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A discrete model of Brownian sticky flows on the unit circle is described: it is

constructed with products of Beta matrices on the discrete torus. Sticky flows are

defined by their “moments” which are consistent systems of transition kernels on

the unit circle. Similarly, the moments of the discrete model form a consistent

system of transition matrices on the discrete torus. A convergence of Beta matrices

to sticky kernels is shown at the level of the moments. As the generators of the

n-point processes are defined in terms of Dirichlet forms, the proof is performed at

the level of the Dirichlet forms. The evolution of a probability measure by the flow

of Beta matrices is described by a measure-valued Markov process. A convergence

result of its finite dimensional distributions is deduced.
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stochastic flow of kernels, Feller semigroups, Dirichlet forms, convergence of resolvents.
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In [5, 4], a family of stochastic flows of kernels on the circle S1 called “sticky flows”
is described. Sticky flows interpolate between Arratia’s flow of coalescing maps and the
deterministic heat flow. They are defined by their “moments” which are consistent systems
of transition kernels on S1. In this article, a discrete version of sticky flows is presented
for sticky flows associated with Brownian motions on S1. This discrete model is defined
by products of Beta matrices on the discrete torus 1

N
(Z/NZ). It appears to be a special

case of a general construction which associates a flow of Dirichlet matrices to any Markov
chain on a finite set.
As in the continuous case, the moments of the flow of Beta matrices are consistent systems
of transition matrices on 1

N
(Z/NZ). The convergence of the flow of Beta matrices towards

sticky kernels is shown at the level of the moments. Namely, it is established that for
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every n ∈ N∗, the semigroup {P
(n)
t , t ∈ R} of the n-point motion of the sticky flow is

approximated by the n-point transition matrix of the flow of Beta matrices. Classical
approximation theorems, such as theorem 6.1 in [1], cannot be used since the generators

of the semigroups P
(n)
t do not have a core of C2 functions. The generators are defined in

terms of Dirichlet forms, thus the proof is performed at the level of the Dirichlet forms.
Given an initial law, the flow of Beta matrices generates a measure-valued Markov process.
A convergence result of its finite dimensional distributions is deduced.

Section 1 contains a study of the flows of Dirichlet matrices on a finite set. Flows of
Beta matrices on 1

N
(Z/NZ) and Brownian sticky flows on the circle S1 are presented in

section 2. Section 3 is devoted to establishing the convergence of the flow of Beta matrices
on 1

N
(Z/NZ) to a Brownian sticky flow on S1.

1 Dirichlet matrices and Polya scheme

A stochastic kernel on a finite set F is nothing but a random transition matrix on F .
Given a sequence of i.i.d. random transition matrices (Ki)i∈Z on F , one may defined a
stochastic flow of kernels (Ks,t)s≤t on F by setting for every 0 ≤ s ≤ t,

Ks,t =

{

Ks+1 . . . Kt−1Kt if the time is Z,
KZ(s)+1 . . . KZ(t)−1KZ(t) if the time is R.

(1)

where Z denotes a homogeneous Poisson process independent of (Ki).
In [3], following a generalization of De Finetti theorem, it is shown that the law of such a
stochastic flow of kernels is given by a consistent family of n-point Markovian semigroups
{P

(n)
t := E(K⊗n

0,t ), n ∈ N∗} which are, in that case, semigroups of transition matrices. In

the discrete-time case, (P
(n)
t )n is associated with a Markov chain on F n. In the continuous-

time case, this Markovian semigroup is associated with a jump Markov process on F n.

1.1 Dirichlet matrices

We shall assume that the rows of every matrix Ki are independent Dirichlet random
vectors. A suitable choice of the coefficients of the Dirichlet laws enables us to exhibit a
consistent and exchangeable system of probability measures {m(n), n ∈ N∗} such that for

every n ∈ N∗, m(n) is an invariant measure for the n-point semigroup (P
(n)
t )t.

Let us first state a natural extension of the Dirichlet distribution to the case of nonnegative
coefficients and then define what we shall call a Dirichlet random matrix and a flow of
Dirichlet matrices.

Definition. Let ˺1, . . . , ˺k be nonnegative reals such that at least one of them are pos-
itive. Let 1 ≤ i1 < . . . < ij ≤ k denote the indices of the positive coefficients and V the

set of points x = (x1, . . . , xk) ∈ [0, 1]k such that xi = 0 if i 6∈ {i1, . . . , ij} and
∑k

i=1 xi = 1.
A random vector X = (X1, . . . , Xk) is said to have the Dirichlet law D(˺1, . . . , ˺k)
if P (X 6∈ V ) = 0 and if (Xi1 , . . . , Xij) has the Dirichlet law D(˺i1 , . . . , ˺ij) that is
Γ(˺i1

+⋅⋅⋅+˺ij
)

Γ(˺i1
)⋅⋅⋅Γ(˺ij

)
x

˺i1
−1

1 ⋅ ⋅ ⋅x
aij

−1
r 1x1+⋅⋅⋅+xj=1dx1 ⋅ ⋅ ⋅ dxj−1.

Definition. Let F and G be two finite subsets. Let A = (ai,j)(i,j)∈F·G be a matrix of
nonnegative coefficients such that each row has at least a positive coefficient.
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A random matrix X = (Xi,j)(i,j)∈F·G will be called a Dirichlet matrix with parameter A
if the rows of X are independent random vectors and the i-th row of X has the Dirichlet
distribution whose parameters are given by the i-th row of A for every i ∈ F .

Definition. Let F be a finite set and A = (ai,j)(i,j)∈F 2 be a matrix of nonnegative
coefficients such that each row has at least a positive coefficient.
The discrete time (or continuous time) stochastic flows defined by formula (1) from a
family (Ki)i∈Z of independent Dirichlet matrices of parameter A is said to be a stochastic
flow of Dirichlet matrices of parameter A on F .

The following lemma states a probably well-known property of Dirichlet laws. It is based
on properties of Gamma distributions (first?) mentioned by Edwin Pitman in [6].

Lemma 1 Let r and s be positive integers. Let A = (ai,j)1≤i≤r, 1≤j≤s be a matrix of
nonnegative coefficients such that each row has at least a positive coefficient. Let X be a
Dirichlet matrix of parameter A.
If Y is a random vector independent of the random matrix X, with Dirichlet distribution
D(

∑s
j=1 a1,j, . . . ,

∑s
j=1 ar,j), then the random vector Y X has the Dirichlet distribution

D(
∑r

i=1 ai,1, . . . ,
∑r

i=1 ai,s).

Proof. We shall construct copies of X and Y using a family of independent Gamma
random variables. This construction is based on the following properties of the Gamma
law :

Properties 2 Let ˺1, . . . , ˺r be nonnegative reals and Z1, . . . , Zr be a family of indepen-
dent random variables with Gamma laws Gamma(˺1, 1) . . . , Gamma(˺r, 1) respectively (by
convention, the Gamma law of parameter 0 is the Dirac at 0). Assume that some of the
parameters ˺1, . . . , ˺r are positive. Then

- the random variable Z =
∑r

i=1 Zi follows the law Gamma(
∑r

i=1 ˺i, 1).

- the random vector (Z1

Z
, . . . , Zr

Z
) has the Dirichlet distribution D(˺1, . . . , ˺r) and is

independent of the random variable Z.

These properties can be shown by computing the Laplace transform of the random vector
(Z1

Z
, . . . , Zr

Z
, Z).

Let {Ui,j, (i, j) ∈ {1, . . . , r}·{1, . . . , s}} denote a family of independent random variables
such that Ui,j = 0 if ai,j = 0 and Ui,j has the Gamma(ai,j, 1) distribution if ai,j > 0. Set

Ui =
∑s

j=1 Ui,j, U =
∑r

i=1 Ui and Vi,j =
Ui,j

Ui
for every (i, j) ∈ {1, . . . , r} · {1, . . . , s}. It

follows from the recalled properties of the Gamma laws that for every i ∈ {1, . . . , r}, the
random vector Vi = (Vi,1, . . . , Vi,s) has the Dirichlet distribution D(ai,1, . . . , ai,s) and is in-
dependent of Ui that has the Gamma(

∑s
j=1 ai,j, 1) distribution. In particular, V = (Vi,j)i,j

is a Dirichlet matrix of parameter A.
As {Ui,j, (i, j) ∈ {1, . . . , r} · {1, . . . , s}} is a family of independent random variables,
the random variables V1, . . . , Vr, U1, . . . , Ur are independent. It also follows that the ran-
dom vector W = (U1

U
, . . . , Ur

U
) has the same law as Y , that is the Dirichlet distribution

D(
∑s

j=1 a1,j, . . . ,
∑s

j=1 ar,j) and is independent of the random vectors V1, . . . , Vr.

