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In [P, a family of stochastic flows of kernels on S called “sticky flows” is described.
Sticky flows are defined by their “moments” which are consistent systems of transition
kernels on S'. In this note, a discrete version of sticky flows is presented in the case the
sticky flows are associated with a system of Brownian particles on S'. This discrete model
is defined by products of Beta matrices on the discrete torus Z/NZ and will be called a
Beta flow. Similarly to the continuous case, the moments of the Beta flow are consistent
systems of transition matrices on Z/NZ. A convergence of the Beta matrices to sticky

kernels is shown at the level of the moments.

1 Beta matrices and Polya scheme

Let a be a positive parameter and N be an even positive integer. We define a random
transition matrix K on the discrete torus Ty = Z/NZ as follows :

K(i,j) = Xiljmipn + (1 = X3)1—

where X1, ..., Xy are independent Beta(4, ) random variables.

Let (K,), be a i.i.d sequence of such random transition matrices and let {Z(¢),t > 0} be
an independent Poisson process on R with intensity N2. The family of matrices (K )s<
defined by: Ky s = Kz(5)+1K 205042 - - - Kz for every s < ¢, is a stochastic flow of kernels

on Z/NZ. It will be called the Beta flow on Z/NZ.
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1.1 Description of the n-point motion

Following the generalization of De Finetti theorem given in [], it is shown that the
law of such a stochastic flow of transition kernels is given by a consistent system of n-
point Markovian semigroups {II" = E(K§}), n € N*}. In our case, these Markovian
semigroups (HE"))t are associated with a jump Markov process on (Ty)" with holding

times N? and transition matrices P](\;l ) = E(K®). Let us compute the positive transition
probabilities: for z = (z1,... ,z,) € (Tx)" and € € {—1,1}",

P{z,x+e)=F (H(ij1€j:1 (1= Zy) e, > I1 2z AR ATRCON
j=1 IeTNn

where s7°(z,¢) = Card({i € {1,... ,n},z; = and ¢; = +1}).
Let s;(x) denote the number of coordinates of = equal to .

. s; (ze)—1, 4 .
PO (2,0 +¢) = HH e )T )
€T N Hz (o) (2a +1)

Let us note that

1
PY(z,24¢) = §forn:1,

(& + 52, (@)= (§ + 85, (2, )T

Pz x+e) = P Dz ax+e
( ) (— = —) QWQ + Szn(i)

for n > 2

where z = (z1,... ,2,-1).
Thus the transition mechanism can be described as follows: the first point moves from a
site 4 to the site i 4 1 or to the site i — 1 with equal probability. The motion of the (k —1)

first points being known, the k-th point jumps by +1 with probability ui:ﬁi if among
N

the k — 1 first points, u 4+ v were located in the same site, u jumping by +1 and v by —1.
This is a combination of independent Polya urns attached at each site.

1.2 Invariant measures and Dirichlet processes
We shall focus our attention on the irreducible component

T = {z € (Z/NZ)", x; — 21 € 2Z, for all 1 <i < n}.
of the n-point process.

Proposition 1 For every n € N*, the n-point process on T ) has a reversible measure

§V) given by

si(z)—1/2q .
HleZ/NZ(Hilz(a) (QN +1))
2115 (a + )

mg\?)(x) = forall x € T](\?) (1)



Proof. The ratio % is equal to

s (z,e)=1, 4 . s; (ze)—1, 4 . si(z+e)—1/2q .

I (s Geoln™ (640 ) <H;<0+8> (3 + z>>
st (z+e,—e)— . s (z4e,—e)— . si(x)—1/2a .

N ) K 1(% + i) TSt 1(% +1) ) 1Ty 155" (e + )

As s (x +¢,—¢) = s; (z,¢), the first quotient in the parentheses is equal to one. Thus
the probability measure proportional to the measure a,, on T](V" ), defined by

si(z)—1

an() = [T I (%“H)) for all z € T\,

€Ty  i=0

is a reversible measure for the n-point motion. It remains to note that the total mass of
v, is 2][72, (a + i) (this equality can be proved by iteration on n). O

Remark. This result can be extended to a more general situation of a non reversible
chain on a finite graph. It will be described in a forthcoming paper.

