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In [2], a family of stochastic flows of kernels on S1 called “sticky flows” is described.
Sticky flows are defined by their “moments” which are consistent systems of transition
kernels on S1. In this note, a discrete version of sticky flows is presented in the case the
sticky flows are associated with a system of Brownian particles on S1. This discrete model
is defined by products of Beta matrices on the discrete torus Z/NZ and will be called a
Beta flow. Similarly to the continuous case, the moments of the Beta flow are consistent
systems of transition matrices on Z/NZ. A convergence of the Beta matrices to sticky
kernels is shown at the level of the moments.

1 Beta matrices and Polya scheme

Let a be a positive parameter and N be an even positive integer. We define a random
transition matrix K on the discrete torus TN = Z/NZ as follows :

K(i, j) = Xi1j=i+1 + (1 − Xi)1j=i−1

where X1, . . . , XN are independent Beta( a
N

, a
N

) random variables.
Let (Kn)n be a i.i.d sequence of such random transition matrices and let {Z(t), t ≥ 0} be
an independent Poisson process on R with intensity N2. The family of matrices (KN,s,t)s≤t

defined by: KN,s,t = KZ(s)+1KZ(s)+2 · · ·KZ(t) for every s ≤ t , is a stochastic flow of kernels
on Z/NZ. It will be called the Beta flow on Z/NZ.

1



1.1 Description of the n-point motion

Following the generalization of De Finetti theorem given in [1], it is shown that the
law of such a stochastic flow of transition kernels is given by a consistent system of n-
point Markovian semigroups {Π

(n)
t = E(K⊗n

0,t ), n ∈ N∗}. In our case, these Markovian

semigroups (Π
(n)
t )t are associated with a jump Markov process on (TN)n with holding

times N2 and transition matrices P
(n)
N = E(K⊗n). Let us compute the positive transition

probabilities: for x = (x1, . . . , xn) ∈ (TN)n and ε ∈ {−1, 1}n,

P
(n)
N (x, x + ε) = E

(

n
∏

j=1

(Zxj
1εj=1 + (1 − Zxj

)1εj=−1)

)

=
∏

l∈TN

E(Z
s+
l

(x,ε)

l (1 − Zl)
s−
l

(x,ε)).

where s±l (x, ε) = Card({i ∈ {1, . . . , n}, xi = l and εi = ±1}).
Let sl(x) denote the number of coordinates of x equal to l.

P
(n)
N (x, x + ε) =

∏

l∈TN

∏s+
l

(x,ε)−1

i=0 ( a
N

+ i)
∏s−

l
(x,ε)−1

i=0 ( a
N

+ i)
∏sl(x)−1

i=0 (2a
N

+ i)
.

Let us note that

P (1)(x, x + ε) =
1

2
for n = 1,

P (n)(x, x + ε) = P (n−1)(x, x + ε)
( a

N
+ s+

xn
(x, ε))1εn=1( a

N
+ s−xn

(x, ε))1εn=−1

2a
N

+ sxn
(x)

for n ≥ 2

where x = (x1, . . . , xn−1).
Thus the transition mechanism can be described as follows: the first point moves from a
site i to the site i+1 or to the site i− 1 with equal probability. The motion of the (k− 1)

first points being known, the k-th point jumps by +1 with probability
u+ a

N

u+v+ 2a
N

if among

the k − 1 first points, u + v were located in the same site, u jumping by +1 and v by −1.
This is a combination of independent Polya urns attached at each site.

1.2 Invariant measures and Dirichlet processes

We shall focus our attention on the irreducible component

T
(n)
N = {x ∈ (Z/NZ)n, xi − x1 ∈ 2Z, for all 1 ≤ i ≤ n}.

of the n-point process.

