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S U M M A R Y

A refined palaeointensity experiment, accompanied by rock-magnetic studies, has been carried

out on six lava flows from 1910 and 1928 from Mt. Etna. The purpose of the study was to try

to understand why these very young basaltic flows are generally unable to provide a correct

estimate of the magnitude of the ambient magnetic field during flow cooling. Susceptibility

versus temperature curves and ore microscopic studies show that 3 types of magnetic minerals

(phases ‘h’, ‘m’ and ‘l’) are present in these flows, some samples containing a single largely

dominant magnetic phase while others contain a mixture of several phases. Phase ‘h’ is a

thermally stable, near magnetite phase resulting from titanomagnetite oxyexsolution. Phase

‘l’ is a thermally stable titanomagnetite with a Curie temperature of approximately 200◦C.

Phase ‘m’ is a titanomagnetite phase of Curie temperature between 450–490◦C which is un-

stable at temperatures above 400◦C. In addition to the usual reliability checks of the Thellier

method (NRM-TRM linearity, pTRM checks), our palaeointensity experiments included ad-

ditional heating allowing determination of the MD or PSD-SD character of each pTRM and

determination of CRM or transdomain remanences possibly acquired during heating. From

the 28 samples studied 20 provide a linear NRM-TRM plot over about 1/4 or more of total

NRM. However, only six of them, all containing near-magnetite as a single phase, display

positive pTRM checks. Nevertheless, these six samples yield a mean palaeointensity of about

52 µT, which exceeds the real field palaeomagnitude (42 µT) by some 25 per cent. The rea-

sons for this almost-total failure of palaeointensity experiments are diverse. For samples with

a dominant ‘l’ phase, pTRMs present a behaviour typical of large MD grains, with as much

as 1/3 of remanence with unblocking temperatures exceeding the blocking range. No CRM

is acquired. Yet a remanence does develop during heating in a field (followed by cooling in

zero field). We suggest that this remanence is a transdomain remanence resulting from domain

rearrangements. These two observations are in conflict with some of the basic requirements of

the Thellier method. Phase ‘m’ seems chemically stable up to 400◦C but pTRM changes start at

lower temperatures. This thermal instability and the development of a significant transdomain

remanence seem to be the causes of the failure of palaeointensity experiments. The reason

for the rather large (and quite unexpected) error in the average palaeointensity provided by

the samples containing only a near magnetite (phase ‘h’) may lie in the fact that the low to

medium temperature pTRMs, which represent a significant fraction of the total TRM, seem to

be carried by small MD particles. In conclusion, several modifications of the Thellier method

are proposed.

Key words: basalt, Etna, geomagnetic field, palaeointensity, rock magnetism, transdomain

remanence.

1 I N T R O D U C T I O N

The study of the remanent magnetization of rocks has proven to

be an extremely useful tool to deal with many different prob-

lems in earth sciences. In most cases, only the directional infor-

mation provided by declination and inclination of the remanence

vector is needed, but some investigations also demand the knowl-

edge of the strength of the palaeofield vector, which is called the
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palaeointensity. Its determination is more difficult, since the

magnitude of the palaeofield vector, as opposed to its direction,

cannot be directly read from the magnetization vector. While the

direction of magnetization is, in most cases, parallel to the di-

rection of the applied field, its magnitude is only proportional to

the intensity of magnetization, so that remagnetization experiments

have to be carried out to retrieve the strength of the magnetizing

field.

Absolute palaeointensity determinations are especially important

due to their geomagnetic interest. A description of the whole mag-

netic field vector is of great significance for the study of the Earth’s

magnetic field and its changes with time. In particular, the knowl-

edge of the variation of palaeointensity trough time may provide

deep insight about the evolution of the core and the core-mantle

boundary (Prévot et al. 1990; Prévot & Perrin 1992). Unfortunately,

as can be recognised in recently published compilations (Tanaka

et al. 1995; Perrin & Shcherbakov 1997; Juárez et al. 1999), the

number of reliable palaeointensity data available is still limited.

Less than one determination per million years have been obtained

for the time span between 10 and 400 Ma (Perrin 1998). Therefore,

we are still far away from a trustworthy description of the temporal

variations of the Earth’s magnetic field intensity.

Despite many different attempts to obtain undisturbed results, a

high percentage of samples from each studied collection does not

yield reliable results. In addition, dispersion observed in palaeoin-

tensity results is much higher than in directional results, which may

be often due to the fact that incorrect palaeointensity determinations

are considered to reflect the actual magnetic field at the time of mag-

netization of the studied rocks. The paucity of reliable palaeointen-

sity data is thus directly related to the difficulty of obtaining reliable

absolute palaeointensity determinations. This is so because of dif-

ferent reasons:

(i) The primary remanence of a rock must be a thermoremanent

magnetization (TRM) in order to be suitable for palaeointensity

studies. If the remanence of a studied sample is a chemical rema-

nent magnetization (CRM), palaeointensity determinations might

be much too low (Draeger & Prévot 1998).

(ii) Rock samples employed for palaeointensity determinations

must obey the Thellier laws of reciprocity, independence and addi-

tivity of partial thermoremanent magnetization (pTRM) acquired in

non-overlapping temperature intervals (Thellier & Thellier 1959).

This behaviour is only verified for true SD particles, while multido-

main (MD) grains do not obey these laws. Pseudo single-domain

(PSD) grains carrying a TRM may approximately satisfy the re-

quirements of the Thellier method for the smallest particles, but

not for the larger ones (Shaskanov & Metallova 1972; Levi 1977;

Bol’shakov & Shcherbakova 1979; Worm et al. 1988).

(iii) During heating, irreversible chemical/mineralogical or phys-

ical (Kosterov & Prévot 1998) changes can affect the magnetic

phases, which results in spurious palaeointensity estimates.

The purpose of the present study is to investigate the reasons for

the failure of palaeointensity determinations on historical lava flows

from Mt. Etna (Sicily, Italy). Though often studied, Etnean lavas are

known to be difficult to use for palaeointensity studies, due mainly to

their thermal instability (Tanguy 1975; Tric et al. 1994; Haag et al.

1995). Historic lavas, however, have the advantage of a real control

of the palaeofield intensity and direction which were present during

the time of their formation, thus providing an unambiguous check

of the correctness of palaeointensity determinations. On the other

hand, understanding the reason for the failure of palaeointensity

experiments on the Etnean basaltic lavas, may help to obtain some

general information of interest for palaeointensity studies on basalts,

since these rocks typically fail to provide reliable palaeointensity

results (Perrin 1998).

For this study we devised a specific version of the method pro-

posed by Thellier & Thellier (1959), modifying it in order to distin-

guish between problems related to physical and chemical alterations

and those linked to the failure of the Thellier pTRM laws. In ad-

dition, with the same aim in mind, we carried out extensive rock

magnetic experiments.

2 S A M P L I N G A N D P R E L I M I N A R Y

P A L A E O M A G N E T I C M E A S U R E M E N T S

Mt. Etna is located in the eastern part of Sicily (Italy) (Fig. 1), and

its geological characteristics have been described by several authors

(e.g. Kieffer & Tanguy 1993; Tanguy & Kieffer 1993). Its activity

began with sporadic eruptions about 500 000 yrs ago (pre-Etnean

eruptions), although its main activity did not start before 200 000

BP and has continued until present. Mt. Etna has been characterised

by different eruptive phases: effusive volcanism, explosive volcan-

ism and phreatomagmatic periods. From a petrologic point of view,

its volcanism evolves from tholeitic to alkaline lavas. Most rocks

emitted in modern eruptions are trachibasalts.

In this paper we will report palaeomagnetic, palaeointensity and

rockmagnetic results of six lava flows belonging to the 1910 and

1928 eruptions. Sampling sites are shown on Fig. 1 and their geo-

graphic co-ordinates are indicated on Table 1. Samples were taken

with a portable fuel powered drill and oriented by means of a solar

compass. Flows with varying thicknesses—from 50 cm (flow 1910-

III) to 5 to 6 m (flow 1928-II)—were chosen and samples were taken

through the whole thickness of the flow, in order to obtain results

belonging to the top, centre and bottom of each of the sections. In

the laboratory, samples were cut into different specimens (generally,

two to four standard one-inch specimens), so that specimens from

the same core were available to carry out palaeointensity as well as

palaeomagnetic and rock magnetic experiments.

Remanent magnetization of the samples was measured with a

CTF cryogenic magnetometer at the palaeomagnetic laboratory of

the University of Montpellier. Measurements were only recorded af-

ter stabilisation of remanence in the cryogenic magnetometer, which

was made possible with a program which permitted plotting of mag-

netization changes in real time (Levêque 1992).