Note that mg\l,) is the uniform law on Z/NZ and that mg\?) verifies the following iterative
relation:

2ﬁa + SIn-&-l (g) (n)

mg\?ﬂ)@, Tnt1) = atn N (@) V(z,zn11) € T](Vn+1) and n € N” (2)

It follows from the expression ([]) that z — mg\r;)(x) is constant on each class of the

equivalent relation: x ~ y if and only if V 4,5 € {1,... ,n}, ; = 2; = y; = y;. Thus

m%) can be expressed as a mixture of uniform laws on these equivalent classes. In order

to give a precise decomposition of mg\?), let us introduce some notations associated with
a partition 7 of [n] = {1,... ,n}.

Let P,, be the set of all partitions of [n]. Let |7| denote the number of non-empty blocks
of m. Let C; be the set of points x € (S')" such that z; = z; if and only if ¢ and j are
in the same block of 7. The sets C, N'T J(\;l ) are the equivalent classes for the equivalent
relation described above. Let E, denote the set of points # € (S')" such that, if ¢ and
J are in the same block of 7, then x; = x;. The uniform measure on E; N T](Vn) denoted
by Ay can be expressed as the image of the uniform measure on T](\yr') by the one-to-one
map ¢, defined as follows: for all 2 € (V) ¢.(x) = (y1,... ,yn) Where y; = ay if i
belongs to the [-th block of 7.

Proposition 2 The invariant measure mg\?) of the n-point motion on T](Vn) has the fol-
lowing decomposition:
mg\?) = Z py(ra))\N,ﬂ'
TFEP'H
(@) _ kIl (=D
where pr” = a ITiZo (a+9)
ny,...,ng.

if ™ is a partition of [n] with k nonempty blocks of length

Remark. (pﬁf"),repn is the exchangeable partition function of an exchangeable sequence
of random variables governed by the Blackwell-MacQueen Urn scheme [f].
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Proof. The proof of the pro%)osition can be established by induction on n using the
iterative definition () of mjy’ and the following iterative definition of (pgra))ﬂepn: let
m=(B1,...,Bx) be a partltlon of [n] with k£ nonempty blocks. Then

wtnpy@ it & = (By,...,B,U{n+1})

p(f‘) = { ainp(a) if 7= (Blv”' 7Bk7{n+ 1})

|

Let us note that the jump chain is two-periodic. The set of states T](V” of the Chain
can be divided in two sets: C’f & the set of points z € T’ ]s, with odd coordinates and C’2 N

the set of points = € T](V with even coordinates. If z = (xq,... ,x,) € C’;}, then
N/2 n
2m H Y;zzl = H Yz,)
i=1
where (Y3,Yy, ..., Yy) is a random vector with symmetric Dirichlet law DN/Q(%“, e 2F‘l)ﬂ

Thus for all n € N*, the restrictionf] of mg\?) to CQ(njz, is equal to E(u®") where p is a

Dirichlet processf]on 2Z/NZ with parameter a. Equivalently, for all n € N*, the restriction
of mg\?) to C’f”}, is equal to E(v®") where v is a Dirichlet process on (2Z + 1)/NZ with
parameter a.

2 Consistent system of sticky kernels on S*

We now consider the Beta flow as defined on the lattice +(Z/NZ) of S*. Tt is a discrete
model of the sticky flow defined by Y. Le Jan and O. Raimond in [J] for the parameter
T = c%l—l and the exponent 9 : A — %|)\|2. Let us summarize the properties of this sticky
flow. For a detailed presentation of the sticky flows in a more general setting, we refer
the reader to [B].

For n € N*, let us consider the measure m™ defined on (S*)" by m™ =3 PN
where ), is the image of the Lebesgue measure A®I*l on (S')I*l by the map ¢,. As this
defines an exchangeable and consistent system of measures, it follows from Kingman’s
representation theorem that there exists a random measure on S* such that m™ = E(u®")
for every n € N*. In our case, y is the Dirichlet process of parameter a on S*.

Using this family of measures, a consistent system of Feller semigroups denoted (P(n))

can be defined via their Dirichlet forms:

!The Dirichlet law D, (a1,--- ,a,) where a; > 0,...,a, > 0 is a law on the simplex S, = {z €
(0,1)", x1+- - -+x, = 1} defined by %x‘fl—l .. x;fr—l 1oy +oqa,=1dxy - - - dzp—1. Thus its moment
i« Dlai+kq)--T(ar+k,) (ai+--+ar)
of order (ki,...,k;) is )Tl Tas ta bt Tr)

2The restriction of a probability measure m to a measurable set B is the measure %.