If we set Tj =
∑r

i=1 WiVi,j for j ∈ {1, . . . , s}, then Tj = 1
U

∑r
i=1 Ui,j. As the random vari-

ables
∑r

i=1 Ui,j for j ∈ {1, . . . , s} are independent and have the Gamma(
∑r

i=1 ai,1, 1),. . . ,
Gamma(

∑r
i=1 ai,s, 1) distributions respectively, the random vector (T1, . . . , Ts) has the

Dirichlet distribution D(
∑r

i=1 ai,1, . . . ,
∑r

i=1 ai,s).
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1.2 Invariant distributions

Let us notice that if P is a stochastic matrix indexed by F and m is a finite positive
measure on F invariant by P then the matrix A = (ai,j) defined by ai,j = miPi,j for every
(i, j) ∈ F 2 is such that the sum of the coefficients of the i-th row is equal to the sum of
the coefficients of the i-th column for every i ∈ F . Thus applying lemma 1 yields:

Proposition 3 Let P be a stochastic matrix indexed by a finite set F and let m be a
positive measure on F invariant by P . Set A = (ai,j) the matrix defined by ai,j = mipi,j

for every (i, j) ∈ F 2. Let (Ks,t)s≤t be a discrete time stochastic flow of Dirichlet matrices
of parameter A. Let ̅ be a Dirichlet vector on F of parameter m, independent of (Ks,t)s≤t.

(i) For every 0 ≤ s ≤ t, ̅Ks,t is a Dirichlet vector of parameter m.

(ii) For every n ∈ N∗, E(̅⊗n) is an invariant probability measure for the n-point semi-

group (P
(n)
t )t associated with the Dirichlet flow (Ks,t)s≤t. Its expression can be given

iteratively as follows:

E(̅⊗n)(x) =
m(xn) +

∑n−1
i=1 1xn=xi

m(F ) + n − 1
E(̅⊗(n−1))(x).

for every x = (x, xn) ∈ F n.

(iii) Assume that P is periodic with period d > 1. There exists a partition C0, . . . , Cd−1

of F such that pi,j > 0 only if there exists r ∈ {0, . . . , d − 1} such that i ∈ Cr and
j ∈ Cr+1 (by convention Cjd+k = Ck for every j ∈ N and k ∈ {0, . . . , d− 1}). Then
for every k, r ∈ {0, . . . , d − 1} and j ∈ N, ̅|Ck

K0,dj+r is a Dirichlet vector on F of
parameter m1Ck+r

.

Proof. Assertion (i) follows from the statement (i) of lemma 1. For every n ∈ N∗ and

t ∈ N, E((̅K0,t)
⊗n) = E(̅⊗n)P

(n)
t , thus E(̅⊗n) is invariant by P

(n)
t .

Let us compute the moments of ̅. Set e1, . . . , er the elements of F . For x ∈ F n, let sx(e)
denote the number of coordinates of x that equal to e. As E(̅⊗n)(x) is the moment of
order (sx(e1), . . . , sx(er)) of the Dirichlet law D(m(e1), . . . ,m(er)),

E(̅⊗n)(x) =
Γ(m(F ))

Γ(m(F ) + n)

∏

e∈F

Γ(m(e) + sx(e))

Γ(m(e))
=

1

˼m(F )(n)

∏

e∈F

˼m(e)(sx(e)). (2)

where ˼a(u) denote the product
∏u−1

i=0 (a + i) for every u ∈ N∗ and a ∈ R. To obtain the
iterative expression, it remains to notice that if x = (x, xn) then sx(e) = 1{xn=e} + sx(e).

The restriction of ̅ to Ck is the random measure ̅|Ck
( ⋅ ) = ̅(Ck∩ ⋅ )

̅(Ck)
. As ̅ is a Dirichlet

vector of parameter m, ̅|Ck
is a Dirichlet vector of parameter m1Ck

. Lemma 1 applies

to the vector (̅|Ck
(i))i∈Ck

and the submatrix K̃l = (Kl,l+1(i, j))i∈Ck, j∈Ck+1
of Kl,l+1 for

every l ∈ Z; this shows that ̅|Ck
Kl,l+1 is a random Dirichlet of parameter m1Ck+1

for
every k ∈ {0, . . . , d} and l ∈ Z.

In order to present an explicit expression of E(̅⊗n), let us introduce some notations
associated with a partition ̉ of [n] = {1, . . . , n}.
Let Pn be the set of all partitions of [n]. Let |̉| denote the number of non-empty blocks
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of ̉. The symbol 4 will be used to designate a order relation between partitions: ̉′ 4 ̉
if ̉′ is a thinner partition than ̉. Let C̉ be the set of points x ∈ F n such that xi = xj

if and only if i and j are in the same block of ̉. Set Ẻ = ∪̉′4̉C̉′ . It is the set of
points x ∈ (S1)n such that, if i and j are in the same block of ̉, then xi = xj. It is
isomorphic to F |̉|. Let ̏̉ : F |̉| 7ջ Ẻ be the one-to-one mapping defined as follows: for
all x ∈ F |̉|, ̏̉(x) = (y1, . . . , yn) where yi = xl if i belongs to the l-th block of ̉. The
measure E(̅⊗n) can be expressed as a combination of probability measures on the sets
Ẻ, ̉ ∈ Pn as follows:

Proposition 4 Let m be a measure on a finite set F and let ̅ be a Dirichlet vector on
F with parameter m. Set m̃ = m

m(F )
. For every n ∈ N∗,

E(̅⊗n) =
∑

̉∈Pn

p(m(F ))
̉ ̏̉(m̃⊗|̉|) (3)

where p
(a)
̉ = ak

Qk
i=1(ni−1)!

Qn−1
i=0 (a+i)

if ̉ is a partition of [n] with k nonempty blocks of length

n1, . . . , nk and a is a positive real.

Proof. The proof can be deduced from the expression (2) of E(̅⊗n), by induction on n.
Assume that formula (3) is true for E(̅⊗(n−1)). Fix a point x = (x, xn) ∈ F n. If ̉ is the
partition of [n − 1] such that x ∈ C̉, then

E(̅⊗n)(x) =
∑

̉′, ̉′4̉

p
(m(F ))
̉′ ̏̉′(m̃⊗|̉′|)(x)

m(xn) +
∑n−1

i=1 1{xi=xn}

m(F ) + n − 1

where ̉′ 4 ̉ if ̉′ is a thinner partition than ̉. Let s(̉) denote the partition (̉, {n})
and si(̉) denote the partition of [n] obtained from ̉ by adding n to the i-th block of ̉ for
i ∈ {1, . . . , k}. Two cases arises according as x ∈ s(̉) or x ∈ si(̉) for some i ∈ {1, . . . , k}
since for every a > 0,

p
(a)
s(̉) =

a

a + n
p(a)

̉ and p
(a)
si(̉) =

|Bi|

a + n
p(a)

̉ for i ∈ {1, . . . , k}.

Then formula (3) for E(̅⊗n) follows from the fact that:

- the partitions ˜̉ thinner than s(̉) have the form s(̉′) where ̉′ is thinner than ̉,

- the partitions thinner than si(̉) either have the form s(̉′) where ̉′ is a partition
of [n − 1] thinner than ̉, or have the form sj(̉

′) where ̉′ is a partition of [n − 1]
thinner than ̉ such that its j-th block is a subset of Bi.

Remarks. (p
(a)
̉ )̉∈Pn

is the exchangeable partition function of an exchangeable sequence
of random variables governed by the Blackwell-MacQueen Urn scheme [7].
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1.3 Description of the n-point motion

In order to complete the description of the n-point motion associated with the flow of
Dirichlet matrices of parameter A denoted by (Ks,t)s≤t, let us compute the transition
matrix P (n): for x = (x1, . . . , xn) and y = (y1, . . . , yn) in F n,

P (n)(x, y) = E(
n

∏

i=1

K0,1(xi, yi)) =
∏

l∈TN

E(
∏

h∈TN

K0,1(l, h)sl,h(x,y))

where sl,h(x, y) = Card({i, (xi, yi) = (l, h)}). Let us set ˼a(u) =
∏u−1

i=0 (a + i) and
sl(x) = Card({i ∈ {1, . . . , n}, xi = l}). It follows from the expression of the moments of
the Dirichlet laws that

P (n)(x, y) =
∏

i∈TN

∏

j∈TN
˼ai,j

(si,j(x, y))

˼P

j∈F ai,j
(si(x))

.

Let us remark that:

P (1)(x, y) =
ax,y

∑

z∈F ax,z

and P (n)(x, y) =
axn,yn

+ sxn,yn
(x, y)

∑

j∈F axn,j + sxn
(x)

P (n−1)(x, y) for n ≥ 2

where x = (x1, . . . , xn−1).
Thus the transition mechanism can be described as follows: the first point moves from a
site i to a site j with probability pi,j =

ai,j
P

ℓ∈F ai,ℓ
. The motion of the (k − 1) first points

being known, the k-th point moves from a site i to a site j with probability
ai,j+u

P

ℓ∈F ai,ℓ+v
if

among the k− 1 first points, v were located on the site i, and u have moved from i to the
site j. This is a combination of independent Polya urns attached at each site.

Let us deduce some elementary properties of P (n):

• If A is symmetric then for every n ∈ N∗, (E(̅⊗n), P (n)) is reversible.

• If A is irreducible and aperiodic then for every n ∈ N∗, P (n) is also an irreducible
and aperiodic matrix.