In Table 1, mean NRM results for each flow and the mean NRM

value for all flows are shown, a result of D = 359.3, I = 49.8,

k = 852.2, α95 = 2.3, N = 6 being obtained. In addition, 14 spec-

imens belonging to the same collection but not to the samples

taken for palaeointensity experiments were selected for alternating

field demagnetization. Only a single palaeomagnetic component,

together with a small viscous component, which was easily erased

at 1–3 mT, could be recognised (Fig. 2). In just one case the ini-

tial viscous component represented a high fraction of total NRM.

Characteristic remanent magnetization (ChRM) of these specimens

yielded a result of D = 356.1, I = 49.0, k = 520.4, α95 = 2.9 and

N = 6 (because the mean of all six sites was calculated). Their NRM

direction of D = 0.4, I = 47.8, k = 163.5 and α95 = 5.3 was in ac-

cordance with the NRM direction obtained for all specimens, so that

the direction of these 14 specimens can be considered to be repre-

sentative for the whole sample set. Both NRM and ChRM values

are also reported on Table 1. Six direct measurements of the Earth’s

magnetic field carried out in localities of Sicily in 1924 (Cafarella

et al. 1992) yield a mean direction of D = 353.9, I = 52.4. These

values are not in exact accordance with the ChRM result obtained

C© 2002 RAS, GJI, 149, 44–63
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Figure 1. Mt. Etna. Location of sampling sites and lava flows. (Modified from Rolph et al. 1987.)

in the present study, but the moderate deviation of 3.7◦ between

both directions might be explained as due to the magnetic anomaly

produced by the magnetized rocks of Mt. Etna.

Median destructive field (MDF) values determined from AF de-

magnetization curves from the previously mentioned fourteen spec-

imens lie between 6 and 32 mT, a mean value of 19 mT being

obtained. Several samples yield MDF values around 10 mT or even

lower. MD grains could be of importance in such kind of samples.

With one exception, higher MDF are observed in those samples,

which are closer to the borders of the flow.

Magnetic viscosity indices (Thellier & Thellier 1944; Prévot

1981) were determined for each second sample of the whole col-

lection, so that viscosity indices were not available for all samples

subjected to the palaeointensity experiment. Samples were stored

for two weeks in ambient magnetic field in such way that the field

was parallel to the cylindrical axis of each specimen, and then their

C© 2002 RAS, GJI, 149, 44–63
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Table 1. NRM results.

Site LON/LAT S N D I k α95

1910-I 15.27, 37.67 16 9 358.4 50.1 36.7 8.6

1910-II 15.27, 37.67 17 9 5.2 49.5 19.0 12.1

1910-III 15.27, 37.67 26 22 352.8 49.2 80.1 3.5

1928-I 15.55, 37.77 36 22 0.4 49.7 157.1 2.5

1928-II 15.60, 37.77 67 51 1.7 49.2 49.9 2.9

1928-III 15.68, 37.77 43 35 357.5 50.6 436 1.2

Mean 6 359.3 49.8 852.2 2.3

remanence was measured. Measurements were carried out immedi-

ately after placing specimens into the cryogenic magnetometer, in

order to not to loose information about viscous remanence created

during their two-week storage. Subsequently, they were stored again

for two weeks in ambient field, but anti-parallel to the initial position

and their remanence was measured again.

Viscosity indices yield moderate values. Only 24 per cent of 77

determinations display values higher than 5 per cent. Considering

a lognormal distribution of viscosity indices, a mean value of v =

(2.9 ± 0.3) per cent is obtained. 16 specimens used for palaeointen-

sity experiments yield a somewhat lower mean viscosity index of

(1.8 ± 0.5) per cent.

3 M A G N E T I C M I N E R A L O G Y

Rock magnetic experiments were carried out in order to characterise

the carriers of thermoremanence of the samples used for palaeoin-

tensity investigations, as well as to determine their thermal stabil-

ity and grain size. For this purpose, three different methods were

employed:

(i) Weak field thermomagnetic measurements, specifically, sus-

ceptibility versus temperature (κ-T ) curves. The temperature de-

pendence of initial magnetic susceptibility was measured using a

Figure 2. Orthogonal vector plot of AF-demagnetization of a representa-

tive sample. Solid symbols: horizontal projection. Open symbols: vertical

projection. Demagnetization steps are indicated in mT.

Bartington MS2 susceptibility-meter associated with a furnace. In

these experiments, samples could be heated up to a maximum tem-

perature of 700◦C and then cooled down, while susceptibility was

being measured. Most measurements were carried out in vacuum

better than 10−2 mbar, although a few measurements in air were

also performed. For each of the samples used for the palaeointensity

experiment, one specimen was taken to carry out a heating-cooling

run prior to the experiment. Some other specimens belonging to the

same sites were also taken. In addition, κ-T curves of specimens

subjected to the palaeointensity experiment and removed after cer-

tain temperature steps for determination of hysteresis parameters

(see Section 5.1) were also measured. Curie points were determined

taking inflexion points in κ-T curves following the drop in suscep-

tibility after Hopkinson peaks.

(ii) Microscopy, consisting of optical and electronic observations

of polished thin sections and electron microprobe analysis. Maxi-

mum magnification of optical observations, which were carried out

under oil, was ×1250. Electron microprobe analysis was performed

with a Camebax device.

(iii) Hysteresis measurements at room temperature, which were

carried out at the IPG palaeomagnetic laboratory in St. Maur

(France). The measuring device basically consists of a translation

magnetometer located in the gap of a large electromagnet. The spec-

imens had a weight of 2–3 g, and the maximum field used varied

between 0.8 and 1 T.

Depending upon the characteristics of the κ-T curves, four dif-

ferent curve types (L, M, H and C) could be distinguished during

the heating-cooling runs. As three magnetic phases were recognised,

three of the curve types correspond to those cases in which one of

these phases is clearly predominant in the heating curve (types L,

M and H). The fourth and latter category is ascribed to curves in

which at least two different magnetic phases provide magnetic sig-

nals of similar magnitude in the heating curve. Magnetic properties

of samples belonging to the first three groups are listed on Table 2.

3.1 Type L samples

κ-T curves of type L are characterised by the presence of three

magnetic phases in the heating curve and two in the cooling curve

(Fig. 3a). The predominant one in the heating curve is a low Curie

point phase—‘phase l’-, with a Curie temperature between 200◦C

and less than 300◦C. In addition, an intermediate temperature phase

with a Curie temperature of approximately 450◦C–490◦C and a high

TC phase, with a Curie point of approximately 560◦C can be recog-

nised. The latter is probably related to the presence of magnetite.

Nevertheless, both show a weak magnetic signal compared to phase

‘l’. On cooling, just magnetite and a phase with Curie temperature

between 150–300◦C remain. Only two samples, 163 and 164 from

site 1928-I show a clear L-type behaviour.

Microscopic observations show that ferromagnetic minerals vary

largely in size, its dimensions ranging between a few hundreds of µm

and a few µm or less. Whatever their size, these crystals are titano-

magnetites without any visible exsolutions or traces of alteration,

which are not observed even at the highest magnification (×1250).

Electron microprobe analyses of ten of these crystals indicate that

two populations of homogeneous titanomagnetite with slightly dif-

ferent chemical composition are present. The fact that early and late

crystallised titanomagnetite has a different chemical composition is

a common observation in basaltic rocks (Prévot & Mergoil 1973).

The crystals of the population with sizes of the order of 100 µm

have an ulvospinel molecular fraction of x = 0.37 ± 0.03. Iron

C© 2002 RAS, GJI, 149, 44–63
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Table 2. Magnetic properties of samples with a single largely dominant ferromagnetic phase.

Core Site Mineralogical NRM0 × 10−3 Qn v TC JS × 10−3 JRS/JS HC (mT) HCR (mT) HCR/HC

type (Am2 Kg−1) (per cent) (◦C) (Am2 Kg−1)

072 (1910-I) H(mx) 4.87 6.5 1.1 550 2844 0.15 11.3 29.5 2.61

078 (1910-I) H(mx) 3.10 3.4 1.8 550 2821 0.12 12.1 32.5 2.69

161 (1928-I) H(si) 3.42 6.2 0.0 538 2898 0.11 12.1 34.0 2.81

162 (1928-I) H(si) 2.72 4.0 – 534 2949 0.11 11.1 31.5 2.84

163 (1928-I) L 2.95 2.4 5.0 191 2195 0.11 5.3 13.7 2.57

164 (1928-I) L 2.64 2.8 – 174 2222 0.10 5.1 14.2 2.77

256 (1928-II) M 3.05 4.1 – 453 3102 0.20 15.8 35.0 2.21

258 (1928-II) M 2.38 2.9 – 477 3054 0.20 18.6 39.2 2.11

259 (1928-II) M 2.31 2.7 3.1 463 3181 0.20 17.0 38.4 2.26

260 (1928-II) M 2.26 3.0 – 477 3337 0.16 17.0

263 (1928-II) H(si) 5.02 8.9 0.7 543 2479 0.15 15.0 40.5 2.63

265 (1928-II) H(si) 7.82 15.2 5.2 527 2626 0.15 16.0 40.5 2.47

266 (1928-II) H(si) 5.62 11.0 – 544 1622 0.18 16.1 34.6 2.15

344 (1928-III) H(si) 2.76 3.7 – 554 2602 0.13 14.3 34.8 2.43

345 (1928-III) M 2.50 3.8 3.1 467 2698 0.21 18.0 37.5 2.08

346 (1928-III) M 2.80 4.0 – 451 2720 0.20 17.0 35.4 2.08

347 (1928-III) H(si) 2.39 4.7 1.1 524 2406 0.13 15.1 38.6 2.56

is partly substituted by aluminium and magnesium. The number

of Al cations δAl found for 4O2− equals to 0.23 ± 0.02, while

δMg = 0.21 ± 0.02. Calculations were made following the procedure

described by Prévot et al. (1981). In the absence of any substitution,

Figure 3. Representative examples of susceptibility versus temperature

curves measured in vacuum (κ-T curves). Solid symbols are for heating,

open symbols for cooling curves. Susceptibility values are normalized to

maximum susceptibility. Flow and sample number as well as κ-T curve type

(see text) is indicated in each case.