3 A Dirichlet process of parameter a > 0 on a compact metric space M is a random measure z on M such
that for every measurable finite partition (B, ... , Bg) of M, the random vector (u(B1), u(Bs) ... , u(Bk))
has the Dirichlet law Dg(aA(B1),... ,aA(By)) where A denotes the uniform distribution on M.



Proposition 3 (Y. Le Jan and O. Raimond, [[]) For k € N*, let E°% be the Dirich-
let form defined on L*((S')*, \®*), associated with k independent Brownian motions on
S'. For every n € N*, let £™ denote the Dirichlet form on C*((S")") defined as follows:

Vf,g€ CH(SY)"), EM(f,9) = D peENN(f 0 dr, go bn).

7T€’Pn

o The semigroups (Pt(”)), n € N* associated with the Dirichlet forms €M™, n € N*
define a consistent system of strong Feller semigroups.

e For everyn € N*, the generator of E™ denoted by A™ has the following expression:

AD(F) = 2 ST (A (o p)) 06 e, VS € CU(SY)) ()

TI'EPn

Since {(Pt("))t, n € N*} is a compatible family of Feller semigroups on S, it follows from
theorem 1.1.4 in [f[] that it is possible to construct a stochastic flow of kernels (Kj;) such

that E (Kg?f ) = Pt(n) for every t € R and n € N*. This stochastic flow was named a sticky

flow of parameter 7 = —= and exponentf] ) : A — |AJ%.

3 Convergence theorem

We will now establish the weak convergence of the moments of the Beta kernels to the
moments of the sticky kernels:

Theorem 4 For n € N*, et (P ) denote the semigroup of the n-point process defined
on T](\?) by the Beta flow. Let (Pt(n )¢ denote the semigroup of the n-point process defined
on (S*)" by the sticky flow of parameter a and exponent 1 : X — |A[.

For every n € N*, if f and g are continuous functions on (S')", then ngNt f)dmN
converges to ngt(")(f)dm(") as N tends to +oc.

Before going into details, let us explain the scheme of the proof. The main step of the
proof of this theorem, is to show the following convergence of the resolvents:
Proposition 5 Let n € N*. Let (VJS;R)»O denote the resolvent associated with the n-
point motion of the Beta flow and let (V)\(n))bo denote the resolvent of the n-point motion
of the sticky flow of parameter a and exponent @/J )\ — 2|)\|2
For all continuous functions f and g on (S*)" f gdmN converges to [ V/\ (f)gdm™
as N tends to +o00.

As the discrete and the continuous n-point processes are both reversible, an argument
using spectral measures allows to deduce the weak convergence of the semigroups from
the weak convergence of the resolvents.

The convergence of the resolvents is based on the convergence of the invariant measure

mg\?) and of the generator of the n-point motion of the Beta flow together with a Lipschitz

property of the discrete resolvent ij,n))\

Before proving proposition [, let us give precise statements of these three points.

4More generally, sticky flows can be constructed using a Levy process with no polar points instead of
a Brownian motion; v refers to the exponent of the chosen Levy process.



Convergence of the invariant measures

Lemma 6 For every partition 7 of [n], let fr be a function defined on (S')", Lipschitz
on Er and vanishing outside Er. Let f =3 _p fr. Then

n n Cn
[ g~ [ a1 < TS il + 1ol

Wepn

Proof. Let En . denote the intersection of E, with TJ(\? ) and let AN be the uniform
distribution on T](Vn). It suffices to prove that for all partitions 7, 7’ of [n],

Cn
| frdAng = | - faddw] < SF ([ fallzip + 1] falloo)-

EN,ﬂ-’ E_

Let us first consider the case 7 is not thinner than 7/, that is there is a nonempty block
B of 7 intersecting at least two blocks of 7’. Let & be the partition of [n] obtained by
merging the blocks of 7 that intersect the same block of /. Then E,, N E, is a subset of
Ex. As 7 is a coarser partition than 7/, \/(Ez) = 0 and |Enz| < £|En|. Thus

1 2
| fwd)\N,ﬂ" - fﬁd/\w’| = | fﬂ'(x)| < _HfW“OO
E7r’ |EN’ﬂJ| a?GEZN ’ N

EN,ﬂ"