Proposition 1 For every n ∈ N∗, the n-point process on T
(n)
N has a reversible measure

m
(n)
N given by

m
(n)
N (x) =

∏

l∈Z/NZ
(
∏sl(x)−1

i=0 (2a
N

+ i))

2
∏n−1

i=0 (a + i)
for all x ∈ T

(n)
N (1)

2



Proof. The ratio P (n)(x,x+ε)

P (n)(x+ε,x)
is equal to

∏

l∈TN





∏s+
l

(x,ε)−1

i=0 ( a
N

+ i)
∏s−

l
(x,ε)−1

i=0 ( a
N

+ i)
∏s+

l
(x+ε,−ε)−1

i=0 ( a
N

+ i)
∏s−

l
(x+ε,−ε)−1

i=0 ( a
N

+ i)





∏

l∈TN

(

∏sl(x+ε)−1
i=0 (2a

N
+ i)

∏sl(x)−1
i=0 (2a

N
+ i)

)

As s+
l (x + ε,−ε) = s−l (x, ε), the first quotient in the parentheses is equal to one. Thus

the probability measure proportional to the measure αn on T
(n)
N , defined by

αn(x) =
∏

l∈TN

(

sl(x)−1
∏

i=0

(
2a

N
+ i)) for all x ∈ T

(n)
N ,

is a reversible measure for the n-point motion. It remains to note that the total mass of
αn is 2

∏n−1
i=0 (a + i) (this equality can be proved by iteration on n).

Remark. This result can be extended to a more general situation of a non reversible
chain on a finite graph. It will be described in a forthcoming paper.

Note that m
(1)
N is the uniform law on Z/NZ and that m

(n)
N verifies the following iterative

relation:

m
(n+1)
N (x, xn+1) =

2a
N

+ sxn+1(x)

a + n
m

(n)
N (x) ∀(x, xn+1) ∈ T

(n+1)
N and n ∈ N∗ (2)

It follows from the expression (1) that x 7→ m
(n)
N (x) is constant on each class of the

equivalent relation: x ∼ y if and only if ∀ i, j ∈ {1, . . . , n}, xi = xj ⇒ yi = yj. Thus

m
(n)
N can be expressed as a mixture of uniform laws on these equivalent classes. In order

to give a precise decomposition of m
(n)
N , let us introduce some notations associated with

a partition π of [n] = {1, . . . , n}.
Let Pn be the set of all partitions of [n]. Let |π| denote the number of non-empty blocks
of π. Let Cπ be the set of points x ∈ (S1)n such that xi = xj if and only if i and j are

in the same block of π. The sets Cπ ∩ T
(n)
N are the equivalent classes for the equivalent

relation described above. Let Eπ denote the set of points x ∈ (S1)n such that, if i and

j are in the same block of π, then xi = xj. The uniform measure on Eπ ∩ T
(n)
N denoted

by λN,π can be expressed as the image of the uniform measure on T
(|π|)
N by the one-to-one

map φπ defined as follows: for all x ∈ (S1)|π|, φπ(x) = (y1, . . . , yn) where yi = xl if i
belongs to the l-th block of π.

Proposition 2 The invariant measure m
(n)
N of the n-point motion on T

(n)
N has the fol-

lowing decomposition:

m
(n)
N =

∑

π∈Pn

p(a)
π λN,π

where p
(a)
π = ak

∏k
i=1(ni−1)!

∏n−1
i=0 (a+i)

if π is a partition of [n] with k nonempty blocks of length

n1, . . . , nk.

Remark. (p
(a)
π )π∈Pn

is the exchangeable partition function of an exchangeable sequence
of random variables governed by the Blackwell-MacQueen Urn scheme [3].

3



Proof. The proof of the proposition can be established by induction on n using the
iterative definition (2) of m

(n)
N and the following iterative definition of (p

(a)
π )π∈Pn

: let
π = (B1, . . . , Bk) be a partition of [n] with k nonempty blocks. Then

p
(a)
π̃ =

{

a
a+n

p
(a)
π if π̃ = (B1, . . . , Bk, {n + 1})

a+nk

a+n
p

(a)
π if π̃ = (B1, . . . , Bk ∪ {n + 1})

Let us note that the jump chain is two-periodic. The set of states T
(n)
N of the chain

can be divided in two sets: C
(n)
1,N the set of points x ∈ T

(n)
N with odd coordinates and C

(n)
2,N

the set of points x ∈ T
(n)
N with even coordinates. If x = (x1, . . . , xn) ∈ C

(n)
2,N then

2m
(n)
N (x) = E(

N/2
∏

i=1

Y
s2i(x)
2i ) = E(

n
∏

i=1

Yxi
)

where (Y2, Y4, . . . , YN) is a random vector with symmetric Dirichlet law DN/2(
2a
N

, . . . , 2a
N

)1.