the expected Curie temperature has a value of 340 ± 20◦C. The

lowering of TC due to Al and Mg substitution amounts to 135◦C ac-

cording to experimental data on synthetic minerals (Richards et al.

1973; O’Donovan & O’Reilly 1977). Thus the expected Curie point

of 205±20◦C is in reasonable agreement with thermomagnetic data

of the present study (Table 2).

The smaller titanomagnetite crystals found in the groundmass

are characterised by x = 0.50 ± 0.01, δAl = 0.13 ± 0.02 and δMg

= 0.11 ± 0.02. The expected Curie temperature is 180 ± 20◦C,

which also agrees with the measured value, an agreement indicating

the absence of low temperature oxidation. This second phase is the

most abundant one and, due to its smaller size, it is the main TRM

carrier, and therefore it will be called the ‘l’ phase in the following.

Fig. 4 shows the results of the measurement of hysteresis parame-

ters. As suggested by this figure and Table 2, the grain size of phase

‘l’ corresponds to large PSD close to true MD particles.

Figure 4. Saturation remanence to saturation magnetization ratios as a func-

tion of coercivity of remanence to coercivity ratios (after Day et al. 1977)

measured on untreated specimens: Type L (solid dots), type M (open squares)

and type H (crosses) samples.
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3.2 Type M samples

Fig. 3(b) shows the second type of κ-T curve found (type M). In

the heating curve, two phases could be recognised, one with a Curie

point of approximately 450◦C–490◦C (‘phase m’) and another one

with a Curie point corresponding to a magnetite or a near mag-

netite phase (Table 2). On cooling, the former disappears, and a

new phase, with a Curie point between 200◦C and less than 300◦C

is created. The latter phase remains stable after subsequent heating

(Fig. 8). In order to detect at which temperature transformation of

phase ‘m’ took place, it was also tried to cool down samples before

arriving at 600◦C during the heating procedure. It could be recog-

nised that transformation of phase ‘m’ occurred at temperatures

above 400◦C. The average Curie point of phase ‘m’ yields a value of

465 ± 10◦C, which coincides with the intermediate-Curie-tempera-

ture phase found on type ‘L’ samples and which corresponds to a

pure (Fe,Ti)-titanomagnetite with x = 0.20 ± 0.05. Type M curves

were more frequently observed than type L ones, as six samples

show a clear type M behaviour.

Microscopic observations of polished sections reveal that two

generations of titanomagnetite are present, like in type L samples.

When observed under oil at the largest magnifications, many crys-

tals look, however, heterogeneous, showing a great amount of fine

lamellae lying along (1,1,1) planes (Fig. 5a). Due to its tiny size,

the exsolved phase cannot be positively identified, but considering

the orientation of lamellae and their reflectivity, it can be almost

certainly considered to be ilmenite. This oxyexsolution pattern cor-

responds to a C3 stage (Haggerty 1976). Although the other crystals

seem to be homogeneous, we believe them to be exsolved as well,

though at a smaller scale, as thermomagnetic curves do not show

the presence of low TC titanomagnetite.

Due to the thermal instability of phase ‘m’, which will be dis-

cussed later (Section 5.1), it is not clear whether the near magnetite

phase recognised on all κ-T curves is originally present or produced

during heating. It should be nevertheless noted that type H samples

(see below), cored within the same outcrops as type M samples, do

contain a near-magnetite phase of deuteric origin. Thus, also the

near-magnetite phase observed in type M samples probably formed

during the initial cooling of the flow.

The average JRS to JS ratio calculated from values from type M

curves listed on Table 2, yields 0.20 ± 0.04, suggesting that the

magnetic grain size corresponds to PSD particles approaching the

SD threshold. At this point it should be recalled that oxyexsolved

titanomagnetite grains do not provide an JRS/JS ratio equal to 0.5

even if they are of SD size, as magnetic interactions typically reduce

this ratio to 0.35 (Davis & Evans 1976).

3.3 Type H samples

These κ-T curves (Figs 3c, d) are the simplest ones observed in the

present study. On the heating curve, the dominant phase has a Curie

point corresponding to magnetite or a near magnetite composition

(phase ‘h’). In some cases, and contrarily to the previously described

types, there is only a single ferromagnetic phase present on the heat-

ing curve. The latter kind of curves will be called type H(si), while

mixed type H curves, which besides a predominant phase ‘h’ show

the presence of a second phase in the heating curve, will be named

type H(mx). Often type H samples do not show any trace of alter-

ation in the cooling curve (Fig. 3c). In other cases, a weak con-

tribution of a type ‘l’ phase can be recognised on the cooling curve

(Fig. 3d), in one case this appears also on an H(si) sample (sample

161). The mean Curie temperature of phase ‘h’ yields 540 ± 10◦C

(Table 2), which corresponds to a pure (Fe,Ti)-titanomagnetite com-

Figure 5. Ore microscopic studies, both examples with ×125 magnifica-

tion, carried out under oil. (a) Type M sample 345. Titanomagnetite with

ilmenite exsolution lamellae lying along (1,1,1) planes. C3 oxidation stage

(Haggerty 1976). (b) Type H + sample 263. Titanomagnetite subdivided by

well-developed ilmenite exsolution lamellae. Irregular grey pseudobrookite

exsolution can also be recognised. Oxidation stage C4 to C6 (Haggerty

1976).

position with x = 0.06 ± 0.02. Type H(si) curves correspond to sam-

ples collected relatively close to flow limits, although other samples,

also lying near flow borders, do not belong to the type-H group.

Optical microscopic observations show again the presence of

large (up to 200 µm) and small (less than a few tens of µm) titano-

magnetite crystals, corresponding to two periods of crystallisation

during cooling. With the exception of few titanomagnetite crystals

included within silicate and which are sometimes homogeneous, ti-

tanomagnetites are subdivided by well-developed exsolution lamel-

lae (Fig. 5b). As illustrated in this plate, the pseudomorphic assem-

blages correspond to oxidation stages C4 to C6 of Haggerty (1976).

The presence of pseudobrookite is important in the present context

as this mineral breaks down below 585◦C (Lindsley 1991). There-

fore, these pseudomorphic alterations seem to have occurred above

the Curie temperature of the dominant magnetic phase, and thus

the remanence of type H samples is almost certainly a TRM. The

same holds for the remanent magnetization carried by type L sam-

ples, since the solidus temperatures of the Fe3O4-Fe2TiO4 system

exceed 1400◦C. In contrast, the primary remanence of type M sam-

ples could be either a TRM or a TCRM (thermochemical remanent

magnetization), since a few examples of oxyexsolution occurring at

temperatures lower than the Curie temperature of magnetite seem

to be have been found in nature (Grommé et al. 1969).
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Microscopic observations of polished sections of type H samples

suggest that the effective grain size of phase ‘h’ resulting from il-

menite and spinel exsolutions is a few µm. Surprisingly, the average

JRS/JS ratio of these samples is only 0.14 ± 0.02, which suggests a

large PSD size.

3.4 Type C samples

Several samples do not show the predominance of any of the three

phases previously described, but correspond to a composite type,

in which at least two magnetic phases of somewhat comparable

magnitude are present on the κ-T heating curve (Figs 3e, f ). They

will be called type C samples. Being a mixture of the three sam-

ple types described above, the magnetic mineralogy of this kind of

samples is not specific, and it will not be the subject of a special

description.

4 P A L A E O I N T E N S I T Y E X P E R I M E N T S

4.1 Method

As mentioned above, the aim of the present study was to investi-

gate the reasons for the difficulties encountered in obtaining reliable

palaeointensity estimates with Thellier type experiments. This drew

us to devise a specific procedure for our palaeointensity experiment

associating its results with different rock magnetic experiments.