Let us now consider the case 7 is equal or thinner than 7’. Then E,, C E,. If #’ has k
nonempty blocks then

k—1
[ pdve = [ Rl = 3 A6e () — [ felonte)dsl,

E E S1yk
N,m! ! zeT =D

The function f o ¢, is a Lipschitz function with Lipschitz coefficient smaller than
n||fe||Lip- Thus it remains to establish the following result: for every k € N*, there
exists a constant Cj, such that for every Lipschitz function g on (S),

k=1 T Ok
e 2 ) - [ otadal < ol

g1
xET](\,k) (59

The proof can done by induction on k. O

Convergence of the generators

Lemma 7 For every n € N*, et Ag\?) denote the generator of the n-point motion of the
Beta flow on T](Vn). For every C* function f on (S')",

) = A (f)(

Xz

N

T

sup |43 (/)( )

xGTI(\,n)

converges to 0 as N tends to 4oc0.



Proof. Let n € N* and f be a C? function defined on (S')™. Let us recall the expression
of AM(f) :

AWy = 2 37 AL, where Ac(f)(x) = AD(f 0 6.)(6; (1),

ﬂ'E,Pn

Thus it suffices to prove that for every partition 7 of [n], sup | QAEG) (f) (E) — Aﬂf(i) ]
weCrnT) N N

converges to 0 as N tends to +oo.

The expression linking the generator Ag\?) and the transition matrice P](\? )is the following;:

for a function g defined on (S)" and x € Tz(\;l ),

r+e x

%) - 9(3)

n x n
AVg() =N DD P (e el
ee{xl1}"

As s (z,€) = 57 (2, —¢), PY(z,x +¢) = P{ (z,2 — €). Thus,

n) & n n
2A§V)g(ﬁ) = Z P](V)(a:,:v +e)Lyn(g)(x,e) Vo € T](\,).

ee{x1}"

where Ly (g)(2,€) = N?(g(*3°) + 9(*5°) — 29(%))-

For a C? function g on (S")" and a point = € ()", set L,(g)(x,¢) = >27_, >"_, €ig;07;9(x).
It follows from a Taylor expansion with integral remainder that |Ly,(g)(k,e)—L,(g)(£, ¢)|

converges to zero uniformly on k € T](\; and € € {£1}" as N tends to +oco.

Let 7 be a partition of [n] having d nonempty blocks. Let us define a discrete version of

the A,. First, let Ag\‘?) denote the discrete Laplacian on T](\fl ).

2
(d) B N € € . =(d)
AV g(z) = o E{%ﬂ}d(g(x + —N) + g(x — —N) — 2g(x)) for a function g defined on Ty,’.

Then set Awrg(+) = A (9.0 6r) (¢ (1):
It follows that Ay f(£) — Az f(£) converges to zero uniformly on k € Tx.
Let us note that the restriction of ¢, to {1} is a one-to-one map onto E,N{=£1}", whence

Anaf(%) = 52 > cerz1yng, Lvn(f)(k,€). Consequently, the expression of ZA%L)f(%) —
A f(£) can be split into the three following terms:

n 1 k
k) = Y (P Rkt e) = o) nalf) (59
eeE-N{£1}"
Bk = Axaf(o)—a.p)
N Y N
n k
k) = Y PP(kE+e)Lya(f) (5 )
eeELN{£1}"
It remains to study the asymptotic behaviour of P](V")(k, k+e¢). Let (By,...,By) denote
the nonempty blocks of 7 and let £ € C;. Then
d
a ) 181': a ) ]-6,':—
POk e+ ) = [ 20 e tem e ien Lemnt) o gy

- Yaa/n (| Bil)
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where 7,(u) denotes the product [, (b + i) for b > 0 and u € N with the convention
H;:lo = 1. A computation shows that

e if u,v € N* then

Yoyn (W (v) _ b ulv!

< = for N > b.
Yooyn(u+v) T N(u+v—1)! -
e if u e N* and v =0 then
u—1
Yo (W) ypn(0) 1, 1 b 1 b
AP = - - )< -(1-(1- et
’}/Qb/N(U) 2 2 i 2b 4+ Ni 2 2b+ N
n 1
Thus sup PJS,)(k:, k4 ¢) and sup |P Yk k+e) — —] converge to
keCr, ee{£1}"NES k€Cr, ee{£1}"NE,

0 as N tends to +oo. O

Lipschitz property of the resolvents associated with the Beta flow

Lemma 8 If f : TJ(VTL) — R is a Lipschitz function then V]\(,n))\(f) is a Lipschitz function
with a Lipschitz coefficient bounded by <] f1|Lip-