Thus for all n ∈ N∗, the restriction2 of m
(n)
N to C

(n)
2,N is equal to E(µ⊗n) where µ is a

Dirichlet process3 on 2Z/NZ with parameter a. Equivalently, for all n ∈ N∗, the restriction

of m
(n)
N to C

(n)
1,N is equal to E(ν⊗n) where ν is a Dirichlet process on (2Z + 1)/NZ with

parameter a.

2 Consistent system of sticky kernels on S
1

We now consider the Beta flow as defined on the lattice 1
N

(Z/NZ) of S1. It is a discrete
model of the sticky flow defined by Y. Le Jan and O. Raimond in [2] for the parameter
τ = 1

a+1
and the exponent ψ : λ 7→ 1

2
|λ|2. Let us summarize the properties of this sticky

flow. For a detailed presentation of the sticky flows in a more general setting, we refer
the reader to [2].

For n ∈ N∗, let us consider the measure m(n) defined on (S1)n by m(n) =
∑

π∈Pn
p

(a)
π λπ

where λπ is the image of the Lebesgue measure λ⊗|π| on (S1)|π| by the map φπ. As this
defines an exchangeable and consistent system of measures, it follows from Kingman’s
representation theorem that there exists a random measure on S1 such that m(n) = E(µ⊗n)
for every n ∈ N∗. In our case, µ is the Dirichlet process of parameter a on S1.

Using this family of measures, a consistent system of Feller semigroups denoted (P
(n)
t )

can be defined via their Dirichlet forms:

1The Dirichlet law Dr(a1, · · · , ar) where a1 > 0, . . . , ar > 0 is a law on the simplex Sr = {x ∈

(0, 1)r, x1+· · ·+xr = 1} defined by Γ(a1+···+ar)
Γ(a1)···Γ(ar) xa1−1

1 . . . xar−1
r

1x1+···+xr=1dx1 · · · dxr−1. Thus its moment

of order (k1, . . . , kr) is Γ(a1+k1)···Γ(ar+kr)
Γ(a1)···Γ(ar)

Γ(a1+···+ar)
Γ(a1+···+ar+k1+···+kr)

2The restriction of a probability measure m to a measurable set B is the measure m( · ∩B)
m(B) .

3A Dirichlet process of parameter a > 0 on a compact metric space M is a random measure µ on M such
that for every measurable finite partition (B1, . . . , Bk) of M , the random vector (µ(B1), µ(B2) . . . , µ(Bk))
has the Dirichlet law Dk(aλ(B1), . . . , aλ(Bk)) where λ denotes the uniform distribution on M .
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Proposition 3 (Y. Le Jan and O. Raimond, [2]) For k ∈ N∗, let E¯k be the Dirich-

let form defined on L2((S1)k, λ⊗k), associated with k independent Brownian motions on

S1. For every n ∈ N∗, let E (n) denote the Dirichlet form on C1((S1)n) defined as follows:

∀f, g ∈ C1((S1)n), E (n)(f, g) =
∑

π∈Pn

pπE
¯|π|(f ◦ φπ, g ◦ φπ).

• The semigroups (P
(n)
t ), n ∈ N∗ associated with the Dirichlet forms E (n), n ∈ N∗

define a consistent system of strong Feller semigroups.

• For every n ∈ N∗, the generator of E (n) denoted by A(n) has the following expression:

A(n)(f) =
1

2

∑

π∈Pn

(∆(|π|)(f ◦ φπ)) ◦ φ−1
π 1Cπ

∀f ∈ C2((S1)n) (3)

Since {(P
(n)
t )t, n ∈ N∗} is a compatible family of Feller semigroups on S1, it follows from

theorem 1.1.4 in [1] that it is possible to construct a stochastic flow of kernels (Ks,t) such

that E(K⊗n
0,t ) = P

(n)
t for every t ∈ R and n ∈ N∗. This stochastic flow was named a sticky

flow of parameter τ = 1
a+1

and exponent4 ψ : λ 7→ 1
2
|λ|2.