• Assume that A is irreducible and periodic of period d. Let C0, . . . , Cd−1 denote a
partition of F such that for every r ∈ {0, . . . , d − 1}, i ∈ Cr and j 6∈ Cr+1 imply
ai,j = 0. Then for every n ∈ N∗ and r ∈ {0, . . . , d − 1}, (Cr)

n is a closed subset for
P (n) and (P (n))d is an irreducible aperiodic matrix on (Cr)

n.

The properties of the n-point motions and proposition 3 enable us to establish asymptotic
behaviour of the flow of Dirichlet matrices:

Corollary 5 Let P be a stochastic matrix indexed by a finite set F and let m be a positive
measure on F invariant by P . Set A = (ai,j) the matrix defined by ai,j = mipi,j for
every (i, j) ∈ F 2. Let (Ks,t)s≤t be a discrete time stochastic flow of Dirichlet matrices of
parameter A.

(i) Assume that P is irreducible and aperiodic.
For every probability measure ̆ on F , ̆K0,j converges in law to a Dirichlet vector
of parameter m as j tends to +∞.
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(ii) Assume that P is irreducible and periodic of period d. Let C0, . . . , Cd−1 denote a
partition of F such that for every r ∈ {0, . . . , d − 1}, if i ∈ Cr and if j 6∈ Cr+1 then
pi,j = 0 and set Ck+d = Ck for every k ∈ N. For k ∈ {0, . . . , d − 1}, let ̆k denote a
probability measure on F such that ̆k(Ck) = 1.
For every r ∈ {0, . . . , d − 1}, the random vector (̆0K0,jd+r, . . . , ̆d−1K0,jd+r)j con-
verges in law to a vector (̅r, . . . , ̅r+d−1) of independent Dirichlet vectors of param-
eters m1Cr

, . . . ,m1Cr+d−1
respectively.

Proof.

(i) (̆K0,j)j is a sequence of random variables that take their values in the set of prob-
ability measures on F . To prove that they converge in law to a random measure
̅, it suffices to prove that for every n ∈ N∗, the sequence of probability measures
(E((̆K0,j)

⊗n))j on F n converges to E(̅⊗n). As P
(n)
0,j = E(K0,j)

⊗n is the transition

matrix of an irreducible aperiodic Markov chain on F n, (̆⊗nP
(n)
0,j )j converges to the

stationary law of the Markov chain that is E(̅⊗n) where ̅ is a Dirichlet vector of
parameter m, by proposition 3.

(ii) Let us first note that for every j ∈ N, ̆0K0,j, . . . , ̆d−1K0,j are independent variables
since K0,j is a product of j independent random matrices, each of them having
independent rows. As (P (n))d is an irreducible and aperiodic Markov chain on
(Cu)

n for every u ∈ {0, . . . , d−1} and n ∈ N∗, it can be shown as in the proof of (i),
that for every k, r ∈ {0, . . . , d − 1}, ̆kK0,dj+r converges in law to a Dirichlet vector
of parameter m1Ck+r

as j tends to +∞.

2 A discrete model of a sticky flow on S
1

In the remaining part of this paper, we shall consider a particular flow of Dirichlet matrices
on the lattice TN = 1

2N
(Z/2NZ) of S1, called flow of Beta matrices. It gives a simple

discrete model of the Brownian sticky flow defined by Y. Le Jan and O. Raimond in [5, 4].
After a description of the flow of Beta matrices, the main properties of the Brownian sticky
flows will be summarized.

2.1 Beta matrices

Let a be a positive real, N ∈ N∗ and K be a matrix on the lattice TN defined as follows:

K(i, j) = Xi1j=i+ 1
2N

+ (1 − Xi)1j=i− 1
2N

for every i, j ∈ TN

where X1, . . . , X2N are independent Beta( a
2N

, a
2N

) random variables.
The matrix K is a Dirichlet matrix of parameter A = (mipi,j)i,j where P = (pi,j)i,j is the
transition matrix of the symmetric random walk on TN and m is the uniform measure
on TN with total mass 2a. Let (Ki)i∈Z be a sequence of independent matrices having
the same law as K and let {Z(t), t ≥ 0} be an independent Poisson process on R with
intensity 4N2. The continuous time Dirichlet flow of matrices defined on TN by:

KN,s,t = KZ(s)+1KZ(s)+2 ⋅ ⋅ ⋅KZ(t) for every s ≤ t

7



will be called a flow of Beta matrices on TN of parameter a. Let us note that A is
irreducible and two-periodic thus the n-point process is not irreducible. We shall focus
our attention on the following irreducible set:

T
(n)
N = {

x

2N
, x ∈ (Z/2NZ)n and xi − x1 ∈ 2Z, for all 1 ≤ i ≤ n}

= (
1

N
(Z/NZ))n ∪ (

1

2N
((2Z + 1)/2NZ))n

The transition matrix of the n-point motion on T
(n)
N at time t will be denoted P

(n)
N,t . The

jump Markov chain of the n-point process is two-periodic: in one step, a point with odd
coordinates moves to a point with even coordinates and conversely. Its transition matrix
will be denoted P

(n)
N . It has a reversible probability measure denoted by m

(n)
N :

m
(n)
N =

1

2
(E(̅

(0)⊗n
N ) + E(̅

(1)⊗n
N )) (4)

where ̅
(0)
N and ̅

(1)
N denote independent Dirichlet vectors on TN with parameter m1 1

N
Z/NZ

and m1 1
2N

((2Z+1)/2NZ)) respectively. Let ̀ be a Bernoulli random variable with parameter
1
2
, independent of ̅

(0)
N and ̅

(1)
N . It follows that if ̆ is a probability measure on 1

N
Z/NZ

or 1
2N

((2Z + 1)/2NZ) then (̆KN,0,t)t∈R+ converges weakly to ̅
(̀)
N as t tends to +∞.

A sample path of the measured-valued Markov process {̆
(a)
k := ˽xKN,0,2k, k ∈ N} on

1
N

(Z/NZ), associated to the discrete-time flow of Beta matrices is represented in figures
1 and 2 for N = 500, x = 1

2
and two choices of the parameter a: a = 20 and a = 100.

In these figures, the sample of ˽xKN,0,2k at a fixed k is represented by a horizontal line of
N colored pixels. A detail of the histogram of the sample of ˽xKN,0,2k for k = 500 and
k = 1000 is given figures 5 and 6.

2.2 Consistent system of Brownian sticky kernels on S
1

In [5, 4], a general class of sticky kernels associated with systems of coalescing particles
that move as independent Levy processes is constructed. Sticky kernels are characterized
by a parameter of stickiness ̍ and the exponent ̑ of the associated Levy process, that
is ̑(u) = u2

2
in the case of a Brownian sticky kernels. Let us describe the properties of

Brownian sticky kernels on S1.
For n ∈ N∗, let us consider the measure m(n) defined on (S1)n by m(n) =

∑

̉∈Pn
p

(a)
̉ ̄̉

where ̄̉ is the image of the Lebesgue measure ̄⊗|̉| on (S1)|̉| by the one-to-one map

̏̉ (that sends (S1)|̉| onto (S1)n) and {p
(a)
̉ , ̉ ∈ Pn} is the partition function defined

in proposition 4. As this defines an exchangeable and consistent system of measures, it
follows from Kingman’s representation theorem that there exists a random measure on
S1 such that m(n) = E(̅⊗n) for every n ∈ N∗. In our case, ̅ is the Dirichlet process1 of
parameter ā on S1.

Using this family of measures, a consistent system of Feller semigroups denoted by
(P

(n)
t ) can be defined via their Dirichlet forms:

1Let δ be a non null finite measure on a measurable space (Y,Y). A Dirichlet process on (Y,Y) of
parameter δ is a random measure µ on Y such that for any finite measurable partition (B1, . . . , Br) of
Y , (µ(B1), . . . , µ(Br)) has the Dirichlet law D(δ(B1), . . . , δ(Br)).
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Figure 1: a sample of the measure-valued
process {̆

(20)
k , 0 ≤ k ≤ 5000}
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Figure 2: a sample of the measure-valued
process {̆

(100)
k , 0 ≤ k ≤ 5000}
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Figure 3: an enlargement of the bottom
of figure 1
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Figure 4: an enlargement of the bottom
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Proposition 6 (Y. Le Jan and O. Raimond, [5]) For k ∈ N∗, let E⊙k be the Dirich-
let form defined on L2((S1)k, ̄⊗k), associated with k independent Brownian motions on
S1. For every n ∈ N∗, let E (n) denote the Dirichlet form on C1((S1)n) defined as follows:

∀f, g ∈ C1((S1)n), E (n)(f, g) =
∑

̉∈Pn

p(a)
̉ E⊙|̉|(f ◦ ̏̉, g ◦ ̏̉). (5)

• The semigroups (P
(n)
t ), n ∈ N∗ associated with the Dirichlet forms E (n), n ∈ N∗

define a consistent system of strong Feller semigroups.