Proof. We use a coupling argument. Let z = (x1,... ,x,.1) be a point of T](\?H) such that
x1 # x9. Let X} = (Xt(l), . ,Xt(nﬂ)) be a Markov chain on T](\;LH) with transition matrix

P](\?H) and with initial point z. Set 7 = inf{s > 0, xM = XS(2)}. Since (Xt(l),Xt(Q)) is
a positive recurrent Markov chain on T](VQ ), 7 is almost surely finite. Let us define two
processes (Y;); and (Z;); on T](\;L):

e V'V = XV and V") = X' for i € {2,...,n},

. Zt(l) = Xt(2)1t§7' + Xt(l)]-t>7' and Zt(i) = Xt(iﬂ) forie{2,...,n}.

Let (P](\? )¢ denote the n-point Markovian semigroup of the Beta flow on +(Z/NZ).
As {(P ](Vﬁ)t, n € N*} defines a consistent family of Markovian semigroups, (Y;); and
(Xt@), Xt(g), o ,Xt(nﬂ))t are both Markov processes with semigroup (P](Vnz) The strong

Markov property implies that (Z;); is also a Markov process with semigroup ( ) As
Y, =27, ift >,

‘V]S]n;(f) 1’1, T3, .. xn-{-l) V]&fil))\(f)<x27 X3y .- 7In+1>|

+oo +o0o
~| / F¥inr) = F(Zon))e ] < (1110 / eNB(AXY, X))t
0

Let us show that E(d<Xt(/\’)T?Xt(/2\’)T)) < d(xy,29). Without loss of generality, one may
assume that w = z1—x9 € {0,... ,N—1}. Let (XM, x® ) be the Markov chain on (5Z)?
starting from (x4, x2) with tran81t10n matrlx P defined by: P(”kN JJ;\IZN) P](VQ) (i,7) for
all (z,7) € TZ(VQ). Set W, = Xt Xt . Since w is even, for every t > 0, W;,, remains
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nonnegative. Thus E(d(f(,fil,)%f@)) < E(Wipr) = w (since (Wy), is a martingale). We
have obtained the following inequality:

n n 1
V(D@ s, aa) = W) @22, )] < S llipd(e, 22).

As the semigroup (P](\,nz)t is invariant by the action of a permutation,

Va,y € T8, (VI @) = VXA < e S ds ).
=1

Proof of the proposition f.

A densfcy argument reduces the problem to showmg that for all C* functions f and ¢ on
fVN/\ gdmg\, converges to fV)\ (f)gdm™ as N tends to +oo.

Let us introduce an extension of V]\(,il)\( f) to (Sh)"

(n)

Lemma 9 A Lipschitz function g on Tx" can be extended to a function § such that :

* |19 llo=Il 9 lloo
o || 9 |lip< Cy || g ||Lip where C,, is a constant only depending on n.

e § is differentiable on (S*)™ — R where R is the subset of points having at least
one coordinate in +(Z/NZ) and ||0;g(x)|] < Cyllg|Lip for all i € {1,... ,n} and
re (SH"—R.

Proof. Firstly, a function g on T](V") is extended to a function g on the lattice (% (Z/NZ))"
as follows: for z € (5 (Z/NZ))"— T](V ) set g(x) = ‘Vz| > yev, 9(y) where V;, is the set of the

nearest points of x in ((Z/NZ))™ in the sense of the distance d,(z,y) = Y1, d(x;, y;).
This extension has the following properties:

* [[glloo = llglloo,

e there is a constant C, > 0 such that for every Lipschitz function g : T](Vn) — R,
19l Lip < Cnllgl]Lip-

Lastly, a function f defined on (+(Z/NZ))" is extended to a function f on (SH™ as

ki Bl s the barycentre

follows. A point x = (x1,...,,) in an elementary cube J]" |3, *5

of the vertices of this cube {k%, n € {0,1}"} with the weights

" " ki, ki+1 .
an(k+n,2) =N H(%‘ - N)WZ(T — ;)

1=1

respectively. Then we set f(z) as the convex combination of the points f (&) with the
1

weights o, (k + n,z) for every n € {0,1}" : f(z) = > nefoayn Onl(k + 1, 2) f(5E). Let us
list some properties of this extension:



o ||fllo = ||f]loc and f is differentiable in (S*)" — R.

e If f is a Lipschitz function then ||f||z;, < ||f||Lp and for every i € {1,...,n},
10uf ()] < [f[]1ip if & € (S)" = R.