3 Convergence theorem

We will now establish the weak convergence of the moments of the Beta kernels to the
moments of the sticky kernels:

Theorem 4 For n ∈ N∗, let (P
(n)
N,t)t denote the semigroup of the n-point process defined

on T̄
(n)
N by the Beta flow. Let (P

(n)
t )t denote the semigroup of the n-point process defined

on (S1)n by the sticky flow of parameter a and exponent ψ : λ 7→ 1
2
|λ|2.

For every n ∈ N∗, if f and g are continuous functions on (S1)n, then
∫

gP
(n)
N,t(f)dm

(n)
N

converges to
∫

gP
(n)
t (f)dm(n) as N tends to +∞.

Before going into details, let us explain the scheme of the proof. The main step of the
proof of this theorem, is to show the following convergence of the resolvents:

Proposition 5 Let n ∈ N∗. Let (V
(n)
N,λ)λ>0 denote the resolvent associated with the n-

point motion of the Beta flow and let (V
(n)
λ )λ>0 denote the resolvent of the n-point motion

of the sticky flow of parameter a and exponent ψ : λ 7→ 1
2
|λ|2.

For all continuous functions f and g on (S1)n,
∫

V
(n)
N,λ(f)gdm

(n)
N converges to

∫

V
(n)
λ (f)gdm(n)

as N tends to +∞.

As the discrete and the continuous n-point processes are both reversible, an argument
using spectral measures allows to deduce the weak convergence of the semigroups from
the weak convergence of the resolvents.
The convergence of the resolvents is based on the convergence of the invariant measure
m

(n)
N and of the generator of the n-point motion of the Beta flow together with a Lipschitz

property of the discrete resolvent V
(n)
N,λ.

Before proving proposition 5, let us give precise statements of these three points.
4More generally, sticky flows can be constructed using a Levy process with no polar points instead of

a Brownian motion; ψ refers to the exponent of the chosen Levy process.
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Convergence of the invariant measures

Lemma 6 For every partition π of [n], let fπ be a function defined on (S1)n, Lipschitz

on Eπ and vanishing outside Eπ. Let f =
∑

π∈Pn
fπ. Then

|

∫

fdm
(n)
N −

∫

fdm(n)| ≤
Cn

N

∑

π∈Pn

(||fπ||Lip + ||fπ||∞).

Proof. Let EN,π denote the intersection of Eπ with T̄
(n)
N and let λN,π be the uniform

distribution on T̄
(n)
N . It suffices to prove that for all partitions π, π′ of [n],

|

∫

EN,π′

fπdλN,π′ −

∫

Eπ′

fπdλπ′ | ≤
Cn

N
(||fπ||Lip + ||fπ||∞).

Let us first consider the case π is not thinner than π′, that is there is a nonempty block
B of π intersecting at least two blocks of π′. Let π̃ be the partition of [n] obtained by
merging the blocks of π that intersect the same block of π′. Then Eπ′ ∩Eπ is a subset of
Eπ̃. As π̃ is a coarser partition than π′, λπ′(Eπ̃) = 0 and |EN,π̃| ≤

2
N
|EN,π′|. Thus

|

∫

EN,π′

fπdλN,π′ −

∫

Eπ′

fπdλπ′ | =
1

|EN,π′ |
|

∑

x∈EN,π′

fπ(x)| ≤
2

N
||fπ||∞.

Let us now consider the case π is equal or thinner than π′. Then Eπ′ ⊂ Eπ. If π′ has k
nonempty blocks then

|

∫

EN,π′

fπdλN,π′ −

∫

Eπ′

fπdλπ′| = |
2k−1

Nk

∑

x∈T
(k)
N

fπ(φπ′(
x

N
)) −

∫

(S1)k

fπ′(φπ′(x))dx|.

The function fπ′ ◦ φπ′ is a Lipschitz function with Lipschitz coefficient smaller than
n||fπ′ ||Lip. Thus it remains to establish the following result: for every k ∈ N∗, there
exists a constant Ck such that for every Lipschitz function g on (S1)k,

|
2k−1

Nk

∑

x∈T
(k)
N

g(
x

N
) −

∫

(S1)k

g(x)dx| ≤
Ck

N
||g||Lip.

The proof can done by induction on k.