• For every n ∈ N∗, the generator of E (n) denoted by A(n) has the following expression
on C2 functions:

A(n)(f) =
1

2

∑

̉∈Pn

(∆(|̉|)(f ◦ ̏̉)) ◦ ̏−1
̉ 1C̉

∀f ∈ C2((S1)n) (6)

Since {(P
(n)
t )t, n ∈ N∗} is a compatible family of Feller semigroups on S1, it follows from

theorem 1.1.4 in [3] that it is possible to construct a stochastic flow of kernels (Ks,t) such

that E(K⊗n
0,t ) = P

(n)
t for every t ∈ R and n ∈ N∗. This stochastic flow was named sticky

flow of parameter ̍ = 1
a+1

and exponent ̑(u) = u2

2
(or Brownian sticky flow of parameter

̍ = 1
a+1

).

Given a probability measure ̆0 on S1, the sticky flow induces a stochastic process
(̆0K0,t)t on the set M1(S

1) of probability measures on S1.

Proposition 7 (Y. Le Jan and O. Raimond, [5, 4]) Let (Ks,t)s≤t be a sticky Brow-
nian flow of parameter ̍ = 1

a+1
. Let ̆0 be a probability measure on S1. Then (̆0K0,t)t is

a Feller process on M1(S
1). It converges in law to the Dirichlet process of parameter ā

on S1.

3 Convergence theorem

We shall now establish the “weak” convergence of the Beta flow of parameter a on TN

to the Brownian sticky flow of parameter ̍ = 1
1+a

. We keep the same notations as those
introduced in section 2.

Theorem 8 Let ℓ be a positive integer. For N ∈ N∗, let ̆N be a probability measure on
( 1

N
(Z/NZ))ℓ. Assume that ̆N converges weakly to a probability measure ̆ on (S1)ℓ as N

tends to +∞.

(i) For every t ∈ R+, the sequence of measure-valued random variables ̆NK⊗ℓ
N,0,t con-

verges in law to ̆K⊗ℓ
0,t as N tends to +∞.

(ii) For every continuous functions f and g on (S1)ℓ and t ∈ R+,
∫

P
(ℓ)
N,0,t(g)(x)f(x)d̆N(x)

converges to
∫

P
(ℓ)
0,t (g)(x)f(x)d̆(x) as N tends to +∞.

For N ∈ N∗, let ̀N be a probability measure on 1
N

(Z/NZ). Assume that (̀N)N converges
weakly to a probability measure ̀ on S1.

10



(iii) The finite dimensional distributions of the measure-valued Markov process {̀NKN,0,t, t ∈
R+} weakly converge to the finite dimensional distributions of {̀K0,t, t ∈ R+} as
N tends to +∞.

Remarks.

1. Assertions of the theorem also hold with sequences of probability measures ̆N and
̀N defined on ( 1

2N
((2Z+1)/2NZ))ℓ and 1

2N
((2Z+1)/2NZ) respectively that converge

weakly as N tends to +∞.

2. For N ∈ N∗, let ̆
(1)
N , . . . , ̆

(r)
N be probability measures on 1

N
(Z/NZ) such that (̆

(i)
N )N

converges weakly to a probability measure ̆(i) of S1 for every i ∈ {1, . . . , r}. It

follows from assertion (i) of theorem 8 that (̆
(1)
N KN,0,t, . . . , ̆

(r)
N KN,0,t) converges in

law to (̆(1)K0,t, . . . , ̆
(r)K0,t) for every t ∈ R+.

Before going into details, let us explain the scheme of the proof of theorem 8. First,
(ii) and (iii) will be deduced from assertion (i) of the theorem. The main step of the
proof of (i) is to show the following convergence of the resolvents:

Proposition 9 Let n ∈ N∗. Let (V
(n)
N,˺)˺>0 denote the resolvent associated with the n-point

motion of the Beta flow of parameter a on T
(n)
N and let (V

(n)
˺ )˺>0 denote the resolvent of

the n-point motion of the Brownian sticky flow of parameter ̍ = 1
a+1

.

For every ˺ > 0 and continuous functions f and g on (S1)n,
∫

V
(n)
N,˺(f)gdm

(n)
N converges

to
∫

V
(n)
˺ (f)gdm(n) as N tends to +∞.

As the discrete and the continuous n-point processes are both reversible, an argument
using spectral measures allows to deduce the following weak convergence of the semigroups
from the weak convergence of the resolvents:

Proposition 10 Let n ∈ N∗. If f and g are continuous functions on (S1)n, then
∫

gP
(n)
N,t(f)dm

(n)
N converges to

∫

gP
(n)
t (f)dm(n) as N tends to +∞.

A last step consists in making the previous convergence result of the semigroups also
true if m

(n)
N is replaced by any sequence of probability measures ̆N on ( 1

N
(Z/NZ))n that

weakly converges.

3.1 Convergence of the resolvents of the n-point motions

The convergence of the resolvents is based on the convergence of the invariant measures
m

(n)
N and of the generator of the n-point motion of the flow of Beta matrices together with

a Lipschitz property of the discrete resolvent V
(n)
N,˺. Before proving proposition 9, let us

give precise statements of these three points.

3.1.1 Convergence of the invariant measures

Lemma 11 For every partition ̉ of [n], let f̉ be a function defined on (S1)n, Lipschitz
on Ẻ and vanishing outside Ẻ. Let f =

∑

̉∈Pn
f̉. Then

∣

∣

∣

∫

fdm
(n)
N −

∫

fdm(n)
∣

∣

∣
≤

Cn

N

∑

̉∈Pn

(||f̉||Lip + ||f̉||∞).
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Proof. Let EN,̉ denote the intersection of Ẻ with T
(n)
N and let ̄N,̉ be the uniform

distribution on EN,̉. By formula (4) and proposition 4, m
(n)
N =

∑

̉∈Pn
p

(a)
̉ ̄N,̉. As

m(n) has a similar decomposition: m(n) =
∑

̉∈Pn
p

(a)
̉ ̄̉, it suffices to prove that for all

partitions ̉, ̉′ of [n],

∣

∣

∣

∫

EN,̉′

f̉d̄N,̉′ −

∫

Ẻ′

f̉d̄̉′

∣

∣

∣ ≤
Cn

N
(||f̉||Lip + ||f̉||∞).

Let us first consider the case ̉ is not thinner than ̉′, that is there is a nonempty block
B of ̉ intersecting at least two blocks of ̉′. Let ˜̉ be the partition of [n] obtained by
merging the blocks of ̉ that intersect the same block of ̉′. Then Ẻ′ ∩Ẻ is a subset of
E˜̉. As ˜̉ is a coarser partition than ̉′, ̄̉′(E˜̉) = 0 and |EN,˜̉| ≤

1
N
|EN,̉′|. Thus

∣

∣

∣

∫

EN,̉′

f̉d̄N,̉′ −

∫

Ẻ′

f̉d̄̉′

∣

∣

∣ =
1

|EN,̉′ |

∣

∣

∣

∑

x∈EN,̉′

f̉(x)
∣

∣

∣ ≤
1

N
||f̉||∞.

Let us now consider the case ̉ is equal or thinner than ̉′. Then Ẻ′ ⊂ Ẻ. If ̉′ has k
nonempty blocks then

∣

∣

∣

∫

EN,̉′

f̉d̄N,̉′ −

∫

Ẻ′

f̉d̄̉′

∣

∣

∣ =
∣

∣

∣

1

2Nk

∑

x∈T
(k)
N

f̉(̏̉′(x)) −

∫

(S1)k

f̉′(̏̉′(x))dx
∣

∣

∣.

The function f̉′ ◦ ̏̉′ is a Lipschitz function with Lipschitz coefficient smaller than
n||f̉′ ||Lip. Thus it remains to establish the following result: for every k ∈ N∗, there
exists a constant Ck such that for every Lipschitz function g on (S1)k,

∣

∣

∣

1

2Nk

∑

x∈T
(k)
N

g(x) −

∫

(S1)k

g(x)dx
∣

∣

∣
≤

Ck

N
||g||Lip.

The proof can be made by induction on k.

3.1.2 Convergence of the generators

Lemma 12 For every n ∈ N∗, let A
(n)
N denote the generator of the n-point motion of the

Beta flow on T
(n)
N of parameter a. For every C2 function f on (S1)n,

sup
x∈T

(n)
N

|A
(n)
N (f)(x) − A(n)(f)(x)|

converges to 0 as N tends to +∞.

Proof. Let n ∈ N∗ and f be a C2 function defined on (S1)n. Let us recall the expression
of A(n)(f) :

A(n)(f) =
1

2

∑

̉∈Pn

∆̉(f)1C̉
where ∆̉(f)(x) = ∆(|̉|)(f ◦ ̏̉)(̏−1

̉ (x)).

Thus it suffices to prove that for every partition ̉ of [n], sup
x∈C̉∩T

(n)
N

| 2A
(n)
N (f)(x) − ∆̉f(x) |

converges to 0 as N tends to +∞.
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The expression linking the generator A
(n)
N and the transition matrix P

(n)
N is the following:

for a function g defined on (S1)n and x ∈ T
(n)
N ,

A
(n)
N (g)(x) = 4N2





∑

˾∈{� 1
2N

}n

P
(n)
N (x, x + ˾)g(x + ˾) − g(x)



 .