The whole procedure was aimed at (i) investigating both chemical-

mineralogical alterations and changes in magnetic properties due

to heating during the palaeointensity experiment, (ii) determining

the possible acquisition of spurious remanences such as chemical

remanent magnetization (CRM) during heating and (iii) studying

the biases in palaeointensity determination related to the presence

of multidomain grains sensu largo (i.e. PSD + true MD). Since

remanences produced during the heating procedure may be differ-

ent from a CRM (Shashkanov & Metallova 1970; Gernick 1983),

we will designate them with the generic expression ‘heating rema-

nent magnetization’ (HRM) as long as their origin is not known. It

should be mentioned that with an objective rather similar to ours,

McClelland & Briden (1996), designed a new version of the Thellier

method in a previous study. However, unlike ours, their method does

not allow an unambiguous discrimination between MD and HRM

effects.

For the experiment, 28 standard one-inch samples belonging to all

six flows were taken. Each one was cut into two halves, a main spec-

imen (MS) and a control specimen (CS), so that experiments were

carried out on 56 specimens. Samples were chosen to have different

positions inside of each of the flows represented. The experimental

procedure was performed as follows:

(1) NRM of MS and CS is measured.

(2) CS is AF-demagnetized in a B = 150 mT peak field and the

remanence left measured. We found that AF-demagnetization up to

such a high field will leave CS practically demagnetized so that the

magnitude of CS(step 2) is always very small.

(3) All specimens (MS and CS) are heated up to a temperature

T1 in a field B = 50 µT. After reaching T1, samples are kept at that

temperature for approximately ten min. Then, the field is switched

off, but the temperature T1 is still kept constant for the same amount

of time in order to allow any thermoviscous remanence (TVRM)

acquired at T1 to decay. Subsequently, samples are cooled down in

zero field (in order to avoid pTRM-creation) to room temperature,

and their remanence is measured. This first heating-cooling cycle

at T1 might have induced a HRM in the samples, which was deter-

mined from CS, since HRM = CS(step 3)-CS(step 2). The choice

to measure HRM upon the first heating was funded on the fact that

chemical changes, if they occur, are much more important during

the first heating than during the following ones. Thus the CRM

associated to the first heating is expected to be larger.

(4) Again CS is demagnetized in the B = 150 mT field, and the

remanence left measured.

(5) In a second heating-cooling cycle, all samples are heated

again to a temperature T1, this time in zero field. At that temperature,

the field is switched on (B = 50 µT), and after approximately ten

min, samples are cooled down to room temperature, thus creating

a pTRM. Remanence of all specimens is measured again, and the

pTRM created determined from CS, since pTRM = CS(step 5)-

CS(step 4).

(6) During the third heating-cooling cycle at T1 all samples are

heated up again to T1, kept for some minutes at that temperature, and

then cooled down to room temperature, all this in zero field. This last

cycle was included in order to detect the presence of non-unblocked

fractions of the pTRM created between T1 and room temperature,

so called pTRM-tails (Bol’shakov & Shcherbakova 1979), due to

the existence of MD grains in the studied samples. The remanence

of this pTRM-tail was determined from CS, since pTRM-tail =

CS(step 6)-CS(step 4).

(7) Then, CS was again AF-demagnetized (peak demagnetizing

field B = 150 mT), and the whole procedure was repeated again,

starting at step 3, but at a higher temperature T2.

Such heating-cooling runs were performed at 14 different tem-

perature steps: 80, 110, 140, 170, 200, 230, 260, 300, 350, 400, 450,

485, 525 and 555◦C. A last single heating to 590◦C was also per-

formed. In addition, serial pTRM-checks were performed after the

230, 400 and 485◦C runs (i.e. after the 485◦C step, pTRM checks

were carried out at 110, 200, 300 and 400◦C). The objective of the

serial pTRM-checks was to see whether distinct pTRMs change in

unison or not after heating at a given temperature.

The NRM left after each temperature step Ti was determined

from the measurement of the main specimens (MS) after step 3.

Nevertheless, the true remaining NRM can be slightly different from

the measured NRM left because the latter can include some HRM or

pTRM-tail components acquired during previous heating and still

blocked at Ti. In addition, a small thermoviscous component can

remain. However, the overall effect of these components should be

small.

Palaeointensity experiments were carried out at the palaeomag-

netic laboratory of the University of Montpellier II. Heating and

cooling runs were performed in a device constructed in that labora-

tory, basically consisting of a Pyrox furnace introduced in a three-

layered magnetic shielding. Temperature values were checked by

means of three thermocouples placed at different positions of the

heating chamber of the furnace. Temperature reproducibility be-

tween two heating procedures to the same nominal temperature was

within 3◦C. Heating and subsequent cooling of samples was carried

out in the same chamber, cooling being performed by subjecting the

heating/cooling chamber to an air current. All heating-cooling runs

were performed in vacuum better than 10−2 mbar. Due to the vac-

uum and the method of cooling, the whole heating-cooling run was

a rather long-lasting procedure, which could take between seven and

nine hours. The intensity of laboratory field used (50 µT) could be

held with a precision better than 0.1 µT. Remanent magnetization of

the samples was measured with a CTF cryogenic magnetometer and

only recorded after stabilisation of remanence in the magnetome-

ter. Room temperature bulk susceptibility was measured for each
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specimen after every heating-cooling run with a Bartington MS2

susceptibility-meter.

4.2 Tentative palaeointensity calculations

A qualitative appreciation of the variety of NRM-TRM diagrams

obtained from samples with different susceptibility versus temper-

ature curve types can be gained from Fig. 6. Samples 265 and 266

yield a linear plot over a significant NRM fraction and pTRM checks

seem to be positive. For samples 078 and 167 a partial linear arrange-

ment of points is also observed but pTRM checks seem negative.

For the last two samples (163 and 345), the NRM-TRM points are

not aligned and the pTRM checks are obviously negative. Thus, it

seems obvious that many of these samples cannot provide reliable

palaeointensity estimates. The interpretation of palaeointensity data

obtained with the Thellier method is commonly based on two types

of considerations, the characteristics of the NRM-TRM data and the

results of pTRM checks. Similarly, we first tentatively calculated

palaeointensity values following this usual approach. The results

are listed in Table 3 for all samples meeting the NRM-TRM mini-

mum criteria, bold face fonts being used for the samples, which, in

addition, satisfy our pTRM-check criteria, which will be explained

below.

For the NRM-TRM data, our minimum criteria were the

following:

(i) N (the number of points visually aligned on the normalized

NRM-TRM diagram) equal or larger than four.

(ii) NRM fraction factor f (the fraction of remanence taken for

palaeointensity determination) equal or larger than 0.15. If we con-

sider a rather typical basaltic sequence like the Steens Mountain

Basalt, which was subjected to a very extensive palaeointensity in-

vestigation (Prévot et al. 1985), the choice of this threshold would

have lead to rejecting slightly less than 10 per cent of the total

palaeointensity determinations.

(iii) Elimination of data suspected to correspond to the VRM

acquired in situ. In agreement with the basic idea of the Thel-

lier method, palaeointensity determinations must use the lowermost

temperatures NRM-TRM data in order to minimise the risk of mag-

netic or chemical changes. However the points which could be af-

fected by magnetic viscosity have to be rejected first. The lowest-

temperature NRM fraction corresponding to the viscous remanent

magnetization (VRM) acquired since flow cooling can be roughly

estimated from the viscosity coefficient v of the sample measured

over two weeks (see Section 2) extrapolated to t = 80 yrs. As-

suming a log-t dependence of the VRM and a fourfold increase

for t = 0.7 million yrs, as previously observed for a large collec-

tion of sub-aerial basalts (Prévot 1981), we found that the low-

temperature NRM fraction corresponding to an 80-yr old VRM

amounts approximately to 2.5v. Thus we have to expect that the

lowest-temperature NRM-TRM points corresponding to a NRM de-

crease inferior to approximately 2–3v reflect the demagnetization

of a VRM instead of a pTRM. Note that the calculation above is

approximate because the rate of acquisition of VRM depends upon

the magnetic mineralogy of each sample. However, in most cases

the 2.5v threshold is observed to correspond to a rather abrupt re-

duction of the NRM-TRM slope. This is expected from the SD

theory (Néel 1955) which suggests that VRM is larger than the

pTRM carried by the same set of particles. Consequently, when the

VRM decrease is plotted versus the pTRM acquisition, the slope

defined by these data-points exceeds that of the data-points corre-

sponding to the TRM decrease. The points corresponding to this

initial and steeper part of NRM-TRM diagram were not consid-

ered for palaeointensity calculation. This change in slope was also

used to calculate the relative intensity of the VRM acquired in situ

(Table 3). As can be recognised from Table 3, most samples (20 out

of 28) provide palaeointensity data fulfilling these wide acceptation

criteria. Moreover, it turns out that all selected data fulfil in fact

narrower requirements: in all cases N is larger than 7 and f larger

than about 1/4.