Convergence of the generators

Lemma 7 For every n ∈ N∗, let A
(n)
N denote the generator of the n-point motion of the

Beta flow on T̄
(n)
N . For every C2 function f on (S1)n,

sup
x∈T

(n)
N

|A
(n)
N (f)(

x

N
) − A(n)(f)(

x

N
)|

converges to 0 as N tends to +∞.
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Proof. Let n ∈ N∗ and f be a C2 function defined on (S1)n. Let us recall the expression
of A(n)(f) :

A(n)(f) =
1

2

∑

π∈Pn

∆π(f)1Cπ
where ∆π(f)(x) = ∆(|π|)(f ◦ φπ)(φ−1

π (x)).

Thus it suffices to prove that for every partition π of [n], sup
x∈Cπ∩T

(n)
N

| 2A
(n)
N (f)(

x

N
) − ∆πf(

x

N
) |

converges to 0 as N tends to +∞.
The expression linking the generator A

(n)
N and the transition matrice P

(n)
N is the following:

for a function g defined on (S1)n and x ∈ T
(n)
N ,

A
(n)
N g(

x

N
) = N2





∑

ε∈{±1}n

P
(n)
N (x, x + ε)g(

x + ε

N
) − g(

x

N
)



 .

As s+
l (x, ε) = s−l (x,−ε), P

(n)
N (x, x + ε) = P

(n)
N (x, x − ε). Thus,

2A
(n)
N g(

x

N
) =

∑

ε∈{±1}n

P
(n)
N (x, x + ε)LN,n(g)(x, ε) ∀x ∈ T

(n)
N .

where LN,n(g)(x, ε) = N2(g(x+ε
N

) + g(x−ε
N

) − 2g( x
N

)).
For a C2 function g on (S1)r and a point x ∈ (S1)r, set Lr(g)(x, ε) =

∑r
i=1

∑r
j=1 εiεj∂

2
i,jg(x).

It follows from a Taylor expansion with integral remainder that |LN,r(g)(k, ε)−Lr(g)( k
N

, ε)|

converges to zero uniformly on k ∈ T
(r)
N and ε ∈ {±1}r as N tends to +∞.

Let π be a partition of [n] having d nonempty blocks. Let us define a discrete version of

the ∆π. First, let ∆
(d)
N denote the discrete Laplacian on T̄

(d)
N :

∆
(d)
N g(x) =

N2

2d

∑

ε∈{±1}d

(g(x +
ε

N
) + g(x −

ε

N
) − 2g(x)) for a function g defined on T̄

(d)
N .

Then set ∆N,πg(·) = ∆
(d)
N (g ◦ φπ)(φ−1

π (·)).
It follows that ∆N,πf( k

N
) − ∆πf( k

N
) converges to zero uniformly on k ∈ T n

N .
Let us note that the restriction of φπ to {±1}d is a one-to-one map onto Eπ∩{±1}n, whence

∆N,πf( k
N

) = 1
2d

∑

ε∈{±1}n∩Eπ
LN,n(f)(k, ε). Consequently, the expression of 2A

(n)
N f( k

N
) −

∆πf( k
N

) can be split into the three following terms:

I1
N(k) =

∑

ε∈Eπ∩{±1}n

(P
(n)
N (k, k + ε) −

1

2d
)LN,n(f)(

k

N
, ε)

I2
N(k) = ∆N,πf(

k

N
) − ∆πf(

k

N
)

I3
N(k) =

∑

ε∈Ec
π∩{±1}n

P
(n)
N (k, k + ε)LN,n(f)(

k

N
, ε)

It remains to study the asymptotic behaviour of P
(n)
N (k, k + ε). Let (B1, . . . , Bd) denote

the nonempty blocks of π and let k ∈ Cπ. Then

P
(n)
N (k, k + ε) =

d
∏

l=1

γa/N(
∑

i∈Bl
1εi=1)γa/N(

∑

i∈Bl
1εi=−1)

γ2a/N(|Bl|)
∀ε ∈ {±1}n

7



where γb(u) denotes the product
∏u−1

i=0 (b + i) for b > 0 and u ∈ N with the convention
∏−1

i=0 = 1. A computation shows that

• if u, v ∈ N∗ then

γb/N(u)γb/N(v)

γ2b/N(u + v)
≤

b

N

u!v!

(u + v − 1)!
for N ≥ b.