Let us recall the expression of P
(n)
N : for every x ∈ T n

N and ˾ ∈ {� 1
2N

}n,

P
(n)
N (x, x + ˾) =

∏

l∈Z/2NZ

∏s+
l

(x,˾)−1

i=0 ( a
2N

+ i)
∏s−

l
(x,˾)−1

i=0 ( a
2N

+ i)
∏sl(x)−1

i=0 ( a
N

+ i)
.

where sl(x) denote the number of coordinates of 2Nx equal to l and s�l (x, ˾) = Card({i ∈
{1, . . . , n}, 2Nxi = l and 2N˾i = �1}).

As s+
l (x, ˾) = s−l (x,−˾), P

(n)
N (x, x + ˾) = P

(n)
N (x, x − ˾). Thus,

2A
(n)
N (g)(x) =

∑

ǫ∈{� 1
2N

}n

P
(n)
N (x, x + ˾)Ln(g)(x, ˾) ∀x ∈ T

(n)
N .

where Ln(g)(x, h) = 4N2(g(x + h) + g(x − h) − 2g(x)) for h ∈ R. For a C2 function g
on (S1)r, a point x ∈ (S1)r and ǫ ∈ {�1}n, set Lr(g)(x, ǫ) =

∑r
i=1

∑r
j=1 ǫiǫj∂

2
i,jg(x). It

follows from a Taylor expansion with integral remainder that |Lr(g)(x, ǫ
2N

) −Lr(g)(x, ǫ)|

converges to zero uniformly on x ∈ T
(r)
N and ǫ ∈ {�1}r as N tends to +∞.

Let ̉ be a partition of [n] having d nonempty blocks. Let us define a discrete ver-

sion of the ∆̉. First, let ∆
(d)
N denote the discrete Laplacian on T

(d)
N : ∆

(d)
N g(x) =

1
2d

∑

ǫ∈{�1} Ld(g)(x, ǫ
2N

) for a function g defined on T
(d)
N . Then set ∆N,̉g(⋅) = ∆

(d)
N (g ◦

̏̉)(̏−1
̉ (⋅)).

It follows that ∆N,̉f(x) − ∆̉f(x) converges to zero uniformly on x ∈ T
(n)
N .

Let us note that the restriction of ̏̉ to {�1}d is a one-to-one map onto Ẻ∩{�1}n, whence

∆N,̉f(x) = 1
2d

∑

˾∈{� 1
2N

}n∩Ẻ
Ln(f)(x, ˾). Consequently, the expression of 2A

(n)
N f(x) −

∆̉f(x) can be split into the three following terms:

I1
N(x) =

∑

˾∈Ẻ∩{�
1

2N
}n

(P
(n)
N (x, x + ˾) −

1

2d
)Ln(f)(x, ˾)

I2
N(x) = ∆N,̉f(x) − ∆̉f(x)

I3
N(x) =

∑

˾∈Ec
̉∩{�

1
2N

}n

P
(n)
N (x, x + ˾)Ln(f)(x, ˾)

It remains to study the asymptotic behaviour of P
(n)
N (x, x + ˾). Let (B1, . . . , Bd) denote

the nonempty blocks of ̉ and let x ∈ C̉ ∩ T
(n)
N . Then

P
(n)
N (x, x + ˾) =

d
∏

l=1

˼a/2N(
∑

i∈Bl
1˾i=

1
2N

)˼a/2N(
∑

i∈Bl
1˾i=− 1

2N
)

˼a/N(|Bl|)
∀˾ ∈ {�

1

2N
}n

where ˼b(u) denotes the product
∏u−1

i=0 (b + i) for b > 0 and u ∈ N with the convention
∏−1

i=0 = 1. A computation shows that
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• if u, v ∈ N∗ then

˼a/2N(u)˼a/2N(v)

˼a/N(u + v)
≤

a

4N

u!v!

(u + v − 1)!
for 2N ≥ a.

• if u ∈ N∗ and v = 0 then

|
˼a/2N(u)˼a/2N(0)

˼a/N(u)
−

1

2
| =

1

2
(1 −

u−1
∏

i=1

(1 −
a

2a + 2Ni
)) ≤

1

2
(1 − (1 −

a

2a + 2N
)u−1).

Thus sup
x∈C̉ , ˾∈{� 1

2N
}n∩Ec

̉

P
(n)
N (x, x + ˾) and sup

x∈C̉, ˾∈{� 1
2N

}n∩Ẻ

|P
(n)
N (x, x + ˾) −

1

2d
| converge

to 0 as N tends to +∞.

3.1.3 Lipschitz property of the resolvents and the semigroups associated with
the Beta flow

Lemma 13 Let (P
(n)
N,t)t denote the n-point Markovian semigroup of the Beta flow on

1
N

(Z/NZ).

If f : T
(n)
N ջ R is a Lipschitz function then

• P
(n)
N,t(f) is a Lipschitz function with a Lipschitz coefficient bounded by ||f ||Lip.

• V
(n)
N,˺(f) is a Lipschitz function with a Lipschitz coefficient bounded by 1

˺
||f ||Lip.

Proof. We use a coupling argument borrowed from [5]. Let x = (x1, . . . , xn+1) be a point

of T
(n+1)
N such that x1 6= x2. Let Xt = (X

(1)
t , . . . , X

(n+1)
t ) be a Markov chain on T

(n+1)
N

with transition matrix P
(n+1)
N and with initial point x. Set ̍ = inf{s > 0, X

(1)
s = X

(2)
s }.

Since (X
(1)
t , X

(2)
t ) is a positive recurrent Markov chain on T

(2)
N , ̍ is almost surely finite.

Let us define two processes (Yt)t and (Zt)t on T
(n)
N :

• Y
(1)
t = X

(1)
t and Y

(i)
t = X

(i+1)
t for i ∈ {2, . . . , n},

• Z
(1)
t = X

(2)
t 1t≤̍ + X

(1)
t 1t>̍ and Z

(i)
t = X

(i+1)
t for i ∈ {2, . . . , n}.

As {(P
(n)
N,t)t, n ∈ N∗} defines a consistent family of Markovian semigroups, (Yt)t and

(X
(2)
t , X

(3)
t , . . . , X

(n+1)
t )t are both Markov processes with semigroup (P

(n)
N,t)t. The strong

Markov property implies that (Zt)t is also a Markov process with semigroup (P
(n)
N,t)t. As

Yt = Zt if t ≥ ̍ ,

|P
(n)
N,t(f)(x1, x3, . . . , xn+1) − P

(n)
N,t(f)(x2, x3, . . . , xn+1)|

= |E(f(Yt∧̍ ) − f(Zt∧̍ ))| ≤ ||f ||LipE(d(X
(1)
t∧̍ , X

(2)
t∧̍ )).

and

|V
(n)
N,˺(f)(x1, x3, . . . , xn+1) − V

(n)
N,˺(f)(x2, x3, . . . , xn+1)|

= |

∫ +∞

0

E(f(Yt∧̍ ) − f(Zt∧̍ ))e
−˺tdt| ≤ ||f ||Lip

∫ +∞

0

e−˺tE(d(X
(1)
t∧̍ , X

(2)
t∧̍ ))dt.
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Let us show that for every t ≥ 0, E(d(X
(1)
t∧̍ , X

(2)
t∧̍ )) ≤ d(x1, x2). Without loss of generality,

one may assume that w = x1−x2 ∈ {0, . . . , N−1}. Let (X̂
(1)
t , X̂

(2)
t ) be a Markov chain on

( 1
2N

Z)2 starting from (x1, x2) whose transition matrix P̂ is defined by: P̂ (x+ k
2N

, y+ l
2N

) =

P
(2)
N (x, y) for all (x, y) ∈ T

(2)
N and (k, l) ∈ Z2. Set Wt = X̂

(1)
t − X̂

(2)
t . Since w is even,

for every t ≥ 0, Wt∧̍ remains nonnegative, whence E(d(X̂
(1)
t∧̍ , X̂

(2)
t∧̍ )) ≤ E(Wt∧̍ ). As

(Wt) is a martingale, for every t ≥ 0, E(Wt∧̍ ) = w. Therefore E(d(X
(1)
t∧̍ , X

(2)
t∧̍ )) =

E(d(X̂
(1)
t∧̍ , X̂

(2)
t∧̍ )) ≤ w = d(x1, x2) for every t ≥ 0.

We have obtained the following inequalities: for every t ≥ 0,

|P
(n)
N,t(f)(x1, x3, . . . , xn+1) − P

(n)
N,t(f)(x2, x3, . . . , xn+1)| ≤ ||f ||Lipd(x1, x2).

and

|V (n)
˺ (f)(x1, x3, . . . , xn+1) − V (n)

˺ (f)(x2, x3, . . . , xn+1)| ≤
1

˺
||f ||Lipd(x1, x2).

As the semigroup (P
(n)
N,t)t is invariant by the action of a permutation, ∀x, y ∈ T

(n)
N ,

|P
(n)
N,t(f)(x) − P

(n)
N,t(f)(y)| ≤ ||f ||Lip

n
∑

i=1

d(xi, yi),

|V
(n)
N,˺(f)(x) − V

(n)
N,˺(f)(y)| ≤

1

˺
||f ||Lip

n
∑

i=1

d(xi, yi).