Our second set of criteria is related to pTRM checks. The ther-

mal stability of pTRM is a check that Thellier & Thellier (1959)

considered as fundamental. The results of pTRM checks for some

representative samples of our collection are illustrated in Fig. 7,

which shows changes in pTRM magnitude normalized to the first

pTRM measurement as a function of the temperature of the last

double heating step. It is not straightforward to choose the critical

threshold between positive and negative pTRM checks. First, one

must take into account the fact that large relative errors in pTRM cal-

culation can occur at low temperatures because the measurements

include a largely dominant NRM left. For this reason, a reliabil-

ity limit was calculated as a function of the total magnetization,

assuming a precision of 1 per cent in the measurements and a lin-

ear relationship between NRM lost and pTRM acquired during the

palaeointensity experiment. Then, if pTRMr and NRMr are relative

pTRM and NRM values, varying between 0 and 1, for a given value

of NRMr at a certain temperature step, a maximum allowable error

	pTRM is obtained for the corresponding value of pTRMr, with

	pTRM = ±0.01(pTRMr)/(1 − NRMr).These reliability limits are

shown on Fig. 7, and they allow recognising the changes in pTRM

which are experimentally significant.

Another difficulty is that the pTRM difference (	pTRM) is de-

pendent upon the temperature interval between that of the pTRM

check and that of the last double heating preceding checking. Thus,

in the present palaeointensity context, the practical significance of

a change in pTRM cannot be simply evaluated from the relative

change in pTRM. To take this point into consideration, and also the

variability of the temperature distribution of unblocking tempera-

tures, we chose to consider also the change in 	pTRM/	NRM as

being crucial.

We have considered here that pTRM checks are positive if they

meet the following two conditions:

(i) The relative difference between original pTRM and pTRM

check does not exceed 15 per cent, an empirical threshold al-

ready used for some palaeointensity studies on basalts (e.g.

Goguitchaichvili et al. 1999). Nevertheless, a greater relative dif-

ference has been accepted in those cases in which the difference

between original pTRM and pTRM check, although exceeding

15 per cent, was still comprised in the reliability limit calculated

above taking into account the maximum allowable error 	pTRM.

(ii) The difference of the slopes of the segments of the NRM-

TRM curve between Tmax and Tcheck before and after the pTRM

check does not exceed the same percentage. The results of this

elaborated pTRM check are shown in the last column of Table 3.

Positive pTRM checks are observed only on six samples (in boldface

in the Table), all of type H(si) although one of them (sample 344)

yields a negative check.

We can summaries the results of our palaeointensity experiments

as follows:

(1) Only 6 samples, all containing magnetite resulting from

deuteric oxyexsolution—mineralogical type H(si)—as single mag-

netic carrier, meet our acceptation criteria regarding NRM-TRM

plot characteristics and thermal stability of pTRM. They all
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Figure 6. NRM-TRM diagrams for different sample types. Solid circles are for NRM-TRM data points used for palaeointensity calculation. Empty circles

are for NRM-TRM data points not used for palaeointensity calculation. Triangles are for pTRM-checks. An adjusted line is shown in those cases in which

palaeointensity has been calculated. Palaeointensity results of the examples shown: (a) Sample 265: B = 35.5 ± 0.5 µT (110–520◦C) (b) Sample 266: B =

43.0 ± 1.0 µT (20–520◦C) (c) Sample 078: B = 43.8 ± 1.5 µT (80–485◦C) (d) Sample 167: B = 48.7 ± 1.3 µT (20–520◦C) (f ) Sample 345: B = 31.4 ±

2.0 µT (140–350◦C).
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Table 3. Tentative palaeointensity calculations.

Sample Mineralogical B 	B N T-range f g q VRMsitu pTRM-check

number type (µT) (µT) (◦C) (per cent NRM)

072 H(mx) 35.5 0.5 10 170–520 0.57 0.78 31.49 6.8 −

076 C 31.5 0.5 10 170–520 0.69 0.83 34.76 11.8 −

078 H(mx) 43.8 1.5 12 80–485 0.47 0.80 10.98 1.9 −

081 C 48.9 1.5 8 230–485 0.33 0.80 8.79 10.8 −

161 H(si) 62.2 2.0 14 20–520 0.60 0.72 13.13 0 +

162 H(si) 51.9 1.8 14 20–520 0.64 0.79 14.33 0 +

165 C 49.8 1.6 9 140–450 0.52 0.77 12.30 6.4 −

166 C 55.5 1.9 9 140–450 0.47 0.77 10.45 6.2 −

167 C 48.7 1.3 14 20–520 0.67 0.77 19.77 0 −

256 M 34.1 0.6 12 110– 520 0.99 0.74 40.59 4.2 −

258 M 37.6 2.8 7 110–300 0.25 0.78 2.56 7.1 −

260 M 38.3 2.6 7 110–300 0.24 0.81 2.91 8.4 (+)

261 H(mx) 49.2 1.6 9 170–485 0.40 0.82 10.22 6.2 −

263 H(si) 46.7 0.6 14 20–520 0.38 0.76 21.77 0 +

265 H(si) 56.3 2.0 14 20–520 0.30 0.73 6.27 0 +

266 H(si) 43.5 1.0 14 20–520 0.50 0.72 16.49 0 +

344 H(si) 42.3 1.5 14 20–520 0.55 0.80 12.38 0 −

345 M 31.4 2.0 7 140–350 0.30 0.76 3.64 11.6 −

346 M 24.0 0.6 11 140–520 0.75 0.78 22.53 8.5 −

347 H(si) 51.9 0.4 14 20–520 0.41 0.80 12.71 8.5 +

correspond to the 1928 eruption, yielding an average palaeostrength

of 52.1 ± 6.7 µT). This value largely exceeds the field magni-

tude at this epoch, which is estimated to have been 42.4 ± 0.4 µT

(Cafarella et al. 1992). This value was calculated from historical

data of geomagnetic observations carried out in different locations

of Sicily, mainly in 1890/92 (32 data-points) and also in 1923/24

(7 data points). Note that according to recent magnitude measure-

ments at the surface of the volcano (Tanguy and Le Goff, in prepa-

ration), the local magnetic anomalies dues to the TRM of ancient

flows produce no systematic bias and only a limited scatter (typically

±1,000 nT) in the local field magnitude.

(2) A second group corresponds to those 14 samples, which sat-

isfy our minimum acceptation criteria regarding NRM-TRM data,

but provide negative pTRM checks. They correspond to all types of

magnetic mineralogy except H(si). The average palaeomagnitude

is 40.8 ± 9.0 µT, in agreement with the expected one. However,

the failure of pTRM checks indicates that the Thellier method is

inappropriate for these samples and suggests that this agreement is

coincidental.

(3) No significant linear segment is observed on the NRM-TRM

plots of the remaining 8 samples which are obviously unsuitable for

Thellier experiments. This group comprises the two L samples stud-

ied, about half (5) of the samples with complex magnetic mineralogy

(C samples) and one M sample.

In conclusion, when studied by our variant of the Thellier–Coe

method, most of this set of modern Etnean basalts fails to satisfy

the usual reliability criteria of palaeointensity determination. Only

some 20 per cent of the basaltic samples investigated meet these

criteria but they provide palaeointensity data which are, as a whole,

significantly overestimated. In the following, we investigate the rea-

sons of this double failure.

5 O R I G I N S O F N O N - I D E A L

P A L A E O I N T E N S I T Y B E H A V I O U R

The failure of palaeointensity experiments carried out with this set

of Etnean basalts may be due to several causes including:

(1) irreversible chemical and/or magnetic changes caused by

heating;

(2) bias due to the development of a Heating Remanence (HRM);

(3) non-ideal characteristics of TRM carried by these rocks.

5.1 Irreversible chemical and magnetic changes

In order to analyse the thermal stability of the ferromagnetic phases

present in the studied samples and the characteristics of the chemical

and magnetic changes they might have suffered after heating, dif-

ferent rockmagnetic experiments were performed. Susceptibility-

versus-temperature curves of untreated specimens were already

analysed on Section 3. Additionally, rockmagnetic experiments were

carried out on specimens belonging to the same samples and hav-

ing experienced the same treatment than specimens selected for

palaeointensity determinations. For this purpose, an extra specimen

was taken from every one of the 28 cores from which samples for

palaeointensity experiments were obtained, and each of them was

cut into five pieces. All but one fragment of each of the specimens

were introduced into the furnace and also subjected to the palaeoin-

tensity experiment explained in section four. The last fragment was

preserved for room temperature measurements. At certain temper-

atures (230, 400, 485, and 525◦C) one fragment of every one of the

28 samples was removed. In this way, sub-specimens heated to 230,

400, 485 and 525◦C or kept at room temperature were available. In

addition, after completion of the palaeointensity experiment, spec-

imens employed for palaeointensity determination, and heated at

that moment to 590◦C, were also available for rockmagnetic de-

terminations. Consistency of k-T curves and hysteresis parameter

ratios determined at different temperatures (i.e. on different spec-

imens) confirm homogeneity of the sub-specimens with respect to

rock magnetic parameters.