• if u ∈ N∗ and v = 0 then

|
γb/N(u)γb/N(0)

γ2b/N(u)
−

1

2
| =

1

2
(1 −

u−1
∏

i=1

(1 −
b

2b + Ni
)) ≤

1

2
(1 − (1 −

b

2b + N
)u−1.

Thus sup
k∈Cπ, ε∈{±1}n∩Ec

π

P
(n)
N (k, k + ε) and sup

k∈Cπ, ε∈{±1}n∩Eπ

|P
(n)
N (k, k + ε) −

1

2d
| converge to

0 as N tends to +∞.

Lipschitz property of the resolvents associated with the Beta flow

Lemma 8 If f : T̄
(n)
N → R is a Lipschitz function then V

(n)
N,λ(f) is a Lipschitz function

with a Lipschitz coefficient bounded by 1
λ
||f ||Lip.

Proof. We use a coupling argument. Let x = (x1, . . . , xn+1) be a point of T̄
(n+1)
N such that

x1 6= x2. Let Xt = (X
(1)
t , . . . , X

(n+1)
t ) be a Markov chain on T̄

(n+1)
N with transition matrix

P
(n+1)
N and with initial point x. Set τ = inf{s > 0, X

(1)
s = X

(2)
s }. Since (X

(1)
t , X

(2)
t ) is

a positive recurrent Markov chain on T̄
(2)
N , τ is almost surely finite. Let us define two

processes (Yt)t and (Zt)t on T̄
(n)
N :

• Y
(1)
t = X

(1)
t and Y

(i)
t = X

(i+1)
t for i ∈ {2, . . . , n},

• Z
(1)
t = X

(2)
t 1t≤τ + X

(1)
t 1t>τ and Z

(i)
t = X

(i+1)
t for i ∈ {2, . . . , n}.

Let (P
(n)
N,t)t denote the n-point Markovian semigroup of the Beta flow on 1

N
(Z/NZ).

As {(P
(n)
N,t)t, n ∈ N∗} defines a consistent family of Markovian semigroups, (Yt)t and

(X
(2)
t , X

(3)
t , . . . , X

(n+1)
t )t are both Markov processes with semigroup (P

(n)
N,t)t. The strong

Markov property implies that (Zt)t is also a Markov process with semigroup (P
(n)
N,t)t. As

Yt = Zt if t ≥ τ ,

|V
(n)
N,λ(f)(x1, x3, . . . , xn+1) − V

(n)
N,λ(f)(x2, x3, . . . , xn+1)|

= |

∫ +∞

0

E(f(Yt∧τ ) − f(Zt∧τ ))e
−λtdt| ≤ ||f ||Lip

∫ +∞

0

e−λtE(d(X
(1)
t∧τ , X

(2)
t∧τ ))dt.

Let us show that E(d(X
(1)
t∧τ , X

(2)
t∧τ )) ≤ d(x1, x2). Without loss of generality, one may

assume that w = x1−x2 ∈ {0, . . . , N−1}. Let (X̂
(1)
t , X̂

(2)
t ) be the Markov chain on ( 1

N
Z)2

starting from (x1, x2) with transition matrix P̂ defined by: P̂ ( i+kN
N

, j+lN
N

) = P
(2)
N (i, j) for

all (i, j) ∈ T
(2)
N . Set Wt = X̂

(1)
t − X̂

(2)
t . Since w is even, for every t ≥ 0, Wt∧τ remains

8



nonnegative. Thus E(d(X̂
(1)
t∧τ , X̂

(2)
t∧τ )) ≤ E(Wt∧τ ) = w (since (Wt)t is a martingale). We

have obtained the following inequality:

|V
(n)
λ (f)(x1, x3, . . . , xn+1) − V

(n)
λ (f)(x2, x3, . . . , xn+1)| ≤

1

λ
||f ||Lipd(x1, x2).

As the semigroup (P
(n)
N,t)t is invariant by the action of a permutation,

∀x, y ∈ T̄
(n)
N , |V

(n)
N,λ(f)(x) − V

(n)
N,λ(f)(y)| ≤

1

λ
||f ||Lip

n
∑

i=1

d(xi, yi).

Proof of the proposition 5.

A density argument reduces the problem to showing that for all C1 functions f and g on
(S1)n,

∫

V
(n)
N,λ(f)gdm

(n)
N converges to

∫

V
(n)
λ (f)gdm(n) as N tends to +∞.