3.1.4 Proof of proposition 9.

A density argument reduces the problem to showing that for all C1 functions f and g on
(S1)n,

∫

V
(n)
N,˺(f)gdm

(n)
N converges to

∫

V
(n)
˺ (f)gdm(n) as N tends to +∞.

Let us introduce an extension of V
(n)
N,˺(f) to (S1)n:

Lemma 14 A Lipschitz function g on T
(n)
N can be extended to a function g̃ such that:

• || g̃ ||∞=|| g ||∞

• || g̃ ||Lip≤ Cn || g ||Lip where Cn is a constant only depending on n.

• g̃ is differentiable on (S1)n − R where R is the subset of points having at least
one coordinate in 1

2N
(Z/2NZ) and ||∂ig̃(x)|| ≤ Cn||g||Lip for all i ∈ {1, . . . , n} and

x ∈ (S1)n −R.

Proof. Firstly, a function g on T
(n)
N is extended to a function ḡ on the lattice ( 1

2N
(Z/2NZ))n

as follows: for x ∈ ( 1
2N

(Z/2NZ))n − T
(n)
N , set ḡ(x) = 1

|Vx|

∑

y∈Vx
g(y) where Vx is the

set of the nearest points of x in ( 1
2N

(Z/2NZ))n in the sense of the distance dn(x, y) =
∑n

i=1 d(xi, yi). This extension has the following properties:

• ||ḡ||∞ = ||g||∞,
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• there is a constant Cn > 0 such that for every Lipschitz function g : T
(n)
N ջ R,

||ḡ||Lip ≤ Cn||g||Lip.

Lastly, a function f defined on ( 1
2N

(Z/2NZ))n is extended to a function f̂ on (S1)n as

follows. A point x = (x1, . . . , xn) in an elementary cube
∏n

i=1]
ki

2N
, ki+1

2N
[ is the barycentre

of the vertices of this cube {k+̀
2N

, ̀ ∈ {0, 1}n} with the weights

˺n(k + ̀, x) = (2N)n

n
∏

i=1

(xi −
ki

2N
)̀i(

ki + 1

2N
− xi)

1−̀i

respectively. Then we set f̂(x) as the convex combination of the points f(k+̀
2N

) with the

weights ˺n(k + ̀, x) for every ̀ ∈ {0, 1}n : f̂(x) =
∑

̀∈{0,1}n ˺n(k + ̀, x)f(k+̀
2N

). Let us
list some properties of this extension:

• ||f̂ ||∞ = ||f ||∞ and f is differentiable in (S1)n −R.

• If f is a Lipschitz function then ||f̂ ||Lip ≤ ||f ||Lip and for every i ∈ {1, . . . , n},

|∂if̂(x)| ≤ ||f ||Lip if x ∈ (S1)n −R.

By lemma 13, V
(n)
N,˺(f) is Lipschitz with Lipschitz coefficient bounded by a constant irre-

spective of N , hence it is also the case for
˜

V
(n)
N,˺(f). Thus on applying lemma 11, we obtain

that the difference between
∫

V
(n)
N,˺(f)gdm

(n)
N and

∫ ˜
V

(n)
N,˺(f)gdm(n) converges to zero as N

tends to +∞. The remainder of the proof is the subject of the following key lemma:

Lemma 15 Let ˺ > 0. If f is a C1 function on (S1)n then for every g ∈ L2(m(n)),
∫

g
˜

V
(n)
N,˺(f)dm(n) converges to

∫

gV
(n)
˺ (f)dm(n).

Proof. For a positive real ˺, set E
(n)
˺ ( ⋅, ⋅) = ˺〈 ⋅, ⋅ 〉m(n) + E (n)( ⋅, ⋅) and H(n) the closure

of C1((S1)n) for the metric E
(n)
1 . As 〈u, v〉m(n) = E

(n)
˺ (V

(n)
˺ (u), v) for every u ∈ L2(m(n))

and v ∈ H(n), the weak convergence in the Dirichlet space (H(n), E
(n)
˺ ) implies the weak

convergence in (L2(m(n)), 〈 ⋅, ⋅ 〉m(n)).Thus, it suffices to prove that for all g ∈ H(n),

E
(n)
˺ (

˜
V

(n)
˺,N(f), g) tends to E

(n)
˺ (V

(n)
˺ (f), g).

It follows from lemmas 13 and 14 that
˜

V
(n)
˺,N(f) is bounded by ||f ||∞

˺
and differentiable on

(S1)n−R with partial derivatives bounded by ||f ||Lip. Thus expression (5) of E (n) enables
us to establish the following inequality

E (n)
˺ (

˜
V

(n)
˺,N (f)) ≤ Cn,˺(||f ||2Lip + ||f ||2∞)

where Cn,˺ is a constant irrespective of N and f . As the set of C3 functions is dense in

H(n), this reduces the problem to proving the convergence of E
(n)
˺ (

˜
V

(n)
˺,N(f), g) for any C3

function g.
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Let g be a C3 function. The difference IN = E
(n)
˺ (

˜
V

(n)
N,˺(f), g)−E

(n)
˺ (V

(n)
˺ (f), g) is the sum

of two terms:

I
(1)
N = E (n)

˺ (
˜

V
(n)
N,˺(f), g) − E

(n)
N,˺(V

(n)
N,˺(f), g)

I
(2)
N =

∫

f(x)g(x)dm
(n)
N (x) −

∫

f(x)g(x)dm(n)(x)

By lemma 11, I
(2)
N goes to zero as N tends to +∞.

Let us split up I
(1)
N :

I
(1)
N =

∫

˜
V

(n)
N,˺(f)(˺ − A(n))(g)dm(n) −

∫

˜
V

(n)
N,˺(f)(˺ − A(n))(g)dm

(n)
N

+

∫

V
(n)
N,˺(f)(A

(n)
N − A(n))(g)dm

(n)
N

It follows from expression (6) of the generator A(n) that A(n)(g) is a sum of Lipschitz

functions on Ẻ that vanish out of Ẻ. Thus lemma 11 can be applied to
˜

V
(n)
N,˺(f)(˺−A(n)).

Finally, the last integral is bounded by

‖f‖∞
˺

sup
x∈T

(n)
N

| (A
(n)
N − A(n))(g)(x) | .

Thus it converges to 0 as N tends to +∞, by lemma 12.

3.2 Proof of proposition 10.

Let f be a continuous function on (S1)n. As the two n-point processes are reversible

Markov processes, their generators A
(n)
N and A(n) are self-adjoint operators on the Hilbert

spaces L2(m
(n)
N ) and L2(m(n)) with nonpositive spectra. Let ̆f

N and ̆f denote the spectral

measures of A
(n)
N and A(n) respectively associated with the function f :

〈f, ̑(A
(n)
N )f〉

m
(n)
N

=

∫

R−

̑d̆f
N and 〈f, ̑(A(n))f〉m(n) =

∫

R−

̑d̆f

for every continuous function ̑ on R−.

The relation between the resolvent and the generator, given by V
(n)
N,˺ = (˺ − A

(n)
N )−1

in the discrete case, and the convergence of the resolvents imply that for every t > 0,
∫

1

t − x
d̆f

N(x) converges to

∫

1

t − x
d̆f (x). By the Stone-Weierstrass theorem, the alge-

bra A of polynomial functions in (1−x)−1 defined on R− is dense in the set C∞(R−) of con-
tinuous functions on R− vanishing at −∞. Let C be the vector space spanned by the fol-
lowing set of functions defined on R−, {x 7ջ 1

t−x
, t > 0}. As A is in the closure of C for the

uniform norm, A is dense in C∞(R−). Thus

∫

f(x)P
(n)
N,t(f)(x)dm

(n)
N (x) =

∫ 0

−∞

etxd̆f
N(x)

converges to

∫

f(x)P
(n)
t (f)(x)dm(n)(x) =

∫ 0

−∞

etxd̆f (x) for all t > 0. The polarization

identity lets us recover the announced convergence.
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3.3 Proof of theorem 8

First, let us notice that the convergence result stated in proposition 10 also holds if
the invariant measures m

(n)
N and m(n) of the n-point processes are replaced by uniform

measures:

Proposition 16 Let n ∈ N∗ and t > 0. Let ̄N,0, ̄N,1 and ̄ denote the uniform prob-
ability measures on 1

N
(Z/NZ), 1

2N
((2Z + 1)/2NZ) and S1 respectively. If f and g are

continuous functions on (S1)n then
∫

g(x)P
(n)
N,t(f)(x)d̄⊗n

N,0(x) and

∫

g(x)P
(n)
N,t(f)(x)d̄⊗n

N,1(x)

converges to

∫

g(x)P
(n)
t (f)(x)d̄⊗n(x) as N tends to +∞.

Proof. As ||P
(n)
N,t(f)||∞ ≤ ||f ||∞ a density argument reduces the problem to showing the

convergence results for C1 functions f and g. Let g and f be C1 functions on (S1)n.

First, let us show that
∫

g(x)P
(n)
N,t(f)(x)d̄⊗n

N (x) converges to
∫

g(x)P
(n)
t (f)(x)d̄⊗n(x)

as N tends to +∞, where ̄
(n)
N denotes the uniform measure on T

(n)
N . For ˾ > 0, set

V˾ = {x ∈ (S1)n, ∃ i 6= j, |xi − xj| < ˾} and consider a continuous function g˾ on (S1)n

such that g˾ = 0 on V0, g˾ = g outside V˾ and ||g˾||∞ ≤ ||g||∞.