Furthermore, during the palaeointensity experiment, room tem-

perature bulk susceptibility κ0 was measured for each specimen after

every heating-cooling run with a Bartington MS2 susceptibility-

meter, in order to check possible magnetic and/or chemical changes

produced by heating.
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Figure 7. Normalized changes in pTRM magnitude versus the temperature of the last previous heating step during the palaeointensity experiment. The

pre-check heating temperatures are shown by different symbols. Solid circles: First heating to temperature Tj. Solid squares: 230◦C. Crosses: 400◦C. Solid

triangles: 485◦C. pTRM values are normalized to pTRM(Tj, 0) initially acquired by the sample, without having been heated to temperatures T > Tj. Reliability

limits for pTRM checks (see text) are indicated.
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Figure 8. Susceptibility versus temperature curves of type L, M and H samples subjected to the palaeointensity experiment, after having been heated to

different temperatures. Temperatures indicated in each curve show the temperature steps of the palaeointensity experiment after which κ-T curves have been

measured. Note that curves a, b and c, shown for type-L sample (164) correspond to successively increasing temperatures during the palaeointensity experiment.

Solid symbols are for heating, open symbols for cooling curves.

5.1.1 Mineralogical changes

Fig. 8 shows κ-T curves belonging to some representative samples

of types L, M and H (when untreated) after having been subjected to

heating at different increasing temperature steps during the palaeoin-

tensity experiment. Phase ‘l’ of type L samples seems almost unaf-

fected by these heating, as can be recognised in the curves shown

in Figs 8(a) and (b), in which no significant changes are observed.

Phase ‘m’ of type L samples can still be recognised on the specimen

previously heated to 400◦C, but has disappeared on the specimen

subjected to a 590◦C heating. Despite heating, type H curves also

remain basically unaltered, and only a slight drop of approximately

30◦C in the Curie point of phase ‘h’ can be distinguished after heat-

ing to 590◦C. No significant chemical changes seem to occur below

the uppermost heating.

In contrast, type M samples display clear evidence for large chem-

ical changes during heating in palaeointensity experiments, changes

starting at temperatures over 400◦C (Figs 8d and e), as phase ‘m’

cannot be recognised above the latter temperature. As already men-

tioned in Section 3, also κ-T curves of previously untreated speci-

mens show a largely irreversible behaviour. Phase ‘m’ disappears at

temperatures between 400 and 500◦C while a low TC phase with an

average Curie point of 257 ± 14◦C develops. This new phase may

be perhaps one of the products of spinodal decomposition of phase

‘m’, due to heating below 600◦C. The solvus of the Fe3O4-Fe2TiO4

system (O’Reilly 1984) suggests that upon heating at 450◦C an x =

0.2 titanomagnetite can exsolve along 100 planes in an intergrowth

of two titanomagnetites with x ≈ 0.5 and x ≈ 0.1. These values cor-

respond to Curie points of approximately 250◦C and 520◦C, which is

in agreement with our observations, although the latter Curie point

seems to have a somewhat lower value than the one observed on the

κ-T cooling curves, which amounts to 539 ± 15◦C. However, as

mentioned in Section 3, the near magnetite phase present in type M

samples is probably partly of deuteric origin. Thus, the measured

Curie point might correspond to an intermediate value between the

primary and secondary near-magnetite phases.

5.1.2 Magnetic hysteresis changes

Determination of hysteresis parameters at different temperatures

and measurement of bulk susceptibility at room temperature were

used to try to obtain information about magnetic changes produced

by heating.

During the palaeointensity experiment, room temperature bulk

susceptibility was measured after each heating-cooling run with

a Bartington MS2 susceptibility meter, in order to check possible

magnetic changes due to heating. Fig. 9 shows the variation of this

parameter as a function of heating temperature. With the exception

of minor changes at the upper heating temperatures, no traces of

alteration can be recognised in any of the different sample types. Fig.

3, however, shows that clear changes in k-T curve are observed after

heatings for type L, M and C samples, even though the susceptibility

values at room temperature before and after heating are almost equal.

Hysteresis parameters were also determined on specimens sub-

jected to the palaeointensity experiment and removed after certain

temperature steps, as explained at the beginning of this section.
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Figure 9. Susceptibility at room temperature for representative specimens

of different sample types, measured after each heating step of the palaeoin-

tensity experiment, as a function of temperature of the heating step.

Figs 10 and 11 show the behaviour of hysteresis parameters after

different heating steps. Only moderate changes can be recognised,

especially if the grain-size related ratios are considered (Fig. 10).

Regarding the latter, only at the uppermost heating temperature of

590◦C a moderate increase of the JRS/JS ratio and a diminishing

of the BCR/BC ratio can be observed. Even type M samples, which

exhibit very large chemical changes beyond 400◦C, only display

limited variations of these ratios. This seems to support the idea that

these chemical changes are due to spinodal decomposition rather

than to exsolution.

Figure 10. Ratio of saturation remanence to induced saturation magnetiza-

tion versus ratio of remanent coercive force to coercive force (after Day et al.

1977) for representative specimens of different sample types, after heating at

different temperature steps during the palaeointensity experiment. Heating

temperatures during palaeointensity experiment are indicated.

Figure 11. Hysteresis parameters measured at room temperature, as a func-

tion of heating temperature during the palaeointensity experiment. (a) Satu-

ration remanence. (b) Coercive force.

5.1.3 pTRM checks

For type H(si) and M samples, the results of pTRM checks and

comparison of heating and cooling k-T curves lead to the same

conclusions: H(si) samples are thermally stable while M samples

are thermally unstable, possibly already at temperatures as low as

230◦C according to pTRM checks (Fig. 7). Depending on sample,

type H(mx) and L samples display more or less similar heating and

cooling k-T curves, but obvious changes in pTRM capacity are

always observed. Clearly, pTRM checking appears to be the most

sensitive way of detecting magnetic changes.

5.2 Heating Remanence

HRM, as defined in Section 4, is a generic term referring to a rema-

nence acquired during heating under the application of a constant

weak field. There are at least three kinds of remanent magnetization,
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which can appear in the course of standard Thellier palaeointensity

experiments:

(i) A viscous remanent magnetization acquired at a temperature

Ti during the time in which temperature this temperature is held

constant between the consecutive heating and cooling phases. This

magnetization is commonly called a thermoviscous remanence

(TVRM).

(ii) A crystalline remanent magnetization due to grain growth of

a new ferromagnetic phase or a chemical remanent magnetization

Figure 12. HRM as a function of heating temperature during the palaeointensity experiment. Crosses: Indirect calculation of HRM from the NRM direction

and intensity of the main specimen, called HRM(Ind) in the text. Solid circles: Direct calculation of HRM from measurements of the control specimen,

called HRM(Dir) in the text. θ is the angular deviation between the directions of NRM and applied field during the palaeointensity experiment. Maximum

values of HRM(Ind.) and HRM(Dir.) normalized to initial NRM: (a) (164): HRMmax(Int.) = 8.4 per cent NRM; HRMmax(Dir.) = 5.5 per cent; (b) (345):

HRMmax(Int.) = 10.8 per cent NRM; HRMmax(Dir.) = 12.6 per cent; (c) (078): HRMmax(Int.) = 4.7 per cent NRM; HRMmax(Dir.) = 0.9 per cent; (d) (265):

HRMmax(Int.) = 7.0 per cent NRM; HRMmax(Dir.) = 6.9 per cent.

due to changes in the chemical composition of pre-existing magnetic

phases. Both magnetization types, which are sometimes difficult to

distinguish, are equally labelled CRM.

(iii) A transdomain remanent magnetization (TDRM), due to re-

arrangements of domain structure as temperature varies (Moon &

Merril 1986; Sholpo et al. 1991).

Fig. 12 shows HRM values and their variation with heating tem-

perature Ti for type L, M and H samples. HRM(dir) was directly

determined from the control sample, as explained in Section 4.1.
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In addition, for some samples, HRM was calculated from NRM di-

rections at each temperature step of the palaeointensity experiment,

following the method proposed independently by Coe et al. (1984)

and Goguitchaichvili et al. (1999) as a ‘CRM-check’. A major prob-

lem of this indirect method is that the smaller the angular deviation

θ between NRM and applied field during heating is, the more im-

precise becomes the determination of HRM(ind). It should be noted

that there is an essential difference between both ways of obtaining

HRM. In our direct method of determination, the control specimen

is subjected to AF demagnetization at a 150 mT peak field between

two successive heating temperatures Ti and Ti+1. Thus the rema-

nence is reset to zero between two successive temperature steps and

HRM is determined independently for each temperature step. With

the indirect method, HRM is obtained from measurements of the

main specimen, which is used for NRM determination, and is not

AF-demagnetized. Consequently, HRM(ind) at Ti represents some

(complex) net cumulative effect of the heating to Ti and all previous

heatings.

