Generic Bernstein-Sato polynomial on an irreducible affine scheme - Archive ouverte HAL Access content directly
Preprints, Working Papers, ... Year :

Generic Bernstein-Sato polynomial on an irreducible affine scheme

Abstract

Given $p$ polynomials with coefficients in a commutative unitary integral ring $\mathcal{C}$ containing $\mathbb{Q}$, we define the notion of a generic Bernstein-Sato polynomial on an irreducible affine scheme $V \subset \text{Spec}(\mathcal{C})$. We prove the existence of such a non zero rational polynomial which covers and generalizes previous existing results byH. Biosca. When $\mathcal{C}$ is the ring of an algebraic or analytic space, we deduce a stratification of the space of the parameters such that on each stratum, there is a non zero rational polynomial which is a Bernstein-Sato polynomial for any point of the stratum. This generalizes a result of A. Leykin obtained in the case $p=1$.
Fichier principal
Vignette du fichier
note_PolyGenA.pdf (128.89 Ko) Télécharger le fichier
Loading...

Dates and versions

hal-00000496 , version 1 (11-07-2003)

Identifiers

Cite

Rouchdi Bahloul. Generic Bernstein-Sato polynomial on an irreducible affine scheme. 2003. ⟨hal-00000496⟩
103 View
61 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More