Outside V0, the measures m
(n)
N and m(n) coincide with ̄

(n)
N and ̄⊗n respectively. It follows

from proposition 10 that
∫

g˾P
(n)
N,t(f)d̄

(n)
N converges to

∫

g˾P
(n)
t (f)d̄⊗n. As ̄⊗n(∂V˾) = 0,

̄
(n)
N (Vǫ) converges to ̄⊗n(Vǫ). Thus, the upper limit as N tend to +∞ of

|

∫

gP
(n)
N,t(f)d̄

(n)
N −

∫

gP
(n)
t (f)d̄⊗n| ≤

∫

|g − g˾||P
(n)
N,t(f)|d̄

(n)
N

+ |

∫

g˾P
(n)
N,t(f)d̄

(n)
N −

∫

g˾P
(n)
t (f)d̄⊗n| +

∫

|g − g˾||P
(n)
t (f)|d̄⊗n

is bounded by 4||g||∞||f ||∞̄⊗n(V˾). As ̄⊗n(V˾) converges to ̄⊗n(V0) = 0 as ˾ tends to 0,

|
∫

gP
(n)
N,t(f)d̄

(n)
N −

∫

gP
(n)
t (f)d̄⊗n| converges to 0 as N tends to +∞.

To conclude, let us remark that for every Lipschitz function ̏ on (S1)n, the difference

between
∫

̏d̄
(n)
N and

∫

̏d̄⊗n
N,0 or

∫

̏d̄⊗n
N,1 is bounded by

1

2Nn

N−1
∑

u1=0

⋅ ⋅ ⋅

N−1
∑

un=0

|̏(
u1

N
, ⋅ ⋅ ⋅ ,

un

N
) − ̏(

2u1 + 1

2N
, ⋅ ⋅ ⋅ ,

2un + 1

2N
)| ≤

n

4N
||̏||Lip.

As P
(n)
N,t(f) is Lipschitz with Lipschitz coefficient bounded by ||f ||Lip, this ends the proof

of proposition 16.

3.3.1 Proof of assertion (i)

Let t be a fixed positive real. We shall prove that for every j ∈ N∗, if ̅N for N ∈ N∗

is a probability measure defined on ( 1
N

(Z/NZ))j such that (̅N)N converges weakly to
a probability measure ̅ on (S1)j and if g is a continuous function on (S1)j then the
random variables ̅NK⊗j

N,0,t(g) converge in law towards ̅K⊗j
0,t (g) as N tends to +∞. This
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convergence result applied to ̅N = ̆⊗r
N and j = lr where r ∈ N∗, will show that the

measures E((̆NK⊗ℓ
N,0,t)

⊗r) converge weakly to E((̆K⊗ℓ
0,t )

⊗r). Thus the convergence in law

of ̆NK⊗ℓ
N,0,t will follow.

Let j ∈ N∗, (̅N)N be a sequence of probability measures defined on the sets ( 1
N

(Z/NZ))j

that converges weakly to a probability measure ̅ on (S1)j. As the C1 functions on (S1)j

are dense in C((S1)j), it suffices to prove that for every g ∈ C1((S1)j), the sequence
of random variables (̅NK⊗j

N,0,t(g))N converges in law to ̅K0,t(g). Indeed, let (gk) be a
sequence of C1 functions that converges to g ∈ C((S1)j). For every u ∈ R,

|E(eiu̅NK⊗j
N,0,t

(g)) − E(eiu̅K⊗j
0,t (g))| ≤ |u|E(|̅NK⊗j

N,0,t(gk) − ̅NK⊗j
N,0,t(g)|)

+ |E(eiu̅NK⊗j
N,0,t

(gk)) − E(eiu̅K⊗j
0,t (gk))| + |u|E(|̅K⊗j

0,t (gk) − ̅K⊗j
0,t (g)|)

≤ 2|u|||g − gk||∞ + |E(eiu̅NK⊗j
N,0,t

(gk)) − E(eiu̅K⊗j
0,t (gk))|

Let ˾ > 0. If we take the upper limit of the two parts of the previous inequality as N
tends to +∞ with an integer k satisfying ||g − gk||∞ ≤ ˾, then

limN |E(eiu̅NK⊗j
N,0,t

(g)) − E(eiu̅K⊗j
0,t (g))| ≤ 2|u|˾

provided that ̅NK⊗j
N,0,t(h) converges in law to ̅K⊗j

0,t (h) for any h ∈ C1((S1)j).

Let g be a C1 function on (S1)j. In order to prove that XN = ̅NK⊗j
N,0,t(g) converges in

law to X = ̅K⊗j
0,t (g), let us introduce a sequence of probability measures with Lebesgue

density that approaches ̅: Let ̏ be a C∞ density function defined on (S1)j. For k ∈ N∗,
set ̏k : x 7ջ kj̏(kx). Then any probability measure ̀ on (S1)j can be approximated by
the probability measures (̏k ⋆ ̀)(x)̄⊗j(dx): more precisely, there is a constant Cj,̏ such
that for every Lipschitz function f on (S1)j and every probability measure ̀ on (S1)j

|

∫

f(̏k ⋆ ̀)d̄⊗j −

∫

fd̀| ≤
Cj,̏

k
||f ||Lip. (7)

Indeed,

∣

∣

∣

∫

f(̏k ⋆ ̀)d̄⊗j −

∫

fd̀
∣

∣

∣

=
∣

∣

∣

∫ ∫

f(u)̏k(u − v)d̄⊗j(u)d̀(v) −

∫

f(v)
(

∫

̏k(u − v)d̄⊗j(u)
)

d̀(v)
∣

∣

∣

≤ ||f ||Lip

j
∑

i=1

∫

(

∫

|ui − vi|̏k(u − v)d̄⊗j(u)
)

d̀(v)

To obtain bound (7), it remains to note that
∫

|ui−vi|̏k(u−v)d̄⊗j(u) = 1
k

∫

|zi|̏(z)d̄⊗j(z).

Let us introduce auxiliary variables: for k ∈ N∗, set X(k) =
∫

(S1)j K⊗j
0,t (g)(̏k ⋆ ̅)d̄⊗j,

X
(k)
N =

∫

K⊗j
N,0,t(g)(̏k ⋆ ̅)d̄⊗j

N,0 and Y
(k)
N =

∫

K⊗j
N,0,t(g)(̏k ⋆ ̅N)d̄⊗j

N,0. It follows from

proposition 16 that for every k ∈ N∗, the moments of any order of (X
(k)
N )N converges to

the moments of X(k). As the random variables X
(k)
N and X(k) are bounded by ||g||∞||̏k||∞,

(X
(k)
N )N converges in law to X(k). In order to deduce that (XN)N converges in law to X,

we shall prove the following results:
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• E((X(k) − X)2) converges to 0 as k tends to +∞,

• supN≥kj+2 E((Y
(k)
N − XN)2) converges to 0 as k tends to +∞,

• for every k ∈ N∗, E((X
(k)
N − Y

(k)
N )2) converges to 0 as N tends to +∞.

These three convergence results are sufficient to deduce that the characteristic functions
of XN converge pointwise to the characteristic function of X. Indeed, for every u ∈ R

and k ∈ N∗, |E(exp(iuXN)) − E(exp(iuX))| is bounded by

|E(exp(iuXN)) − E(exp(iuX))| ≤ |u|E(|XN − Y
(k)
N |)

+ |u|E(|Y
(k)
N − X

(k)
N |) + |E(exp(iuX

(k)
N )) − E(exp(iuX(k)))| + |u|E(|X(k) − X|).

Thus for every ˾ > 0, there exists an integer k˾ such that for every N ≥ kj+2,

|E(exp(iuXN)) − E(exp(iuX))| ≤ ||u|˾ + |u|E(|Y
(k˾)
N − X

(k˾)
N |)

+ |E(exp(iuX
(k˾)
N )) − E(exp(iuX(k˾)))|.

By taking the upper limit, as N tends to +∞, of the two terms in this inequality, we
obtain that |E(exp(iuXN)) − E(exp(iuX))| converges to 0.

• Study of E((X(k) − X)2): First,

E((X(k))2−X(k)X) =

∫

(

∫

P
(2j)
t (g⊗g)(u, v)(̏k⋆̅)(u)d̄⊗j(u)

)

(̏k⋆̅)(v)d̄⊗j(v)

−

∫

(

∫

P
(2j)
t (g ⊗ g)(u, v)(̏k ⋆ ̅)(u)d̄⊗j(u)

)

d̅(v).