Let us introduce an extension of V
(n)
N,λ(f) to (S1)n :

Lemma 9 A Lipschitz function g on T̄
(n)
N can be extended to a function g̃ such that :

• || g̃ ||∞=|| g ||∞

• || g̃ ||Lip≤ Cn || g ||Lip where Cn is a constant only depending on n.

• g̃ is differentiable on (S1)n − R where R is the subset of points having at least

one coordinate in 1
N

(Z/NZ) and ||∂ig̃(x)|| ≤ Cn||g||Lip for all i ∈ {1, . . . , n} and

x ∈ (S1)n −R.

Proof. Firstly, a function g on T̄
(n)
N is extended to a function ḡ on the lattice ( 1

N
(Z/NZ))n

as follows: for x ∈ ( 1
N

(Z/NZ))n−T̄
(n)
N , set ḡ(x) = 1

|Vx|

∑

y∈Vx
g(y) where Vx is the set of the

nearest points of x in ( 1
N

(Z/NZ))n in the sense of the distance dn(x, y) =
∑n

i=1 d(xi, yi).
This extension has the following properties:

• ||ḡ||∞ = ||g||∞,

• there is a constant Cn > 0 such that for every Lipschitz function g : T̄
(n)
N → R,

||ḡ||Lip ≤ Cn||g||Lip.

Lastly, a function f defined on ( 1
N

(Z/NZ))n is extended to a function f̂ on (S1)n as

follows. A point x = (x1, . . . , xn) in an elementary cube
∏n

i=1]
ki

N
, ki+1

N
[ is the barycentre

of the vertices of this cube {k+η
N

, η ∈ {0, 1}n} with the weights

αn(k + η, x) = Nn

n
∏

i=1

(xi −
ki

N
)ηi(

ki + 1

N
− xi)

1−ηi

respectively. Then we set f̂(x) as the convex combination of the points f(k+η
N

) with the

weights αn(k + η, x) for every η ∈ {0, 1}n : f̂(x) =
∑

η∈{0,1}n αn(k + η, x)f(k+η
N

). Let us
list some properties of this extension:
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• ||f̂ ||∞ = ||f ||∞ and f is differentiable in (S1)n −R.

• If f is a Lipschitz function then ||f̂ ||Lip ≤ ||f ||Lip and for every i ∈ {1, . . . , n},
|∂if(x)| ≤ ||f ||Lip if x ∈ (S1)n −R.

On applying lemmas 6 and 8, we obtain that the difference between
∫

V
(n)
N,λ(f)gdm

(n)
N and

∫ ˜
V

(n)
N,λ(f)gdm(n) converges to zero as N tends to +∞.

The following lemma allows to complete the proof:

Lemma 10 If f is a C1 function on (S1)n then for every g ∈ L2(m(n)),
∫

g
˜

V
(n)
N,λ(f)dm(n)

converges to
∫

gV
(n)
λ (f)dm(n).

Proof. As the weak convergence in the Dirichlet space (H(n), E
(n)
λ ) implies the weak

convergence in L2(m(n)), it suffices to prove that for all g ∈ H(n), E
(n)
λ (

˜
V

(n)
λ,N(f), g) tends

to E
(n)
λ (Vλ(f), g).

As the set of C3 functions is dense in the Dirichlet space of each Eπ, it is dense in
H(n) = ∩π∈Pn

Hπ. It follows from lemmas 8 and 9 that, for λ > 0,

E
(n)
λ (

˜
V

(n)
λ,N(f)) ≤ Cn,λ(||f ||

2
Lip + ||f ||2∞)

where Cn,λ is a constant depending only on n and λ. This reduces the problem to proving
the convergence for a C3 function g.

Let g be a C3 function. The difference IN = E
(n)
λ (

˜
V

(n)
N,λ(f), g)−E

(n)
λ (V

(n)
λ (f), g) is the sum

of two terms:

I
(1)
N = E

(n)
λ (

˜
V

(n)
N,λ(f), g) − E

(n)
N,λ(V

(n)
N,λ(f), g)

I
(2)
N =

∫

f(x)g(x)dm
(n)
N (x) −

∫

f(x)g(x)dm(n)(x)

By lemma 6, I
(2)
N goes to zero as N tends to +∞.