We believe that the HRM determined in our palaeointensity ex-

periments is not a TVRM. Being produced by thermal activation

at constant temperature and field, a TVRM has two fundamental

properties:

(i) It decreases as soon as the field is cancelled. In the present

experiment, the temperature plateau at Ti was maintained for some

10 min under the applied field of 50 µT. Subsequently, the sample

was left for the same time at the same temperature in zero field. The

TVRM previously acquired should then have decreased largely, if

not totally.

(ii) TVRM can only block magnetic grains whose blocking tem-

peratures lie in a narrow range just above Ti. Consequently, a

TVRM acquired at Ti is normally of much smaller magnitude than

pTRM(Ti, T0). In contrast, our experiments indicate that in most

cases HRM and pTRM are of similar magnitude, the value of HRM

being about half of that of pTRM, though showing large variations

with Ti.

Comparing HRM obtained from the main and the control spec-

imens allows to distinguish if this magnetization is a CRM or a

TDRM. A CRM acquired at temperature Ti is only partially de-

stroyed by a subsequent heating to a slightly more elevated temper-

ature T1+1. This means that if the sample is not AF-demagnetized

between successive heatings, the CRM measured at Ti+1 is the sum

of the CRM acquired during the heating to Ti+1 and some fraction

of the CRM acquired during temperature cycling at lower tempera-

tures. Thus, if HRM was a CRM, its magnitude would be expected

to be larger when obtained from indirect determination from the

main specimen than from the direct determination from the control

specimen, the difference increasing with Ti. As shown by Fig. 12,

this is not the case for any sample once it is allowed for experimental

uncertainties. Thus HRM is not a CRM.

We suggest that HRM is a transdomain remanence, presumably

acquired at the end of the heating ramp or during the time the sam-

ples are held at constant temperature Ti with the field switched

on. According to this hypothesis, it is expected that a reorgani-

sation of domain structure occurs during every temperature cy-

cling, destroying the TDRMs acquired previously at lower tem-

peratures. Thus, HRM(ind) and HRM(dir) are expected to be of

similar magnitude, with no tendency for HRM(ind) to become rel-

atively larger and larger as Ti is increased. As shown by Fig. 12,

this is essentially what is observed. It should be noted that when

the angular deviation  between the NRM and the applied field

directions is small, the indirect method becomes imprecise. This is

evidenced by the scatter of the HRM(ind) values of the three spec-

imens with  close to 20◦, and explains the negative HRM(ind)

values recognised in these cases. In spite of this dispersion, how-

ever, a tendency can be recognised for H(ind) to be smaller than

H(dir), except for type H(SI) sample (265). This suggests that the

TDRM magnitude depends on the initial magnetic state of sample,

the AF demagnetized state favouring TDRM acquisition. This is in

agreement with the fact that new positions of domain walls after

AF treatment in MD materials are often particularly unstable (Néel

1952).

A further argument in favour of our hypothesis is that the magni-

tude of HRM tends to vary in a way akin to that of the pTRM-tail,

although the relation between both types of remanence varies in

different temperature intervals and from one sample to the other

(Fig. 13). As will be discussed below, pTRM-tail is a distinctive

feature of MD particles s.l., probably due to domain reorganisation

during temperature cycling.

The HRM(dir) discussed above has unblocking AF fields smaller

than 150 mT. Note that there is no clear indication in favour of the

presence of some harder HRM fraction in our samples. To check this

point, we calculated for each CS specimen and every temperature

Ti the vectorial difference between CS(step 4) at Ti and the initial

baseline CS(step 2) at T0. This difference might correspond to a

hard HRM, for example a CRM, left after AF cleaning. However,

this vectorial difference was found to remain very small at any Ti.

5.3 Non ideal behaviour of pTRM

The main advantage of the partial TRM method (Thellier & Thellier

1959) over full TRM methods (e.g. Van Zijl et al. 1962; Shaw 1974)

is in principle to allow the determination of palaeostrength from the

lowest blocking temperature intervals. Because magneto-chemical

changes are more likely to occur at higher temperatures, this re-

duces the probability of incorrect determinations. The price for this

advantage is that pTRM must possess certain properties, which, if

not fulfilled, will provide incorrect palaeointensity determinations.

The following three independent properties have to be verified:

(i) The magnitude of pTRM must be invariant with respect to the

thermal and magnetic treatments applied prior to pTRM acquisition.

This condition is not fulfilled by MD (sensu lato) particles (Sholpo

et al. 1991; Shcherbakov et al. 1993; Shcherbakova et al. 2000). In

particular, the pTRM(T1, T2) acquired after heating of a sample to

TC in zero field is larger than the same pTRM(T1, T2) acquired after

cooling down of the sample to room temperature prior to pTRM

acquisition. Following the denomination from Shcherbakova et al.

(2000), we will call the former pTRMa and the latter pTRMb. The

fact that pTRMa and pTRMb are not equal might be thought to be the

reason for the curvature of the NRM-TRM plots of MD particles first

observed by Levi (1977). Some recent experiments Shcherbakov &

Shcherbakova (in press) however, do not confirm this intuition. The

physical reasons for this curvature, which is obviously correlated

with MD characteristics, remains to be elucidated.

(ii) Partial thermoremanences acquired by a single specimen in

different temperature intervals must be independent from each other.

As a consequence, pTRMs acquired in consecutive temperature in-

tervals should obey the additivity law, which is indeed verified for

SD particles. However, as far as MD grains are concerned, the law

of additivity is only valid for pTRMa, but not pTRMb (Shcherbakov

et al. 1993).

(iii) Blocking and unblocking temperatures of pTRM should be

equal. This property has been sometimes considered as part of an
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Figure 13. Relationship between HRM and pTRM-tail values, as a function of heating temperatures during the palaeointensity experiment. The corresponding

temperature is indicated at each point.

extensive ‘law of independence’ (Shcherbakov et al. 1993; Perrin

1998; Shcherbakova et al. 2000). Deviation from this ideal behaviour

for a pTRM(Ti, Ti+1) results in a tail of the thermal demagnetization

curve of this pTRM between Ti and TC (Shaskanov & Metallova

1972). Bol’shakov & Shcherbakova (1979) proposed to use the ra-

tio of the tail of the [pTRM(Ti, Ti+1)] to the partial thermorema-

nence pTRM(Ti, Ti+1) measured at Ti as a diagnostic parameter of

the domain structure of the grains carrying a specific pTRM. Re-

cently, Shcherbakova et al. (2000) refined this method by proposing

to use the room temperature value of this ratio. For pTRMa they

propose that the thresholds between SD/PSD and PSD/MD (sensu

stricto) grains correspond respectively to ratios (called Aa) equal

to 4 per cent and 15–20 per cent. The existence of the tail is inter-

preted as a fundamental property of sensu lato MD particles, due to

temperature-dependent rearrangements of domain structure.

In the present study, both the pTRM and its tail (pTRM-tail)

were determined in the palaeointensity experiments from the con-

trol specimen CS, with (pTRM-tail) = CS(step 6)-CS(step 4). The

measured pTRM is a pTRMb, not a pTRMa. This choice was made

because the latter requires heating up to TC, which can modify

the magnetic properties of the sample. Another difference with the

method proposed by Shcherbakova et al. (2000) is that in our exper-

iments the specimen was demagnetized by AF instead of thermally.

In agreement with Shcherbakov et al. (personal communication,

2001) this kind of pTRM will be noted pTRMaf. From their data,

we estimated that the thresholds of SD/PSD and PSD/MD ratios

(called Aaf) are approximately 5 ± 1 per cent and 10 ± 2 per cent

respectively.

Fig. 14 shows that for all our samples the tail ratio Aaf systemat-

ically decreases as temperature increases. For type L samples, this

ratio clearly exceeds the PSD/MD threshold within a great frac-

tion of the range of pTRM acquisition. This is a clear evidence that

pTRM is carried by sensu lato MD grains. This should preclude

the use of the Thellier method for these samples. For type M sam-

ples, the tail ratio is mostly within the MD range, but often not far

from the PSD/MD threshold, for most of the temperature interval of

pTRM acquisition. This casts additional doubts on the significance

of the palaeointensity results listed in Table 3 for the 5 samples be-

longing to that group. For type H(si) samples, the tail ratio is of the

order of 10–20 per cent over the main range of pTRM acquisition,

which suggests, in agreement with hysteresis measurement, that the

grain size does not correspond to SD grains but rather to particles

straddling the PSD/MD threshold.