As the map P
(2j)
t (g⊗g) is Lipschitz, the map v 7ջ

∫

P
(2j)
t (g⊗g)(u, v)(̏k⋆̅)(u)d̄⊗j(u)

is also Lipschitz with Lipschitz coefficient bounded by ||P
(2j)
t (g⊗g)||Lip. Thus, bound

(7) gives |E((X(k))2 − X(k)X)| ≤
Cj,̏

k
||P

(2j)
t (g ⊗ g)||Lip. Similarly,

|E(X(k)X − X2)| =
∣

∣

∣

∫

(

∫

P
(2j)
t (g ⊗ g)(u, v)d̅(u)

)

(̏k ⋆ ̅)(v)d̄⊗j(v)

−

∫

(

∫

P
(2j)
t (g ⊗ g)(u, v)d̅(u)

)

d̅(v)
∣

∣

∣
≤

Cj,̏

k
||P

(2j)
t (g ⊗ g)||Lip.

Therefore E((X(k) − X)2) converges to 0 as k tends to +∞.

• Study of E((Y
(k)
N − XN)2): the same splitting as before yields that

E((Y
(k)
N −XN)2) =

∫

(F 1
N(v)−F 2

N(v))(̏k⋆̅N)(v)d̄⊗j
N,0(v)−

∫

(F 1
N(v)−F 2

N(v))d̅N(v)

where

F 1
N(v) =

∫

P
(2j)
N,t (g ⊗ g)(u, v)(̏k ⋆ ̅N)(u)d̄⊗j

N,0(u)

F 2
N(v) =

∫

P
(2j)
N,t (g ⊗ g)(u, v)d̅N(u).
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Let us bound more generally,

∆N,k(f) =

∫

f(̏k ⋆ ̅N)d̄⊗j
N,0 −

∫

fd̅N

for a Lipschitz function f on (S1)j. ∆N,k(f) is the sum of two following terms:

∆
(1)
N,k(f) =

∫

f(̏k ⋆ ̅N)d̄⊗j
N,0 −

∫

f(̏k ⋆ ̅N)d̄⊗j

∆
(2)
N,k(f) =

∫

f(̏k ⋆ ̅N)d̄⊗j −

∫

fd̅N .

It follows from bound (7) that |∆
(2)
N,k(f)| ≤

Cj,̏

k
||f ||Lip. By developing the convolu-

tion term ̏k ⋆ ̅N , the expression of ∆
(1)
N,k(f) becomes

∆
(1)
N,k(f) =

∫

(

∫

f(u)̏k(u − v)d̄⊗j
N,0(u) −

∫

f(u)̏k(u − v)d̄⊗j(u)
)

d̅N(v).

Since for every v ∈ (S1)j, u 7ջ f(u)̏k(u − v) is a Lipschitz function with Lipschitz
coefficient bounded by ||f ||Lipk

j||̏||∞ + ||f ||∞kj+1||̏||Lip, we obtain

|∆
(1)
N,k(f)| ≤ Dj

kj+1

N
(
1

k
||f ||Lip||̏||∞ + ||f ||∞||̏||Lip)

where Dj is a constant irrespective of f and ̏. In conclusion, there is a constant
Dj,̏ such that for every lipschitz function f on (S1)j and k ∈ N∗,

sup
N≥kj+2

|∆N,k(f)| ≤
Dj,̏

k
(||f ||∞ + ||f ||Lip).

Since the map P
(2j)
N,t (g ⊗ g) is a Lipschitz function verifying

||P
(2j)
N,t (g ⊗ g)||∞ ≤ ||g ⊗ g||∞ and ||P

(2j)
N,t (g ⊗ g)||Lip ≤ ||g ⊗ g||Lip,

F 1
N and F 2

N have the same properties. Thus supN≥kj+2 E((Y
(k)
N − XN)2) converges

to 0 as k tends to +∞.

• Study of E((Y
(k)
N − X

(k)
N )2): fix an integer k ∈ N∗.

|E((Y
(k)
N )2 − Y

(k)
N X

(k)
N )|

≤

∫ ∫

|P
(2j)
N,t (g ⊗ g)(u, v)|(̏k ⋆ ̅N)(u)|(̏k ⋆ ̅N)(v) − (̏k ⋆ ̅)(v)|d̄⊗j

N,0(v)d̄⊗j
N,0(u)

≤ kj||g||2∞||̏||∞

∫

|(̏k ⋆ ̅N)(v) − (̏k ⋆ ̅)(v)|d̄⊗j
N,0(v)

The term |E((X
(k)
N )2 − Y

(k)
N X

(k)
N )| has the same bound.

The weak convergence of (̅N)N to ̅ implies that for every u ∈ (S1)j, ̏k ⋆ ̅N(u)
converges to ̏k ⋆ ̅(u). As for every N , the map ̏k ⋆ ̅N is Lipschitz with Lipschitz
coefficient bounded by kj+1||̏||Lip, (̏k ⋆ ̅N)N converges uniformly to ̏k ⋆ ̅. It

follows that for every k ∈ N∗, E((Y
(k)
N − X

(k)
N )2) converges to 0 as N tends to +∞.
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3.3.2 Proof of assertion (ii)

By (i), ̆NK⊗ℓ
N,0,t(g) converges in law to ̆K⊗ℓ

0,t (g) as N tends to +∞. These random

variables are bounded by ||g||∞. Thus E(̆NK⊗ℓ
N,0,t(g)) =

∫

P
(ℓ)
N,0,t(g)d̆N converges to

E(̆K⊗ℓ
0,t (g)) =

∫

P
(ℓ)
0,t (g)d̆.

By splitting f into its positive and its negative part, it suffices to deal with a nonnegative
function f . If

∫

fd̆ = 0 then |
∫

P
(ℓ)
N,t(g)fd̆N | ≤ ||g||∞

∫

fd̆N tends to 0. Assume now
that

∫

fd̆ > 0. Then for N large enough,
∫

fd̆N is positive. Let us apply the previous

result with the sequence of probability measures ˜̆N = f(x)d̆N (x)
R

fd̆N
: (˜̆N) weakly converges

to ˜̆(dx) = f(x)d̆(x)
R

fd̆
whence 1

R

fd̆N

∫

P
(ℓ)
N,0,t(g)fd̆N converges to 1

R

fd̆

∫

P
(ℓ)
0,t (g)fd̆. As

∫

fd̆N tends to
∫

fd̆,
∫

P
(ℓ)
N,0,t(g)fd̆N converges to

∫

P
(ℓ)
0,t (g)fd̆.

3.3.3 Proof of assertion (iii)

Set ̅N,t = ̀NKN,0,t and ̅t = ̀K0,t for every t ∈ R. Let us prove by iteration that for
every r ∈ N∗, the r-dimensional distributions of ̅N converge weakly to the r-dimensional
distributions of ̅, that is for every 0 = t1 < . . . < tr, the distribution of (̅N,t1 , . . . , ̅N,tr)
converges to the distribution of (̅t1 , . . . , ̅tr).
First, this convergence result holds for r = 1. Let r ∈ N∗. Assume that the r-dimensional
distributions of ̅N converge weakly to those of ̅. Let 0 = t1 < . . . < tr+1. To prove that
the distribution of (̅N,t1 , . . . , ̅N,tr+1) converges to the distribution of (̅t1 , . . . , ̅tr+1), it
suffices to show that for every k1, . . . , kr+1 ∈ N, g1 ∈ C((S1)k1), . . . , gr+1 ∈ C((S1)kr+1),

E(̅⊗k1
N,t1

(g1) ⋅ ⋅ ⋅̅
⊗kr+1

N,tr+1
(gr+1)) converges to E(̅⊗k1

t1 (g1) ⋅ ⋅ ⋅̅
⊗kr+1

tr+1
(gr+1)).

First, let us note that for every N ∈ N, ̅N,tr+1 = ̅N,trKN,tr,tr+1 , the random matrix
KN,tr,tr+1 has the same law as KN,0,tr+1−tr and is independent of (̅N,t1 , . . . , ̅N,tr). Thus,

E(̅⊗k1
N,t1

(g1) ⋅ ⋅ ⋅̅
⊗kr+1

N,tr+1
(gr+1)) =

∫

(S1)h

P
(h)
N,tr+1−tr

(G)Fd̆N

where h =
∑r+1

i=1 ki, F and G are the maps defined on (S1)h by

F (x, y) = (g1 ⊗ ⋅ ⋅ ⋅ ⊗ gr)(x) and G(x, y) = gr+1(y) ∀x ∈ (S1)
Pr

i=1 ki , ∀y ∈ (S1)kr+1

and ̆N is the probability measure E(̅⊗k1
N,t1

⊗ ⋅ ⋅ ⋅ ⊗ ̅
⊗kr−1

N,tr−1
⊗ ̅

⊗(kr+kr+1)
N,tr

).
By the iterative assumption, the distribution of (̅N,t1 , . . . , ̅N,tr) converges to the distri-
bution of (̅t1 , . . . , ̅tr). Thus in particular, (̆N)N weakly converges to ̆ = E(̅⊗k1

t1 ⊗

⋅ ⋅ ⋅⊗̅
⊗kr−1

tr−1
⊗̅

⊗(kr+kr+1)
tr ). It follows from assertion (ii) that E(̅⊗k1

N,t1
(g1) ⋅ ⋅ ⋅̅

⊗kr+1

N,tr+1
(gr+1))

converges to E(̅⊗k1
t1 (g1) ⋅ ⋅ ⋅̅

⊗kr+1

tr+1
(gr+1)), ending the proof of (iii).
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