Let us split up I
(1)
N :

I
(1)
N =

∫

˜
V

(n)
N,λ(f)(λ − A(n))(g)dm(n) −

∫

˜
V

(n)
N,λ(f)(λ − A(n))(g)dm

(n)
N

+

∫

V
(n)
N,λ(f)(A

(n)
N − A(n))(g)dm

(n)
N

By lemma 8, V
(n)
N,λ(f) is Lipschitz with Lipschitz coefficient bounded by 1

λ
‖f‖Lip. On the

other hand, it follows from the expression of the generator (3) that A(n)(g) is the sum of
Lipschitz functions on Eπ that vanish out of Eπ. Thus the lemma 6 can be applied. The
last integral is bounded by

‖f‖∞
λ

sup
x∈T̄

(n)
N

| (A
(n)
N − A(n))(g)(x) | .

Thus it converges to 0 by lemma 7.
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Proof of the theorem 4.

Let f be a continuous function on (S1)n. As the two n-point processes are reversible

Markov processes, their generators A
(n)
N and A(n) are self-adjoint operators on the Hilbert

spaces L2(m
(n)
N ) and L2(m(n)) with nonpositive spectra. Let νf

N and νf denote the spectral

measures of A
(n)
N and A(n) respectively associated with the function f :

〈f, ψ(A
(n)
N )f〉 =

∫

R−

ψdνf
N and 〈f, ψ(A(n))f〉 =

∫

R−

ψdνf

for every continuous function ψ on R−.

The relation between the resolvent and the generator, given by V
(n)
N,λ = (λ−A

(n)
N )−1 in the

discrete case, and the convergence theorem imply that for every t > 0,

∫

1

t − x
dνf

N(x)

converges to

∫

1

t − x
dνf (x). By the Stone-Weierstrass theorem, the following set of

functions defined on R−, {x 7→ 1
t−x

, t > 0}, is dense in the continuous functions on R−

that tends to 0 at −∞. Thus

∫

f(x)P
(n)
N,t(f)(x)dm

(n)
N (x) =

∫ 0

−∞

etxdνf
N(x) converges to

∫

f(x)P
(n)
t (f)(x)dm(n)(x) =

∫ 0

−∞

etxdνf (x) for all t > 0. The polarization identity lets

us recover the announced convergence.

Remark. The convergence result in theorem 4 also holds with respect to the uniform
measures on T̄

(n)
N and (S1)n: let f and g be continuous functions on (S1)n.

Then
1

|T̄
(n)
N |

∑

x∈T̄
(n)
N

g(x)P
(n)
N,t(f)(x) converges to

∫

g(x)P
(n)
t (f)(x)dx as N tends to +∞.

Proof. Let g and f be continuous functions on (S1)n.
For ε > 0, set Vε = {x ∈ (S1)n, ∃ i 6= j, |xi − xj| < ε} and consider a continuous function
gε on (S1)n such that gε = g outside Vε and ||gε||∞ ≤ ||g||∞.

Outside V0, the measures m
(n)
N and m(n) coincide with the uniform measures λ

(n)
N and λ(n)

on T̄
(n)
N and (S1)n respectively. Thus

∫

gεP
(n)
N,t(f)dλ

(n)
N converges to

∫

gεP
(n)
t (f)dλ(n). As

λ(n)(∂Vε) = 0, λ
(n)
N (Vε) converges to λ(n)(Vε). Thus,

|

∫

gP
(n)
N,t(f)dλ

(n)
N −

∫

gP
(n)
t (f)dλ(n)| ≤

∫

|g − gε|P
(n)
N,t(f)dλ

(n)
N

+ |

∫

gεP
(n)
N,t(f)dλ

(n)
N −

∫

gεP
(n)
t (f)dλ(n)| +

∫

|g − gε|P
(n)
t (f)dλ(n)

≤ 6||g||∞||f ||∞λ(n)(Vε)

As λ(n)(Vε) converges to λ(n)(V0) = 0 as ε tends to 0, |
∫

gP
(n)
N,t(f)dλ

(n)
N −

∫

gP
(n)
t (f)dλ(n)|

converges to 0 as N tends to +∞.
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