(φ(f)) (where
φ(f) = (φ(f1), . . . , φ(fp)). Using the result of case (a), there exists b(s) ∈ Q[s] r 0 that
belongs to Bv(φ(f)). So we have a functional equation:

b(s)φ(f)s = P · φ(f)s+v,

where P ∈ An(C)[s]. By proposition 5, we can suppose P ∈ An(φ(K))[s]. Apply φ−1 to
this equation. Since b(s) ∈ Q[s], φ−1(b(s)) = b(s), thus we obtain:

b(s)fs = φ−1(P ) · fs+v.

In conclusion b(s) is in Bv(f).

Now we dispose of a sufficient material to give the

Proof of theorem 1. By theorem 4, there exists a non zero rational polynomial b(s) in
Bv((f)Q). Hence, we have the following equation:

b(s)
( [f ]Q

1

)s

=
[U(s)]Q

[h]Q
·
( [f ]Q

1

)s+v

,

where U(s) ∈ An(C)[s] and h ∈ C r Q. It follows that:

h b(s)fs − U(s) · fs+v ≡ 0 mod Q

in C[x, 1
f1,... ,fp

, s]fs. Since f1 · · · fp /∈ Q[x] and Q is prime, we obtain:

h b(s)fs − U(s) · fs+v ∈ Q[x,
1

f1 · · · fp
, s]fs.

This article is a more general and simplified version of some results of my thesis [Ba].
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de doctorat, Université d’Angers, 2003.
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