On applying lemmas [j and f, we obtain that the difference between [ VJS,";( f) gdmg\?) and

J V]f,il))\(f)gdm(”) converges to zero as N tends to +oo.
The following lemma allows to complete the proof:

—~—

Lemma 10 If f is a C" function on (SY)" then for every g € L*(m™) ngNA (f)dm™
converges to [ gV (f)dm ™

Proof. As the weak convergence in the Dirichlet space (H(”),S/(\")) implies the weak

convergence in L?(m(™), it suffices to prove that for all g € H™), S(n (V/\ZL\),( f),g) tends
to £ (A(/). 9).

As the set of C® functions is dense in the Dirichlet space of each &, it is dense in
H™ = Nrep, Hy. It follows from lemmas B and [ that, for A > 0,

EVV V) < CunlI IR + [1FII%)

where C,, ) is a constant depending only on n and A. This reduces the problem to proving
the convergence for a C* function g.

Let g be a C® function. The difference Iy = Ein)(V]\(&)(f), 9) —EM VM (F), g) is the sum
of two terms:

P

1Y = &PV, 9) — EAVNF).9)
12 = / f(@)g(x)dm () - / f(@)g(x)dm® (x)

(2)

By lemma [, I’ goes to zero as N tends to +oo.

Let us split up Ij(vl):

19 = [ V0= A @i — [ VA= A g)d)
+ [VEDAR - A7) (g)im{)

By lemma g, V]S,"/i( f) is Lipschitz with Lipschitz coefficient bounded by 1| f||Li- On the
other hand, it follows from the expression of the generator (J) that A™(g) is the sum of
Lipschitz functions on E; that vanish out of F,. Thus the lemma [j can be applied. The
last integral is bounded by

Wlee gup | (43— 4 (g)@))
xET(n)

Thus it converges to 0 by lemma [f. O
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Proof of the theorem H.

Let f be a continuous function on (S*)". As the two n-point processes are reversible
Markov processes, their generators A%) and A™ are self-adjoint operators on the Hilbert
spaces L2(m53)) and L?(m™) with nonpositive spectra. Let v{, and v/ denote the spectral
measures of Ag\?) and A" respectively associated with the function f :

AR = [ v and (A ) = [ vt

R_

for every continuous function ¢ on R_.
The relation between the resolvent and the generator, given by Vjs,n/z =(\— Ag\?))_l in the

1
d f
s V()

1
dv’(z). By the Stone-Weierstrass theorem, the following set of
—x

discrete case, and the convergence theorem imply that for every ¢ > 0, / ;

converges to / ;

functions defined on R_, {z — ﬁ, t > 0}, is dense in the continuous functions on R_

0
that tends to 0 at —oo. Thus /f(x)P](\,"z(f)(:c)dm%)(x) :/ e*dv] (z) converges to

0 —0o0
/f(x)E(n)(f)(x)dm(") (x) = / edv’ (x) for all t > 0. The polarization identity lets
us recover the announced convg{"}gence.

Remark. The convergence result in theorem Y also holds with respect to the uniform

measures on T’ ](V" ) and (S D let f and g be continuous functions on (S*)".

1
Then W Z g(x)P](\,"z(f)(x) converges to /g(x)Pt(”)(f)(x)dx as N tends to +oo.
Nt ger(

Proof. Let g and f be continuous functions on (S')".
Fore > 0,set V. = {z € (SY)", i #j, | — 24| < €} and consider a continuous function

g- on (S1)" such that g. = g outside V. and ||g:||cc < ||9]]s0-

Outside Vj, the measures mg\,) and m(™ commde with the uniform measures )\53) and A™

on Tjsfn) and (S1)" respectively. Thus fg‘E f)d)\N converges to fga (f)d)\("). As
MM (9V,) = 0, )\g\, (V) converges to A ”)(VE). Thus,

| / gPO (NN — / P (F)aA™]| < / 19— gl PO

T / g PL (NN — / 4. P (F)dA™)] + / 19— g PO (f)dA™
< 6]1gllocl LIl (V)

As A" (V) converges to A (V) = 0 as ¢ tends to 0, |ng](\;Lz(f) )\(n) ng(n F)dA™|
converges to 0 as NV tends to +oo. O
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