6 D I S C U S S I O N

For samples of types L and M, the failure of palaeointensity ex-

periments can be easily explained by the investigations reported in

Section 5.
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Figure 14. pTRM-tail to pTRM ratio (crosses) and pTRM normalized to maximum pTRM (solid circles) of representative specimens of different sample

types as a function of heating temperature during the palaeointensity experiment. pTRM-tail to pTRM ratios corresponding to the SD/PSD threshold (5 per

cent) and PSD/MD threshold (10 per cent) (see text) are indicated.

None of the samples belonging to the type L group provides

palaeointensity results. The Aaf tail ratio reaches as much as

40 per cent (Figs 14a,b). Considering that in addition to SD particles,

small PSD grains (as defined by the pTRM-tail ratio) provide cor-

rect palaeointensity results (Shcherbakov & Shcherbakova 2001),

one sees from this figure that only NRM/TRM points beyond 250◦C

might be considered as usable for palaeointensity calculation. Un-

fortunately, pTRM checks are clearly negative at and beyond 230◦C

(Figs 6 and 12c). Thus, the failure of palaeointensity experiments can

be explained by the MD behaviour of TRM and magnetic changes

starting at low temperatures. Interestingly, no obvious mineralogical

change is observed (Figs 3a and 8a).

From six type-M samples studied, five yield NRM-TRM lin-

ear segments fulfilling criteria (N ≥ 7, f ≥ 0.24) for tentative

palaeointensity computations to be carried out (Table 3). The aver-

age and standard deviation of these 5 tentative determinations yields
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33.1 ± 5.8 µT, the expected value being 42.4 ± 0.4 µT. The main

reason for these incorrect results are irreversible mineralogical and

magnetic changes during heating. All κ-T curves are irreversible

(Fig. 3b) and pTRM checks are negative (Fig. 7f ) in all but perhaps

one case (sample 260). Although the palaeointensity estimate for

this sample (38.3 ± 2.6 µT) is close to the expected value, it cannot

be considered as reliable because of the rather large Aaf ratio of

M-type samples at low temperature (Fig. 14). In the temperature in-

terval of 100–300◦C used for palaeointensity determination in this

sample, Aaf exceeds 20 per cent, which indicates that the pTRM

used for palaeointensity calculation is carried by MD grains and

thus unsuitable for that purpose.

The samples of H(mx) type yield clearly irreversible k-T curves

(Fig. 3d) characterised by the appearance, upon cooling from 650◦C,

of a new phase with Curie temperature close to 250◦C. This suggests

that the second phase naturally present in these samples is phase ‘m’.

As we know (Section 3.2), the ‘m’ phase has a Curie temperature

rather close to that of the near-magnetite phase responsible for most

of the susceptibility of type H(mx) samples, which makes it difficult

to recognise on the heating curve. We suggest that the thermally un-

stable ‘m’ component is responsible for the negative pTRM checks

Fig. 7c. The failure of these checks indicates that the palaeointen-

sities obtained (35.5 and 43.3 µT), although close to the expected

field, are unreliable.

Figure 15. Comparison of the NRM-TRM diagrams obtained from H(si) samples 161 and 263, using either the method employed in the present study (upper

diagram) or the original Thellier method (lower diagram). In the latter case, palaeointensity was determined demagnetizing NRM in sample 263 and a 50 µT

laboratory acquired TRM in sample 161 (see text).

It is more difficult to understand why type H(si) samples provide

as a whole wrong palaeointensity data. The k-T curve is reversible

within experimental uncertainties (Fig. 3c) and all six samples but

one (344) satisfy our pTRM criteria of reliability (Figs 7a and b).

Thus no significant mineralogical or magnetic changes seem to oc-

cur. Yet the 5 samples meeting the pTRM reliability criteria provide

a mean palaeointensity equal to 52.1 µT, which is 25 per cent more

than the expected value. Moreover, the standard deviation is large

(±6.7 µT). The characteristics of the NRM-TRM data of type H(si)

samples are, however, of no help for detecting such aberrant results.

The most extreme palaeointensity value (62.2 ± 2.0 µT), which is

50 per cent too large, is obtained from sample 161 with N = 14

data points, f = 0.60, q = 13, and good pTRM checks (Fig. 15).

The reliability of the palaeointensity calculated from such a data set

would have seemed unquestionable if the actual cooling field were

not known.

One may wonder if this unexpected result is not due to the com-

plexity of the variant of the Coe–Thellier palaeointensity method

used here. According to Levi (1975), it is incorrect not to apply

the field during the heating just preceding pTRM acquisition, as

we did at step 5. One may also wonder if it is correct to calcu-

late palaeointensity from the ratio of pTRMs acquired by the AF

demagnetized CS specimen to natural pTRMs carried by the MS

specimen, which was first in nature in a thermally demagnetized
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state. To settle this point, H(si) sample 263 was subjected to a

palaeointensity experiment using the genuine Thellier method, in-

volving two successive heating-cooling cycles, both with field on

(but anti-parallel directions) and pTRM checks. Fig. 15 shows that

both palaeointensity experiments provide very similar NRM-TRM

diagrams and palaeointensity estimates (48.1 ± 0.8 µT and 46.7 ±

0.6 µT are found for the Thellier and our method, respectively). Thus

there is no evidence that our variant introduces some systematic bias

in the data.

In addition, a laboratory TRM was given to two other type H(si)

samples in a 50 µT field. Then, both were also subjected to a

palaeointensity study with the Thellier method. The ‘palaeointen-

sity’ results obtained this way were much higher than the expected

50 µT. As an example, Fig. 15 shows sample 161, for which a

‘palaeointensity’ value of 61.3 ± 0.9 µT was obtained in the 185–

455◦C temperature range. This palaeointensity overestimate can be

considered as being due to grain size effects alone, as the samples

were previously thermally stabilised by the heating during TRM

acquisition. The reason for the tendency of H(si) samples to pro-

vide overestimated palaeofield magnitudes is probably the PSD/MD

structure of magnetic grains. In the temperature range of palaeoin-

tensity calculation (below 520◦C), Aaf is equal or larger than 10 per

cent, which suggests a PSD/MD size for the TRM carriers. This

deduction is compatible with the values of the Jrs/Js ratio, which

range from 0.11 to 0.18 (Table 2). Thus the overestimate is prob-

ably due to the concavity of the NRM-TRM curve for PSD/MD

grains (Levi 1977). In line with this interpretation, we note that if

the palaeointensity is calculated from the two extreme data points

on the diagram of sample 161 (Fig. 15), a palaeofield of 44 µT, in

good agreement with expected value, would be obtained.

For grain sizes approaching the PSD/MD threshold as it is the

case for the H(si) samples, it is not expected that a significant bias

in palaeointensity estimates can result from the difference between

the cooling rate in nature and in the laboratory. Considering the

experimental conditions of TRM acquisition in the laboratory and

assuming a typical flow thickness of a few metres for the 1928 Etna

eruptions, the cooling rate difference is about two orders of mag-

nitude. For single domain particles, the Néel theory (Néel 1949;

Dodson & McClelland-Brown 1980) predicts a palaeointensity over-

estimate. The experiments of Papusoı̈ (1972a) showed that, in agree-

ment with theory, TRM intensity increases linearly with the ratio of

the cooling-rates, the TRM increase being about 5 per cent for a ratio

of order 2. Conversely, the TRM intensity of MD particles decreases

with the cooling rate ratio (Papusoı̈ 1972b), the TRM decrease being

about 2 per cent for a two-order of magnitude decrease in cooling

rate.

7 C O N C L U S I O N S

(1) The present study shows that there is no combination of tech-

nical criteria such as number of points N , NRM fraction f , quality

ratio q or others which can be used with confidence as a cut-off to

distinguish reliable from unreliable palaeointensity data.

(2) This study also demonstrates that pTRM checks and pTRM-

tail determinations are the fundamental information needed to eval-

uate the reliability of palaeointensity data. We recommend modi-

fying the Thellier method by measuring, at each temperature step,

the pTRM-tail ratio and re-measuring the previous pTRM (sliding

pTRM checks). In order to be able to precisely calculate the heat-

ing remanence (HRM) at each temperature step, we also suggest to

orient the NRM direction approximately at right angle from that of

the field applied during palaeointensity experiments.

(3) Another problem with the Thellier method and all the vari-

ants proposed so far is that the data obtained at various Ti are in fact

not independent from each other because any pTRM(Ti) includes the

pTRM acquired at the previous temperature step. Now, there are con-

vergent indications from hysteresis measurements (Bina & Prévot

1989; Kosterov & Prévot 1998) and pTRM-tail determinations on

magmatic rocks (Shcherbakova et al. 2000, this study) that basaltic

or doleritic rocks can contain a continuum of grain sizes ranging

from MD size at low temperature to SD size when approaching

the Curie point. Because of this, even the high-Ti pTRMs can be

‘polluted’ by a MD component with non-ideal behaviour. Thus we

suggest to modify this method by using adjacent, non-overlapping

pTRMs such as pTRM(Ti−1, Ti) and pTRM(Ti, Ti+1) rather than

pTRMs(Ti, T0).
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